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Abstract—With the advancement of neural network object
detectors within the field of computer vision, the technology
has become mature enough to be applied to real-world medical
problems, such as rib fracture detection in 3D CT scans. Most
research on object detectors has been done on 2D images of
common objects, such as cars, dogs or trees. The aim of this
study was to expand this research by adding an additional spatial
dimension and switching the image domain to CT scans. To
achieve this, we developed a neural network object detection
architecture by adjusting the recently published neural network
object detection architecture called EfficientDet. To be of use
in a medical setting, prediction speed is important, therefore
the computational complexity was constrained to a minimum,
while achieving a strong performance was still necessary. As a
proof of concept, the ’object chest X-ray’ dataset was analysed
with promising results. Main experiments were performed on the
large real-world dataset ’RibFrac’ containing 3D torso CT scans.
To compare classification accuracy, the state-of-the-art neural
network classifier InceptionNet was used as a benchmark. We
found that our pipeline based on EfficientDet was able to achieve
a higher performance than InceptionNet in the classification task,
while additionally providing localization information. With a false
positive rate of five false positives per scan, 0.76 of all fractures
could be detected and scans containing rib fractures could be
identified with an AUC of 0.976.

I. INTRODUCTION

With the increasing use of neural networks in recent years,
much progress has been made in the field of computer vision.
Deep learning algorithms showed their potential by improving
a multitude of computer vision tasks such as image classi-
fication [11], segmentation [25] or hand writing recognition
[5]. With a gradual improvement over the last years, neural
networks reached a maturity that allowed them to be used for
solving real world problems outside of classic or academic
computer vision tasks.

With the constant advancement of medical imaging acqui-
sition technologies, the amount of image data that is used in
health care has increased drastically in recent years [17]. Due
to their complexity, interpretation of medical images is mainly
limited to trained and experienced experts. To keep up with the
increasing demand of medical image analysis and to support
clinicians, sophisticated machine learning methods are needed.

One important field within medical image processing is ob-
ject detection, which entails localizing and classifying salient
image parts. Use cases include quality control by finding
artifacts or supporting diagnoses with pathology detection.
Traditional machine learning approaches tend to rely on hand-
crafted features based on medically trained experts, whose
availability is limited for broad scale research. Moreover,
the experience of experts is not always easily translated into
explicit clear cut guidelines for feature crafting. This gap can
be filled by deep learning. Not only has deep learning proven
to surpass traditional machine learning methods in many

other fields, such as image classification or segmentation, but
it is less dependent on specific domain knowledge. Useful
features are generally found automatically by the deep learning
algorithm, as long as large enough datasets are available. Of
course, domain- or dataset-specific knowledge can improve the
algorithm.

A major challenge in this field is that medical datasets
tend to be much smaller than datasets for natural images,
due to patient privacy but also because annotations cannot be
crowd sourced and only be made by medically trained experts,
making the generation of large medical datasets time intensive
and expensive. Small datasets in turn can impede the deep
learning algorithm.

A second challenge is that much of the recent research
on deep learning based object detection has been focused
on common objects [8], [18], [4], [30] in RGB-images, such
as finding pedestrians, cars and traffic lights in a crowded
street scene. Since the domain of medical images can be quite
different from natural images, it is not obvious that the same
performance can be achieved without modifications. This is
an active field of research, with open challenges, such as
the MIDL2020 [2], CAMELYON16 [7] or MICCAI2020 [3],
which are based on medical images of different modalities
with the aim of finding pathologies or foreign objects.

In the medical praxis machine learning systems tend to
be used for decision support, where the final decision and
responsibility lies in the hands of the medical practitioner.
Therefore, pixel-perfect predictions of the machine learning
solution at all costs should not be the singular goal. While
a high performance is the minimum requirement in a clinical
setting, a short inference time is imperative to actually provide
support instead of distractions. Also, with the limited resources
available in many hospitals and other health care providers, the
computational complexity should be kept as low as possible
to make them more widely available.

Computerized tomography (CT) is a widely used medical
imaging methodology, for example for diagnosing physical
trauma patients [12]. In sever injury cases, diagnosis speed
can have a large impact on survival outcome. CT scans are
obtained by combining a series of X-ray images taken from
different angles to create 3D volume of bones, blood vessels
and tissues inside a body or body part. Voxel intensities
correspond to values on the Hounsfield scale, which is a
quantitative scale that describes radiodensity. The basic unit
is the Houndsfield Unit (HU), which is low for low density
fluids like water or blood and increases for denser substances
like cartilage or bone. Potential machine learning algorithm
therefore have to fulfil several requirements. On the one hand
they must be able to make predictions with a short inference
time and be computationally simple enough so that they are
widely affordable for hospitals and other health care providers.
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On the other hand they must be accurate and find relevant
objects without a large false positive rate. Ideally the algorithm
should also be generic enough to be applied to wider range
of object detection tasks. For this study we chose to base
our algorithm on the architecture ’EfficientDet’, because of its
impressive trade-off between inference time and performance
measured on a widely used object detection benchmark.

Given these highly advanced techniques with excellent
performance in benchmarks, the research question of this study
is, how can rib fractures be found in 3D CT scans in a fast
and reliable way using object detectors.

To investigate this, two datasets were used. First, a dataset of
2D chest X-rays, with foreign objects present in some images.
X-ray images are widely used because of their low cost and
high acquisition speed, but diagnosis and further processing
can be hindered by foreign objects. This dataset is used as a
proof of concept, since its objects tend to be large and clearly
delineated from the surrounding tissue. Second, a dataset of 3D
chest CT scans containing rib fractures was used. Rib fractures
are much smaller relative to the image size and can be much
harder to identify with the naked eye.

The contributions of this study are threefold. First, our study
is a feasibility study which explores to which extent a state-
of-the-art object detector (EfficientDet, originally developed
for 2D images of common objects) can be applied to 3D
world medical datasets, with a constraint on computational
complexity.

Second, we present a complete data analysis pipeline,
including extensive postprocessing of the object detection
output, that is able to provide classification and localization
information on multiple scales.

Third, we introduce a new evaluation metric, which is not
based on the intersection over union (IoU), as is typically
used in evaluating object detection algorithms. Our aim was
to provide a more intuitive and simply metric, which might
be more suited for algorithms designed to support rather than
replace medical practitioners.

A. Related Research

Image object detection aims to localize and classify objects
contained in an image. Object detectors based on neural
networks can roughly be divided into two classes: two-stage
detectors and one-stage detectors.

