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Abstract

Heart Disease is the leading cause of deaths in the United States (Heron, 2020). Among heart diseases, Coronary
Artery Disease (CAD) is the most common type of heart disease responsible for the death of 365,914 people in the
US in 2017 (Benjamin et al., 2019). Cardiac Computed Tomography Angiography (CCTA) provides a non-invasive
way for the rapid visualization of the heart in order to aid in the diagnosis of coronary artery disease. The analysis of
the tubular structure of coronary arteries in 3D CCTA scans is a highly intricate, difficult and time consuming task.
Coronary centerline extraction in the CCTA scans is a prerequisite for the evaluation of stenoses and atherosclerotic
plaque (Hampe et al., 2019).

We propose a novel deep learning-based fully automatic coronary artery centerline extraction method. A dual
pathway Convolutional Neural Network (CNN) operating on multi-scale 3D local input patches is used to predict
the direction towards the centerlines of the coronary arteries from the center of the patch as well as the presence
of a bifurcation simultaneously. Two or more continuation directions are derived based on the result of bifurcation
detection. This iterative tracking scheme is initialized from a model based segmentation of the heart which places
distinct landmarks at the left and right ostium points. The tracker detects the entire left and right coronary tree based
on these two seed points, taking steps in accordance with the predicted directions and the patch type prediction. A
similar multi-scale dual pathway 3D CNN is trained to identify coronary artery endpoints for terminating the tracking
process.

The 3D CNNs were trained using a Philips proprietary dataset consisting of 43 images obtained from nine different
sites. Four-fold cross validation was performed on the dataset. An average sensitivity of 87.1% and clinically relevant
overlap of 89.1% was obtained on the philips dataset. In addition, the MICCAI 2008 Coronary Artery Tracking
Challenge (CAT08) training and test dataset was then used as a test set in order to evaluate the generalization and
benchmark the performance of the algorithm. An average overlap of 93.6% and clinically relevant overlap of 96.4%
was obtained. The proposed method achieved better performance in terms of overlap metrics than the current state-
of-the-art automatic centerline extraction techniques on CAT08 dataset with a vessel detection rate of 95%. In case
the vessel detection by the automatic method fails, the vessel can be retrieved by specifying one point on the coronary
artery. This proposed algorithm can also be used to obtain centerlines related to other tubular structures, e.g. rib
centerlines in thorax CT images.

Keywords: CCTA, Coronary Artery Disease, Centerline Extraction, Multi Resolution CNN, Bifurcation Detection,
Tracking

1. Introduction

Coronary artery disease is one of the leading causes
of deaths worldwide. It was responsible for 9.43 mil-
lion deaths in 2016 (WHO, 2018). Coronary arteries
are responsible for supplying oxygenated blood to the

heart muscles. Two main arteries branch off the aorta
namely Left Main Coronary Artery (LCA) and Right
Coronary Artery (RCA) which supply blood to left and
right parts of the heart respectively. These two main
arteries then divide into a network of smaller coronary
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arteries which wrap themselves around the heart. Coro-
nary artery disease is the narrowing or blockage of these
coronary arteries due to the build up of cholesterol and
fatty deposits called plaque on the inner lining of the
arterial wall. This constriction can result in an inade-
quate supply of blood to the heart muscles which can be
fatal (Malakar et al., 2019). Hence, there is a need for
timely diagnosis and detection of this constriction in the
arteries.

Coronary Angiography (CA) is an invasive procedure
for coronary artery disease evaluation which provides
information only related to the coronary lumen. Coro-
nary angiography requires a contrast agent and is often
performed along with cardiac catheterization. Compli-
cations due to the invasive nature of coronary angiogra-
phy occur in less than 2% of the cases, with mortality of
less than 0.08% (Tavakol et al., 2012). Hence, there is a
non-negligible risk associated with coronary angiogra-
phy. Computed Tomography Angiography (CCTA) is a
non-invasive alternative which provides information on
the extent and type of plaque present (Paech and We-
ston, 2011). CCTA images have a high spatial resolu-
tion consisting of hundreds of slices. However, CCTA
acquisitions expose the patient to a higher dosage of ra-
diation. Manual reading of volumetric CCTA images is
a time consuming task even for trained experts due to
the size and diversity of the arteries. Due to increasing
number of CCTA scans, automatic analysis of CCTA
images and improved 3D visualization is desirable.