Two-stage detectors such as the ’Faster R-CNN’ [24] or
the ’Mask R-CNN’ [8] are large models focusing on high
performance rather than on fast inference. During the first
stage, category independent bounding boxes are generated,
which can be seen as candidate image patches encompassing
an object. In the second stage those bounding boxes are
processed further. The location is refined and the object class
is predicted. To make sure all objects within in image are
found, the first stage generally generates a large amount of
so called region proposals, which can be rejected in the
second stage. To give room for the possibility that some
region proposals do not contain an object, the second stage
calculates a confidence score, which represents the predicted
probability of the region containing an object of interest at all.

By thresholding low confidence predictions, false positives can
be filtered out easily.

One-stage detectors such as SSD [21], Yolo [4], RetinaNet
[18] or EfficientDet [30] focus on achieving high inference
speeds by reducing the complexity, which initially led to worse
performance than two-stage detectors. In one-stage detectors
bounding boxes around objects are predicted in one go without
first generating region proposals. First, the input is fed into the
backbone network, which acts as a basic feature extractor. It
is usually a deep CNN such as ResNet [9] or AmoebaNet [22]
but depending on the application requirements, it can also be
a lightweight network such as SqueezeNet [13] or MobileNet
[10].

The next module in the processing pipeline is the neck
network. While the backbone network is a bottom-up fea-
ture extractor, the neck network acts as a top-down feature
aggregator, which combines the feature maps of the backbone
network at different resolutions by means of a CNN, see Fig. 5
It can be as simple as a feature pyramid network (FPN), which
consists of a single top-down path of convolutional layers with
cross connections from the backbone network or as complex
as the bi-directional feature pyramid network (BiFPN), see
Fig. 5, where information is processed and combined in an
additional bottom-up path with skip connections from the
backbone nodes.

The last module is the head, which usually consists of
a shallow CNN. In the head network, the actual bounding
boxes around objects are predicted. Per predicted bounding
box, the output values are the location, usually indicated
by the coordinates of the top left and bottom right corner
of the rectangular box, a probability distribution over the
possible classes of objects and a confidence score, indicating
the estimated likelihood of an object being present. Most one-
stage object detectors predict bounding boxes on feature maps
of different resolutions to better find objects of different sizes
and scales. In Fig. 5, the head network would be applied to
all five outgoing edges of the BiFPN.

Although initially prioritising speed over performance, mod-
ern one-stage detectors such as Yolo v4 [4] and EfficientDet
[30] reach similar performance on commonly used bench-
marks. Since for medical applications both speed and accuracy
are important, this study utilizes one-stage detectors.

A common benchmark for object detection algorithms is
the Common Object in Context (COCO) dataset [32], with
the performance metric average precision (AP), which com-
bines classification and localization evaluation. Fig. 1 shows a
comparison of several of the mentioned object detectors, plot-
ting the performance (COCO AP) against the computational
complexity (FLOPs). The different data points belonging to
the same curve represent different versions of the same basic
architecture. As can be seen, EfficientDet achieves a strong
performance with minimal computational complexity.

Since objects within a dataset do not come in all shapes
and sizes, the quality of region proposals can be increased by
using so called anchors. An anchor is a bounding box with a
predefined size and aspect ratio, which is used as a prior in the
first stage during the region proposal generation. The optimal
anchor sizes and aspect ratios depend on the particular dataset
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Abstract

Model efficiency has become increasingly important in

computer vision. In this paper, we systematically study neu-

ral network architecture design choices for object detec-

tion and propose several key optimizations to improve ef-

ficiency. First, we propose a weighted bi-directional fea-

ture pyramid network (BiFPN), which allows easy and fast

multi-scale feature fusion; Second, we propose a compound

scaling method that uniformly scales the resolution, depth,

and width for all backbone, feature network, and box/class

prediction networks at the same time. Based on these op-

timizations and EfficientNet backbones, we have developed

a new family of object detectors, called EfficientDet, which

consistently achieve much better efficiency than prior art

across a wide spectrum of resource constraints. In partic-

ular, with single-model and single-scale, our EfficientDet-

D7 achieves state-of-the-art 52.2 AP on COCO test-dev

with 52M parameters and 325B FLOPs1, being 4x – 9x

smaller and using 13x – 42x fewer FLOPs than previous de-

tector. Code is available at https://github.com/google/

automl/tree/master/efficientdet.

1. Introduction

Tremendous progresses have been made in recent years

towards more accurate object detection; meanwhile, state-

of-the-art object detectors also become increasingly more

expensive. For example, the latest AmoebaNet-based NAS-

FPN detector [42] requires 167M parameters and 3045B

FLOPs (30x more than RetinaNet [21]) to achieve state-of-

the-art accuracy. The large model sizes and expensive com-

putation costs deter their deployment in many real-world

applications such as robotics and self-driving cars where

model size and latency are highly constrained. Given these

real-world resource constraints, model efficiency becomes

increasingly important for object detection.

There have been many previous works aiming to de-

velop more efficient detector architectures, such as one-

1Similar to [12, 36], FLOPs denotes number of multiply-adds.
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Figure 1: Model FLOPs vs. COCO accuracy – All num-

bers are for single-model single-scale. Our EfficientDet

achieves new state-of-the-art 52.2% COCO AP with much

fewer parameters and FLOPs than previous detectors. More

studies on different backbones and FPN/NAS-FPN/BiFPN

are in Table 4 and 5. Complete results are in Table 2.

stage [24, 30, 31, 21] and anchor-free detectors [18, 41, 37],

or compress existing models [25, 26]. Although these meth-

ods tend to achieve better efficiency, they usually sacrifice

accuracy. Moreover, most previous works only focus on a

specific or a small range of resource requirements, but the

variety of real-world applications, from mobile devices to

datacenters, often demand different resource constraints.

A natural question is: Is it possible to build a scal-

able detection architecture with both higher accuracy and

better efficiency across a wide spectrum of resource con-

straints (e.g., from 3B to 300B FLOPs)? This paper aims

to tackle this problem by systematically studying various

design choices of detector architectures. Based on the one-

stage detector paradigm, we examine the design choices for

backbone, feature fusion, and class/box network, and iden-

tify two main challenges:

Challenge 1: efficient multi-scale feature fusion – Since

introduced in [20], FPN has been widely used for multi-
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Fig. 1. Comparison of current state-of-the-art deep learning object detection
architectures in terms of speed (FLOPs) and precision (COCO AP) on
the COCO benchmark. Colored curves show the same base architecture at
different scales, increasing performance but also computational complexity.
EfficientDet shows that high performance can be reached with relatively small
number of operations. Illustration reproduced from [15]

and can be calculated in a variety of ways such as k-means
clustering [23], or differential evolution [34].

II. DATA

For this study, two open datasets were used: the ’object
chest X-ray’ (OCXR) dataset [2] and the rib fracture (RibFrac)
dataset [16].

A. OCXR

The OCXR dataset [2], which is part of the MIDL2020
object detection challenge, consists of 10 000 chest X-ray
images collected from around 300 township hospitals in China.
50% of the images contain foreign images, 50% do not contain
any foreign objects. Fig. 2 shows an example image with
annotations. The goal of the OCXR challenge is to improve
quality control for X-ray images, which are commonly used
for pulmonary and heart disease diagnoses. Foreign objects
constitute artifacts, which may occlude pathologies and hinder
further processing in general, leading increasing false negative
and false positive rates. The data stems from township hos-
pitals and especially in rural and remote locations, standard
image acquisition guidelines are not followed strictly enough
leading to nearly a third of X-ray images not being usable
for diagnosis [2]. Automating the detection of foreign objects
could reduce cost and save radiologists’ time to focus on other
aspects of patient care. The images were annotated by 12
medically trained radiologists with 1 to 3 years of experience.
The annotations can take three different shapes: rectangular
bounding boxes, bounding ellipses and bounding polygons.
The shape does not carry additional information and is only
dependent on the annotators preferences.

Fig. 2. Example of an X-ray image of the OCXR dataset with foreign objects
being present. Red outlined regions represent the ground truth of foreign
objects, which have to be detected by the machine learning algorithm

The dataset was randomly partioned into a training set
(8 000 images), a validation set (1 000 images) and a test
set (1 000 images). The ratio of images with and without
foreign objects is 1:1 for all three data partitions. The im-
age width varied between 1089 and 4096 pixels, the image
height varied between 975 and 4932 pixels. Raw images had
varying orientation with all multiples of 90◦ being present.
Furthermore, several images had an inverse intensity, resulting
in for example bones being represented as dark instead of light
pixels.

B. RibFrac

The RibFrac dataset [16] is part of the MICCAI2020
conference and is published as an open challenge. Rib fracture
detection is an important and common task in clinical prac-
tice, for which little research focusing on automatic machine
learning methods has been done [16]. The original dataset
consists of 660 3D CT scans, containing around 5 000 rib
fractures. However, ground truth annotations are only openly
available for the predefined training and validation set, making
a proper crossfold validation impossible and only allowing
for a test set performance analysis with a limited number
of metrics. Therefore, the training and validation set of the
original dataset was re-partioned into a training set consisting
of 385 scans, a validation set of 25 scans and a test set of 90
scans for a threefold cross validation. Twenty scans contained
no fractures, all other 480 scans contained at least one fracture.
The new validation and test sets were selected in a way such
that no scan was in multiple validation or test sets. In addition,
all 20 volumes containing no fractures were always in the test
set. Since the network inputs are transversal slices and in all
volumes, the majority of slices do not contain fractures, the
network was still fed with a sufficient number of slices of the
healthy class. To calculate proper statistics on a volume level,
the number of scans containing no fractures should be as high
as possible.
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Fig. 3. Example of a scan of the RibFrac dataset from different perspectives.
Left: transversal plane, right: sagittal plane. Rib fracture ground truth annota-
tions are marked in bright red, other colors represent predictions aggregated
into clusters.

An example scan is displayed in Fig. 3. Note that objects,
that is rib fractures, are much smaller in this dataset than in
the OCXR dataset.

Fractures are classified into five categories:
• displaced - 684 occurrences
• non-displaced - 630 occurrences
• buckle - 321 occurrences
• segmental - 209 occurrences
• other - 2576 occurrences
The ’other’-type was assigned if the fracture was ambiguous

or difficult to diagnose.
The dimensions of the scans are: 512x512xN voxels, where

N can vary from 74 to 649.
Ground truth annotations consist of voxel-level masks for

regions containing rib fractures.

III. METHODS

In this section, the complete data analysis pipeline is pre-
sented, which is able to output classification and localization
information of objects in medical images. A flowchart of the
pipeline is displayed in Fig. 4.

A. Model architecture - EfficientDet

The deep learning baseline and starting point for this study
was the one-stage detector EfficientDet [30], which reaches
state-of-the-art object detection performance for natural im-
ages of common objects and is easily scalable. Like most
object detectors, EfficientDet consists of three parts: the back-
bone, the neck and the head. A schematic is shown in Fig.
5.

1) Backbone - EfficientNet: The backbone architecture is
EfficientNet [31]. EfficientNet is a fully convolutional CNN,
which makes use of skip connections, where layers are not
only connected to the immediately following layer but also
to layers deeper in the network, skipping several layers. Skip
connections help to combat the problem of vanishing gradients
of deep neural networks and since they also improve general
performance, they have become a standard in many modern
CNN architectures. The main idea behind EfficientNet is to
balance the network’s parameters in a way that the available
computational power is used optimally. The three key scaling
options are network depth (i.e. amount of layers), network
width (i.e. amount of channels per layer) and the input

resolution. Increasing any of the three factors can improve
the network performance, but the performance gain will at
some point saturate. For examples, the performance of ResNet
with 100 or 1000 layers is almost identical [31], while the
computational complexity is scaled with a factor of 10. The
developers of EfficientNet developed eight empirically tested
versions of the base architecture at different scales, which find
a good compromise between the three scaling factors.

2) Neck - BiFPN: The neck of EfficientDet is the BiFPN
displayed in Fig. 5 The white nodes on the right-hand side
represent the feature maps of the backbone network at var-
ious resolutions - a higher P index correspond to half of
the resolution as the next lower P index. With the BiFPN,
several adjustments to the regular FPN are proposed. First,
nodes with only a single outgoing edge (second column, top
most and bottom most node) are removed to reach a high
amount of cross-resolution feature fusion without increasing
the computational complexity too much. Nodes that now end
up with only one outgoing edge receive an additional outgoing
edge, with either a skip connection or a cross resolution edge.

Second, the neck network can consist of multiple BiFPN
layers, increasing the amount of feature fusion further. In Fig.
5 an example is shown with three BiFPN blocks.

Third, BiFPN uses an advanced method of combining
features of different resolutions. To combine feature maps
from different resolutions, commonly feature maps are resized
to the same size and simply added up. The BiFPN feature
maps are first multiplied with a learnable weight before they
are added up to give the network the ability to learn, which
feature maps are more important than others.

3) Head: The head network consists of two separate sub-
networks, see Fig. 5: the box prediction network, which
predicts the bounding box coordinates and the class predic-
tion network. Both networks consist of several convolutional
layers, each followed by batch normalization [14] and a non-
linear activation, which is standard practice. The amount of
convolutional layers in both networks depends on the scale of
the network and can vary between three and six. All five of
the feature maps from the BiFPN, generated at the final five
output nodes, are fed into both the box and class prediction
network, such that final predictions are made on feature maps
of all available resolutions.