There are many techniques to visualize the coronary
arteries in the CCTA images such as maximum intensity
projection (MIP), volume rendering techniques (VRT),
multi planar reformatting (MPR) and curved multi pla-
nar reformatting (cMPR) (Cademartiri et al., 2007).
Such advanced visualization techniques facilitate image
reading and are, for example, used to guide stenosis and
plaque detection (Stimpel et al., 2018). The computa-
tion of MPRs and cMPRs typically relies on centerlines
of the coronary arteries. Hence, an important building
block in the diagnosis of coronary artery disease is the
extraction of coronary artery centerlines.

Manual extraction of coronary artery centerlines is
time consuming, error prone and has a large inter-
operator variability. In order to support the radiographer
in the extraction of coronary artery centerlines, many
interactive, semi-automatic and automatic methods for
coronary centerline extraction have been proposed. The
reformatted images obtained using centerlines can also
be used for other purposes such as lumen segmentation
of coronary arteries (Huang et al., 2018). Deep learn-
ing and machine learning-based methods typically use
coronary artery centerline extraction as a preprocessing
step for the plaque identification and stenosis analysis
(Hampe et al., 2019). A recurrent neural network was
used by Zreik et al. (2019) to detect stenosis from multi-
planar reformatted (MPR) images which were recon-
structed using extracted coronary centerlines. Hence,

an automatic coronary artery centerline extraction algo-
rithm which provides consistent performance on CCTA
images with variable image quality and calcium scores
in a few seconds is desirable.

We propose a fully automatic coronary centerline ex-
traction pipeline based on dual pathway multi-scale 3D
convolutional neural network. This pipeline comprises
of three modules. The first module called Direction
and Bifurcation Classification network (DBC-Net), is
a multi-scale 3D CNN for a local patch to determine
the direction towards the center of the coronary artery
with respect to the center of the patch as well as the
patch type (normal or bifurcation). The second module
namely Stop Patch Classification network (STC-Net),
consists of another multi-scale 3D CNN to determine if
the patch contains the artery or not. The third module
called Tracker, orchestrates the centerline extraction.
The tracking is initialized at two ostium points obtained
automatically. The tracker obtains predictions for direc-
tions and patch type from the DBC-Net for each patch.
The tracker then takes steps in order to determine the
centerline of the arteries. The tracker terminates based
on the output of the STC-Net.

We propose an Automatic Coronary Tracking
(AuCoTrack) method which was evaluated using four-
fold cross validation on a Philips dataset. In order to
compare this approach to state-of-the-art methods, an
evaluation was conducted on the MICCAI 2008 train-
ing and test dataset of Coronary Artery Centerline Ex-
traction Challenge. Additionally, an analysis of the al-
gorithm was performed to correlate the qualitative and
quantitative analysis as well as the failure cases with re-
search findings.

2. State of the art

In order to extract the coronary artery centerlines,
three types of approaches can be adopted: automatic,
semi-automatic and interactive. According to MICCAI
2008 Coronary Artery Centerline Extraction Challenge
guidelines as specified in Schaap et al. (2009), an ap-
proach may be defined as fully automatic if it utilizes
no manually placed initialization points to track the en-
tire coronary tree. If one point per vessel is provided

Figure 1: Axial, coronal and saggital slices of a CCTA image. The
coronary arteries are overlayed as red. The presence of vessel like
structures around the heart make the extraction of coronary centerlines
complicated.



Multi-Resolution 3D Convolutional Neural Networks for Automatic Coronary Centerline Extraction in Cardiac CT Angiography Scans 3

to extract the coronary tree, the approach is said to be
semi-automatic. If more than two points per vessel are
required to obtain the coronary tree, it is labelled as
an interactive approach. Extraction of the entire coro-
nary tree based on interactive and semi-automatic ap-
proaches requires anatomical knowledge and manual in-
spection of the CCTA image to place points for each
coronary artery individually. Since there are a lot of
coronary arteries present in each coronary tree, these
approaches increase the processing time. Hence, there
is a need to establish a robust and automatic coronary
artery centerline tracking algorithm which requires min-
imal user interaction.