The number of bounding boxes that are predicted for each
image follows the following equation and depends on the
input resolution, which in turn is determined by the scale of
EfficientDet.

num bbox =

5∑
i=1

(
input size

8 ∗ i

)2

∗ num anchors (1)

For example, for EfficientDet-D2 (third smallest scale)
110,484 bounding boxes are predicted on each image, where
the output per bounding box are a confidence score and the
location, represented by the coordinates of the upper left
corner, the width and the height of the bounding box. The
loss used for the gradient descent consist of two parts: the
binary cross entropy of the classification prediction and L1
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Figure 3: EfficientDet architecture – It employs EfficientNet [36] as the backbone network, BiFPN as the feature network,

and shared class/box prediction network. Both BiFPN layers and class/box net layers are repeated multiple times based on

different resource constraints as shown in Table 1.

Input Backbone BiFPN Box/class

size Network #channels #layers #layers

Rinput Wbifpn Dbifpn Dclass

D0 (φ = 0) 512 B0 64 3 3

D1 (φ = 1) 640 B1 88 4 3

D2 (φ = 2) 768 B2 112 5 3

D3 (φ = 3) 896 B3 160 6 4

D4 (φ = 4) 1024 B4 224 7 4

D5 (φ = 5) 1280 B5 288 7 4

D6 (φ = 6) 1280 B6 384 8 5

D6 (φ = 7) 1536 B6 384 8 5

Table 1: Scaling configs for EfficientDet D0-D6 – φ is

the compound coefficient that controls all other scaling di-

mensions; BiFPN, box/class net, and input size are scaled

up using equation 1, 2, 3 respectively.

early increase the depth (#layers) using equation:

Dbox = Dclass = 3 + ⌊φ/3⌋ (2)

Input image resolution – Since feature level 3-7 are used

in BiFPN, the input resolution must be dividable by 27 =
128, so we linearly increase resolutions using equation:

Rinput = 512 + φ · 128 (3)

Following Equations 1,2,3 with different φ, we have devel-

oped EfficientDet-D0 (φ = 0) to D7 (φ = 7) as shown

in Table 1, where D7 is the same as D6 except higher res-

olution. Notably, our scaling is heuristic-based and might

not be optimal, but we will show that this simple scal-

ing method can significantly improve efficiency than other

single-dimension scaling method in Figure 6.

5. Experiments

5.1. EfficientDet for Object Detection

We evaluate EfficientDet on COCO 2017 detection

datasets [22] with 118K training images. Each model

is trained using SGD optimizer with momentum 0.9 and

weight decay 4e-5. Learning rate is linearly increased from

0 to 0.16 in the first training epoch and then annealed down

using cosine decay rule. Synchronized batch normalization

is added after every convolution with batch norm decay 0.99

and epsilon 1e-3. Same as the [36], we use swish activation

[28, 6] and exponential moving average with decay 0.9998.

We also employ commonly-used focal loss [21] with α =
0.25 and γ = 1.5, and aspect ratio {1/2, 1, 2}. Each model

is trained with batch size 128 on 32 TPUv3 cores with batch

size 4 per core. We use RetinaNet [21] preprocessing with

training-time multi-resolution cropping/scaling and flipping

augmentation. Notably, we don not use auto-augmentation

[42] for any of our models.

Table 2 compares EfficientDet with other object de-

tectors, under the single-model single-scale settings with

no test-time augmentation. We report accuracy for both

test-dev (20K test images with no public ground-truth)

and val (5K validation images with ground-truth). Our

EfficientDet achieves better efficiency than previous detec-

tors, being 4x – 9x smaller and using 13x - 42x less FLOPs

across a wide range of accuracy or resource constraints.

On relatively low-accuracy regime, our EfficientDet-D0

achieves similar accuracy as YOLOv3 with 28x fewer

FLOPs. Compared to RetinaNet [21] and Mask-RCNN

[11], our EfficientDet-D1 achieves similar accuracy with up

to 8x fewer parameters and 21x fewer FLOPs. On high-

accuracy regime, our EfficientDet also consistently outper-
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Fig. 5. Schematic of EfficientDet architecture consisting of the backbone
(EfficientNet), the neck (bi-directional feature pyramid network) and the head
module (class and box prediction net). Illustration reproduced from [30]

regression loss for the difference between the predicted and
ground truth bounding box. Both losses are weighted equally.

B. Model architecture - Inception Network

Since the task for the RibFrac dataset is classification
task - i.e. classifying images or complete scans containing
rib fractures - we chose the state-of-the-art classification
network InceptionNet as a benchmark for comparison. The
Inception architecture quickly became popular after winning
the ImageNet Large-Scale Visual Recognition Challenge 2014
[28] and is still one of the state-of-the-art neural network
architectures for image classification. The hallmark of this
architecture is the efficient computation of convolutional fil-
ters, which was obtained by reducing the number of channels
with a 1x1 convolution beforehand combined with the feature
combination at different scales. In this way, the number of
larger computationally more expensive convolutional filters
can be reduced. The 1x1 convolutions are followed by a
non linear activation and therefore serve a double purpose.
Another benefit of this module structure is that feature maps
on different scales are produced by the filters of varying size
and type (convolutions and max pooling).

In the third iteration of the architecture - Inception v3 [29]
- the convolutional filters are further optimized by replacing
them with 1xN and Nx1 convolutions in parallel or series

depending on the filter size, which reduces the number of
learnable parameters further.

Nine of these inception modules connected in series make
up the core of the inception network, preceded by a shallow
convolutional sub-network that serves as a first feature extrac-
tor and downsampler. At the end of the inception modules,
the final predictions are made with a fully connected layer
followed by softmax activation.

To counter the problem of vanishing gradient, which occurs
in deep neural networks and makes them difficult to train,
auxiliary network branches were added to the fourth and
seventh inception module. These auxiliary branches consist of
a pooling layer, a convolutional layer and two fully connected
layers and predict a preliminary image classification. In this
way, the loss gradient is injected at different stages of the
network and can reach the earlier layers more easily.

C. Implementation

The basis of the implementation of EfficienDet used for this
study is the GitHub repository ’Zylo117’ [1], which ported
the original developers implementation from TensorFlow to
the PyTorch deep learning framework and achieves the same
benchmark performance as the original implementation [1].

Generally, a larger version of EfficientDet achieves a higher
performance at the cost of the inference speed. The per-
formance difference is especially noticeable for the smaller
versions, while for the larger versions the performance starts
to saturate. For both the OCXR and the RibFrac dataset, a
medium sized version of EfficientDet was used - EfficientDet-
D2. For real-time applications, inference speed is important
and EfficientDet-D2 is the largest version, which achieved
real-time1 inference on the COCO object detection benchmark.
Furthermore, since the object detector will be applied to a 3D
dataset, an efficient 2D baseline detector is crucial, because
adding another dimension will increase the computational
complexity.

1Real-time inference is here defined as 30 FPS with a Tesla V100 graphics
card
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Fig. 6. Comparison of a transversal slice with and without windowing.
Left: original image. Right: windowing applied to emphasize bone structures,
leaving only values between -300 to 1000 HU.

1) Preprocessing: 2D transformation: Since EfficientDet
was developed for 2D image analysis, the 3D RibFrac dataset
was subdivided into a stack of 2D images. The most natural
way to subdivide the scans is along the transversal axis, as it
is also the axis along which image acquisition takes place.

Annotation conversion: Much like most current object de-
tectors, EfficientDet was developed for rectangular bounding
boxes. All other shapes of ground truth annotation such as
ellipsoid and polygonal and pixel-wise annotations were con-
verted into rectangular bounding boxes: the smallest rectangu-
lar bounding box, which encompasses the complete annotation
with sides parallel to the image borders (i.e. no rotation).
Furthermore, classes were merged together, such that the task
became a binary classification task.

Normalization: In the case of the OCXR dataset, all images
were normalized with respect to the global intensity statistics.
Slice-wise, the global intensity mean was subtracted and the
result was divided by the global intensity standard deviation.

Data windowing: In the case of the RibFrac dataset, the data
was preprocessed by using an intensity window transform. The
intensity resolution of CT scans can be very high, which results
in a lot of detail in image parts that are not relevant for the task.
For example, in this dataset, fractures can only be found on
the ribs, therefore tissue details in the lung away from the ribs
are unnecessary and could possible impede proper training. A
bone window transform was applied which emphasises bone
structures and deemphasises soft tissues. As can be seen in
Fig. 6, on the right, the ribs are much easier to discern and
less detail can be seen in areas where clearly no bones are
located. All HU values lower than -300 and higher than 1000
are set to zero, values between this range are linearly mapped
to the interval between 0 and 1.

Resizing: As the input size was fixed by the scale of
EfficientDet, all images were resampled to a size of 768x768
using bilinear interpolation. In the case of the Inception
architecture, the input size was fixed to 299x299 voxels. To
allow for a fair comparison, each transversal slice is sub-
divided into four equally large quarters, which were then
resized to the necessary resolution. Every quarter is analysed
separately leading to a total image resolution of 598x598.

D. Network training

Before predicting the bounding boxes for the test set, the
network had to be trained on the training data set. During
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Fig. 7. Typical curve of the optimal learning rate algorithm. The optimum is
found as the minimum of the loss gradient.

inference, this pipeline block was not used.
Pretraining: EfficientDet was pretrained on the Microsoft

COCO dataset [19]. This dataset is a large dataset of natural
images of common objects, such as dogs, cars and trees.
While the medical domain has different pixel statistics than the
domain of natural images of common objects, the pretraining
will give a better starting point than a random initialization,
since especially low level features like edges and corners are
likely similar. InceptionNet was pretrained on the ImageNet
dataset, which is a large dataset commonly used for image
classification [6].

Learning rate estimation: An important parameter to tune
is the learning rate. A too high learning rate can lead to
overshooting optimal weight values, while a too low learning
rate will lead to a slow training. The optimal learning rate can
be estimated with the method of Smith [27]: first the learning
rate is set to a very small value, for example 10−8. Network
training is started and after every mini batch, the learning rate
is multiplied with 1.1, exponentially increasing the learning
rate over time. The recorded loss against the learning rate will
have a typical shape, see Fig. 7: at first the loss will barely
decrease, since the learning rate is too small, next the decrease
in loss will speed up, indicating a learning rate close to the
optimum and finally steeply increase, indicating an overshoot.
The estimated optimal learning rate is the learning rate for
which the gradient of the loss is minimal - i.e. the inflection
point. To reduce the influence of the weight initialization and
batch selection, this procedure was repeated ten times and the
average of the estimated optimal values was used. Both for
estimating the optimal learning rate and actual training, the
Adam optimizer was used.

Anchor optimization: In total, nine anchors were used with
three different aspect ratios at three different scales. The opti-
mal anchors were calculated with an evolutionary differential
method [34].

Data augmentation: A common method to artificially in-
crease the sample size of a dataset and improve the gener-
alizability of the neural network is data augmentation [15].
Since especially the OCXR dataset is rather small, data aug-
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mentations are a valuable tool. Data augmentations artificially
increase the sample size by copying and then distorting the
original image in certain ways. In the original implementation
only one data augmentation method was used, whereby the
image was mirrored along the vertical axis. For this study,
five additional data augmentation methods were implemented:
mirror, crop, intensity inversion, rotation, brightness change
and blur.

Cropping was done by randomly selecting an image patch
comprising at least 40 percent of the original image and
stretching it back to the original resolution. During intensity
inversion the current value of each pixel was subtracted
from the maximal intensity value 255. Rotation was done by
randomly rotating the image to 90◦, 180◦ or 270◦. For the
brightness change, all intensity values of the an image were
randomly multiplied by 0.8 or 1.2. The image was blurred
with a Gaussian filter with a standard deviation of 2 pixels.
With a probability of 25% a single randomly chosen data
augmentation was used, in 75% the original image was fed
into the network.

3D context: Since rib fractures extend over multiple
transversal slices, there are some clear spatial dependencies
between neighboring slices. To make use of these dependen-
cies, the EfficientDet pipeline was adjusted. EfficientDet was
built as an object detector for RGB images, thus using an input
with three color channels. CT-images on the otherhand are
greyscale images. The left over two color channels therefore
can be filled in with neighboring transversal slices and provide
the network with more spatial context. Note that bounding box
predictions were still made only solely on the center slice.

Balanced batches: Within the RibFrac data, a large class im-
balance is present. Only roughly every fourth transversal slice
contains a rib fracture. Sampling batches randomly will lead
to the network training on much more healthy images, which
can impact networks ability to detect fractures. Therefore the
probabilities to draw samples from each class are adjusted,
such that probabilities to draw from each class are equal.

Stopping criterion: To minimize the risk of overtraining
and maximize the generalizability of the model, two different
stopping criteria were tested.

If overtraining during training was detected, the validation
loss was calculated every 300 training iterations. If the vali-
dation loss did not reach a new minimum within 5 epochs or
a maximum of 50 training epochs elapsed, the training was
stopped and the performance was evaluated with the network
weights achieving the lowest validation loss.

If no overtraining was detected, but loss convergence is
seen on the validation set in a preliminary training run, the
validation set was combined with the training set into a larger
training set. The advantage of this method is that more samples
are available for training, which can improve the network
generalizability and therefore test performance.

E. Postprocessing

Thresholding: For the EfficientDet-D2 scale, 110,484
bounding box are predicted on each analysed image. Most of
the bounding boxes do not encompass an object and ideally

should have a low confidence score. To reduce the false
positive rate, all predicted bounding boxes with a confidence
score lower than 0.05 were discarded.

Cluster aggregation: To exploit the 3D spatial context of
the data, the 2D bounding boxes were aggregated into 3D-
clusters. For example, since the resolution along the transver-
sal axis is high, relative to rib fracture sizes, rib fractures
were extended over multiple transversal slices. By combining
bounding box prediction from multiple slices, false positives
could be detected and gaps could be filled in. Bounding
boxes were grouped together if there was at least one pixel
overlap between bounding boxes in the same or neighboring
transversal slice. For an example, see Fig. 9. The colored lines
are the individual bounding boxes, which are grouped together
into clustered indicated by the same color.

SVM confidence score adjustment: From the aggregated
3D clusters, cluster statistics were calculated and used with
a linear support vector machine (SVM) to generate adjusted
confidence scores on the cluster level. The following seven
statistics were used: cluster size, cluster extension along the
transversal axis, maximum, mean and standard deviation of the
bounding box’s confidence scores and the standard deviation
of the bounding box centers in x- and y-direction. Since the
ground truth annotation of rib fractures are rather cube shaped
than irregular ”smeared out” clusters, we assumed that a low
standard deviation of bounding box centers could be a valuable
predictor to identify true positive clusters. The output of the
SVM is a confidence score estimating the probability of a rib
fracture being present in the image.

While neural networks have been shown to be superior to
SVMs in solving many problems in the field of computer
vision, we expected the SVM to be able to refine the results of
the neural network, because information about the 3D context
has been added in the cluster aggregation, which was not
available to the network. Furthermore an SVM instead of an
additional neural network was chosen, since the amount of data
points is greatly reduced after transforming bounding boxes
into clusters and neural network tend to perform best with
large datasets, which can inhibit neural network training. Also
linear SVM predictions are fast and computationally much
simpler and therefore better comply with the computational
complexity constraint of this study.

F. Performance metrics

FROC: For the OCXR dataset, the Free-Response Operating
Characteristic (FROC) is used to measure the localization
ability of the network. For this, all predicted bounding boxes
were sorted according to their confidence score and evaluated
whether the bounding box had an overlap with a ground truth
bounding box. A predicted bounding box counted as correctly
localized if the center of the predicted bounding box lied
within the ground truth annotation. Next the cumulative true
positive rate and false positive rate of the ordered bounding
box list was calculated. At checkpoints of average false
positive rates of 0.125, 0.25, 0.5, 1, 2, 4, 8 the sensitivity
was calculated. The final FROC score was the average of the
seven sensitivity scores.
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AUC: The main performance metric was the area under the
receiver operating curve (AUC) calculated on three different
levels, with varying localization information: cluster, image,
volume.

The probability score for an aggregated cluster is the output
from the SVM. A common way to assess whether a bounding
box accurately located an object is the intersection over union
(IoU) [19] between the predicted bounding box and the ground
truth annotation. A prediction is counted as correct, if a
threshold is reached. In the case of images the intersection
and union are calculated in pixels. This metric can easily
be expanded to 3D by counting voxels instead of pixels for
the intersection and union. This metric combines two aspects,
namely how much of the ground truth object was found and
how large the prediction is relative to the ground truth size.
For example, a prediction that is smaller than the object but
is completely contained by it can result in the same IoU as
a large prediction that only covers a part of the ground truth.
For clinical support, the first case is more useful, since it can
more easily focus the attention on the pathology. Furthermore
it seems that IoU values are difficult to estimate for human
observers [26], which makes it not ideal for a support system
for humans.

Hit metric - intersection: For this study, we instead simply
used the fraction of the ground truth object that is covered
by the prediction relative to the object’s size with a threshold
of 0.1. An easy exploit of this metric would be to increase
the predicted cluster size, since the metric is blind to no
overlapping voxels. However, during network training the the
L1 loss between predicted and ground truth bounding box was
used as loss and therefore overly large bounding boxes were
penalized. Additionally, to ensure that the cluster size was
not the driving factor behind a good performance, the average
predicted and the ground truth object are reported. To be of
use in a clinical setting, not only the AUC is important but also
an actual operating point has to be selected. With a too high
false positive rate the algorithm becomes distracting rather
than supportive. For this study the fraction of found objects
are reported at an ope srating point of five false positives per
volume.

The inception architecture has a designated output to in-
dicate the estimated probability of an object being present
per transversal slice. EfficientDet on the other hand produces
only bounding box predicitions. To estimate the probability
of an object being present in the image, the bounding box
probability scores within an image were used. The highest
probability score of all bounding boxes were assigned as image
probability score. If no bounding box was predicted on the
image, zero was assigned.

The volume score is derived from either the cluster or
the image score. In the case of EfficientDet, the volume
score is the highest probability of a cluster that a volume
contains. In the case of InceptionNet, the highest probability
score of the images contained in the volume is used. Another
metric to evaluate how well fractures in transversal slices
per volume were found is the correlation coefficient between
the probability score per image and the binary ground truth
per image. This is a more fine grained metric, which takes

Fig. 8. Correct and incorrect detection. Predictions in blue, ground truth in
green. The confidence score is shown above the predicted box.

predictions of every image into account instead of instead of
only cluster prediction scores.

IV. EXPERIMENTS & RESULTS

In this section, the experiments and results of the analysis
on both the OCXR and the RibFrac dataset are presented.

A. OCXR

The experiment performed on the OCXR dataset used
EfficientDet-D2 to investigate how easily an object detector
developed for common object in color image can be used on
X-ray images to find foreign objects. Since rib fractures are
smaller and blend more easily into the background and are
therefore harder to find, a good performance on the OCXR
is necessary for EfficientDet to be considered as a potential
candidate for rib fracture detection. Following the learning
rate estimation protocol from section III-D, the learning rate
was set to 10−3. The empirically found anchor sizes were 1:1,
1.4:0.7 and 0.7:1.4 with sizes 0.660, 1.047 and 1.662. During
training overtraining was noticed, therefore the validation
dataset was used to find the optimal moment to stop training,
which was reached after 46 epochs.

The training resulted in an AUC of 0.931 and an FROC
of 0.762, which put EfficientDet’s performance in the middle
of the challenge leaderboard. Several example predictions are
shown in Fig. 8.

B. RibFrac

A baseline experiment and three additional experiments
were performed on the RibFrac dataset, to investigate the
effect of certain aspects of the training procedure. For the
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Fig. 9. Aggregation of individual bounding boxes into 3D clusters. Top -
sagittal plane, bottom - transversal plane. Ground truth rib fractures are shown
in bright red, other colors represent predictions.

baseline experiment, the general methodology from Fig. 4 was
followed with the exception of batch balancing and 3D input
augmentation. Furthermore the optimal early stopping point
was found using a validation dataset. The additional exper-
iment investigated those three factors (batch balancing, 3D
input augmentation and combining the training and validation
set together and stop training after a preset amount of epochs).

The estimated optimal learning rate for all experiments done
with EfficientDet was found to be 10−3 coinciding with the
learning rate for the OCXR dataset. The empirically found
anchor sizes were 1:1, 1.4:0.6, 0.6:1.4 and 0.7:1.4 with sizes
0.4, 0.498, 0.635. As expected the optimal anchor sizes for the
RibFrac dataset are smaller then for the OCXR dataset. The
batch size during training was set to 32.

Similar experiments were performed with InceptionNet on
the RibFrac dataset, the validation loss did not converge but
resulted in overtraining for longer training runs. Since without
a validation set, the optimal training point before overtraining
occurs could not be found, this experiment was skipped for
InceptionNet. The learning rate was found to be 5x10−5 and
the batch size was set to 16.

The results can be seen in Table I. For EfficientDet, two
values are given: first the result using an SVM during post-
processing, second without. All metrics are averaged over all
three crossfolds. Fig. 10 shows a comparison between the ROC
curves for the volume predictions of the baseline experiment
for EfficientDet (with and without SVM) and InceptionNet.

An example output of aggregated bounding boxes can be
seen in Fig. 9.

Figure 11 and 12 shows a histogram over the volume
probability scores with and without using an SVM respectively
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Fig. 10. AUC comparison for the baseline experiments for EfficientDet with
(orange) and without SVM (blue) and InceptionNet (green).
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Fig. 11. Histogram of probability scores for volumes based on SVM
predictions

of one crossfold of the baseline experiment. Scans containing
a fracture are displayed in red, stacked on top are healthy scans
displayed in green.

Fig. 13 displays EfficientDet’s performance on a cluster
level. The five curves show how many fractures of a particular
class were found relative to the class occurrence, depending on
the probability score threshold on a cluster level. Decreasing
the threshold will naturally lead to more fracture being found
on the cost of a higher false positive rate. The dashed vertical
line represents the operating point of five false positive per
volume.

V. DISCUSSION

A. OCXR

The results of the OCXR dataset are promising. Comparing
the results to the official challenge leaderboard, EfficientDet
has with an AUC score of 0.931 the 26th highest AUC (top
placement: 0.963) and with an FROC score 0.760 the 27th
highest FROC (top placement: 0.852) out of 40 contestants.
Considering the computational complexity constraint, it shows
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Network AUC vol. AUC img. AUC clust. obj. found rel. cluster size corr. coef.
Baseline EffDet 0.967 / 0.976 0.902 0.952 / 0.944 0.762 / 0.761 1.650 / 1.633 0.667
Baseline IncNet 0.810 0.800 - - - 0.436
3D-input EffDet 0.746 / 0.873 0.836 0.931 / 0,929 0.765 / 0.770 5.718 / 5.696 0.527
3D-input IncNet 0.715 0.763 - - - 0.396
Balanced EffDet 0.888 / 0.937 0.880 0,957 / 0,954 0.764 / 0.773 2.294 / 2.195 0.615
Balanced IncNet 0.678 0.762 - - - 0.509

Large EffDet 0.937 / 0.956 0,0.885 0.934 / 0.923 0.738 / 0.734 2.275 / 2.25 0.660
TABLE I

EXPERIMENTAL RESULTS. WHERE APPLICABLE, THE FIRST NUMBER SHOWS THE RESULT WITH SVM ADJUSTMENT, THE SECOND WITHOUT. AUC WAS
MEASURED ON THREE LEVELS: VOLUME, IMAGE, CLUSTER. RELATIVE AMOUNT OF FRACTURES FOUND (OBJ. FOUND) WAS CALCULATED AT AN

OPERATING POINT OF ON FIVE FALSE POSITVE PER SCAN ON AVERAGE. RELATIVE CLUSTER SIZE IS REPORTED TO SHOW THAT THE INTERSECTION HIT
METRIC WAS NOT ABUSED.
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Fig. 13. Fraction of fractures correctly located depending on probability score
threshold for the baseline experiment.

that EfficientDet is a promising candidate for object detection
in CT scans.

During the error analysis, it became apparent that there
are significant inconsistencies in the provided annotations
impacting the performance. For examples, chains or buttons
(bottom right image of Fig. 8) or clips close to the spine are
not always annotated as foreign objects in the ground truth
labels, even if they are clearly located within the lung field.
Furthermore, in some cases only the lower part of a necklace

is annotated in the ground truth labels and in other cases
the complete necklace, including the parts that reach out of
the lung field. Many of the false positive predictions with a
confidence score above 0.3, belong to those inconsistent cases.

B. RibFrac

The current study aimed to use object detector neural
networks to efficiently and reliably find objects on medical
images. The performed experiments and results show that the
object detector EfficientDet is a viable candidate for image
pathology classification.

In this section, the result concerning the RibFrac dataset
are discussed focussing on three topics: comparing the perfor-
mance of EfficientDet and InceptionNet, analysing the impact
of using an SVM to adjust the cluster classification scores and
explanations are discussed on why the additional experiments
were not able to improve baseline performance.

EfficientDet vs InceptionNet: Table I shows that Efficient-
Det achieves a significantly better performance than Incep-
tionNet in all experiments and on all performance metrics.
Even though EfficientDet contains, with roughly 8 million
trainable parameters, only a third of the roughly InceptionNet’s
24 million trainable parameters, EfficientDet is able to better
identify 3D scans and 2D transversal slices containing rib
fractures, showing the versatility of an object detector used
as a binary classifier.

The small size of the rib fractures likely play a significant
role in the performance difference. For example, in the widely
used ImageNet databased, the class defining part of the image
is relatively large, i.e. an image of the class dog, has a dog
covering half of the image or more, meaning that a large part
of the image contains important information. In the RibFrac
dataset the opposite is true, rib fractures are small relative to
the image size and therefore most of the image parts carry little
information about the image class. InceptionNet only has one
output to estimate the class of the entire image. EfficientDet on
the other hand has roughly 100,000 outputs per image, where
different outputs make predictions about different image parts.
Therefore a much more detailed signal is used for each training
iteration, which might lead to a better pattern extraction.

Furthermore, with the aggregated clusters, more local in-
formation is available using EfficientDet. With InceptionNet
the smallest region on which predictions are made, are image
quadrants, which represents an area of roughly 65,000 voxels
of a scan. For EfficientDet the smallest region are clusters,



11

which in the baseline experiment are only roughly 10,000
voxels on average. In a medical setting, interpretability and
explainability provided by clearer localization due to aggre-
gated clusters are of utmost importance to promote trust in
the human-machine collaboration.

We found that with increasing localization information,
the classification accuracy decreases. This methodology could
therefore be used in a top-down fashion. First, the scan
as a whole would be evaluated, for which the accuracy is
the highest to give a quick, but confident estimation on the
nature of the complete scan. As a second step, localization
information could be added on an image level, which could
finally be refined with a cluster analysis. This hierarchy would
allow for adding subsequently more localization information,
while the diagnosis is in process. The same analysis used to
evaluate an enitre scan could also be used on 3D parts of the
scan.

Fig. 13 shows the classification performance per class. Dis-
placed, non-displaced and segmental fractures were detected
with greatest confidence. Around 90% of fractures belonging
to those classes could be detected over a wide range of
probability score thresholds. Those fractures are the easiest
to recognize even for non-specialized since there is a clear
gap visible in the bone. Buckle fractures are categorized by
deformed bones without necessarily a clear break. Together
with the ’other’ class, those kind of fractures had a signifi-
cantly lower detection rate. In total 0.76 of all fractures could
be detected, while allowing no more than an average of five
false positives per volume.

Confidence score adjustment with SVM: The SVM confi-
dence score adjustment was not able to increase the AUC
score significantly on any of the three scales. However, the
probability score distribution on a volume level shows was
drastically altered and can give new insights.

Fig. 11 shows the effect of the SVM confidence score
adjustment, which pushes both classes to their respective end
of the spectrum. Especially scans containing fractures have
a much higher confidence score. With a conservative thresh-
old of 0.7, all volumes containing fractures were classified
correctly with the exception of one, at the cost of only four
false positive. Healthy scans on the lower end were also better
separated. Predictions score on either end of the spectrum
can rather safely be trusted, while scores between 0.4 and
0.7 are less reliable and need additional analysis, for example
on a cluster or image level or extra attention of a medical
practitioner.

Of the seven properties used for the SVM training, the max-
imum, mean and the standard deviation of confidence scores
from contained bounding boxes were the driving factors,
followed by the cluster extension along the transversal axis.
The confidence score statistics carried more information than
the size and shape of the aggregated cluster. The transversal
extensions or cluster thickness likely plays a role in filtering
out spurious thin false positives, of which a lot occurred.

The disadvantage of using an SVM is the increased infer-
ence time. While applying an SVM is not very time intensive,
the SVM operates on the cluster level and clusters first have to
be aggregated. The aggregation time will scale linearly with

the amount of predicted bounding boxes and the size of the
volume.

Additional experiments: The three additional experiments
were not able to improve the baseline performance. Using
neighboring transversal slices to add more spatial context
to the input resulted in more and much larger clusters. But
even with larger clusters the AUC on all levels dropped.
A reason might be that the scale of EfficientDet was too
small and therefore was not complex enough to capture the
relevant patterns. A similar method of 3D-enhancing the input
images was also used by winners of the RibFrac challenge,
who used a more computationally complex neural network
[20]. Future research could investigate if other methods of
combining information from neighboring slices could increase
localization precision. For example, neighboring slices could
be processed individually by the backbone network in parallel
to combine feature maps at the neck network. To avoid a
significant increase in computational complexity, the backbone
network could share weights or the amount of channels could
be reduced. Noticeably, false positive clusters are located on
ribs, so the network seemed to be able to locate the possibly
relevant image parts, namely the ribs, but was not able to find
rib fractures more often.

The experiments with balanced batches also lead to a small
decrease in performance as measured by the various AUC eval-
uations. This might be caused by the way that the performance
metrics were calculated. The most important factor in deter-
mining the image, cluster or volume probability score was the
maximum confidence score of contained bounding boxes. This
metric is susceptible to a single high confidence false positive.
Since there are usually many predicted bounding boxes in one
image, cluster or volume, false positive suppression is more
important than missing a true positive with one bounding box.
By balancing the training batches, the network sees less images
with no fractures, which might impair the networks ability
recognize healthy scans.

Lastly, combining the validation and training set into a
larger training set did not improve the performance. Since
the validation was very small compared to the training set
(<10%), a large performance difference was not expected.
While the validation loss curve did converge, it did so in a
noisy fashion, which is common for gradient descend algo-
rithms. From the results we conclude that the validation set
has more value as a stopping criterion to find the best stopping
point in the noisy gradient descend rather than by increasing
the training set.

A direct comparison between the RibFrac challenge con-
testants and EfficientDet is not possible, since the winning
architectures have not been made public yet. Only metrics not
used in this study are reported and only short descriptions
of the used methodology are currently available. From the
reported metrics, one can infer that the challenge winners
would achieve a higher performance using the metrics from
this study. This assumed performance increase however comes
at the cost of computational complexity. For example the
challenge winner [33] used a cascade of three large neural
network architectures: an object detector and a classifier in
conjunction with a U-net type segmentation network.
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If the task is not time critical, EfficientDet could be used as
a first stage in an more complex pipeline. Since EfficientDet’s
false positive predictions are not randomly distributed over the
entire image but focus on rib bones, the presented pipeline
could be used as region proposals for further analysis.

VI. CONCLUSIONS

In this study, we presented a complete data analysis pipeline
for analysing 3D CT scans, tested on two real-world medical
datasets, showing that object detectors developed for common
objects are promising candidates for object detection in medi-
cal 2D and 3D data. The discussed method was able to provide
classification and localization information on three different
scales and achieve a better performance than the state-of-the-
art neural network classification benchmark InceptionNet. We
also presented a new metric to evaluate object detection in a
medical setting for decision support, focusing merely on the
intersection of ground truth and prediction instead of the less
intuitive IoU, which makes the performance evaluation easier
to understand and interpret.

In conclusion EfficientDet is a promising lightweight archi-
tecture, prioritizing speed while still achieving good classi-
fication results. It is generic enough that it can be applied
successfully to different datasets with drastically different
objects to be detected.

By prioritizing speed and computational simplicity, the
localization accuracy is limited and cannot compete with the
MICCAI2020 RibFrac challenge winners. With the constant
increase of computing power over time a complexity constraint
could be considered only a delaying factor. However, since
hospitals tend to lag behind in technological advancements
and usually have limited resources, focussing on lightweight
machine learning algorithms will likely stay relevant in the
near future.
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