A multiple hypothesis tracking approach based on
mathematical template vessel model combined with
standard minimal paths method was used by Friman
et al. (2020) to extract coronary artery centerlines. Stan-
dard minimal path-based methods experience shortcut
issues and may require a lot of interaction to extract
the entire vessel tree. At the time of this publication,
Friman et al. (2020)’s method ranked first on MICCAI
2008 Coronary Artery Centerline Extraction Challenge
as an interactive method. It requires 2.6 points on av-
erage per vessel and takes 6 min to extract four coro-
nary arteries per CCTA image. Schaap et al. (2009) used
multivariate linear regression on image intensities to es-
timate an initial vessel boundary followed by a subse-
quent refinement of this result using non-linear regres-
sion. This method requires 2.2 points per vessel and
takes 22 min to extract four coronary arteries per CCTA
image. High processing times along with repeated user
interaction per vessel is not desirable in clinical prac-
tice.

Krissian et al. (2008) used morphological operations
and denoising filters to obtain a region of interest. The
probability of belonging to the coronary artery class for
each voxel was then determined using a fuzzy classifier.
The start points were automatically determined and the
end points were provided manually for each vessel. A
minimal path between these two points was traced based
on voxel probability map generated by the classifier
to obtain the centerlines. This semi-automatic method
takes 7 h to extract four coronary arteries per CCTA
image. Cetin Karayumak et al. (2012) used a second
order tensor constructed from directional intensity mea-
surements to track the entire coronary tree from a single
seed point placed at the center of the cross-section of
one of the vessels. This method utilizes an automatic
branch detection based on K-means clustering of the in-
tensity values. As a pre-processing step, a calcification
filter is applied which requires annotations by an expert
on the training CCTA scans. This methods takes 8 to
10 min on a 2.67 GHz dual processor to detect coronary
arteries per CCTA scan. Cetin Karayumak and Unal
(2015) also proposed an extension of this method to uti-
lize cylindrical flux-based higher order tensor (HOT) in
4D which also solves the problem of branch detection.

This method takes 30 s to detect coronary arteries per
CCTA scan on a Intel Processor Xeon X560 @ 2.67
GHz CPU computer of 64 GB memory.

State-of-the-art performance for automatic coronary
centerline extraction was achieved by Zheng et al.
(2013). This method utilizes a segmentation mask to
define a vessel specific region of interest (ROI) in or-
der to constrain the centerline refinement by their model
driven algorithm for extracting the main branches. The
side branches are then traced by using region growing
based on lumen segmentation. It was trained on 108 im-
ages of their proprietary dataset and takes 60 s to extract
coronary arteries per CCTA scan. Kitamura et al. (2012)
constructed a shape model of the coronary vessels and
an Adaboost classifier in order to differentiate between
normal and abnormal vessels for automatic centerline
extraction. This method was trained on a proprietary
dataset and the entire coronary tree centerline extraction
takes 160 s per CCTA scan. Frangi et al. (1998) intro-
duced a multiscale vessel enhancement filtering which
obtained a vesselness measure based on eigen values of
a Hessian. Yang et al. (2011) employed an improved
version of Frangi’s multiscale vessel enhancement fil-
tering to obtain an initial tree which was further refined
by branch searching automatically. This method takes
120 s on a standard desktop computer to track the entire
coronary tree in a CCTA image.

Some methods utilize various handcrafted features
such as virtual contrast and morphological operations.
These handcrafted features are based on certain assump-
tions and they require explicit modelling in cases when
the underlying assumptions do not hold e.g. bifurca-
tions (Cetin Karayumak et al., 2012; Cetin Karayumak
and Unal, 2015; Frangi et al., 2000; Krissian et al.,
2008; Wang and Smedby, 2008).

Recently, an iterative CNN tracker was proposed in
order to extract centerlines (Wolterink et al., 2019). This
method does not require any handcrafted features. They
proposed a serial tracker that utilizes the direction and
step-size predicted by the CNN in order to obtain the
centerlines. They were able to achieve near state-of-the-
art performance as an interactive method. This method
requires at-least one seed point per vessel in order to ex-
tract its centerline. Some vessels require more than one
points due to premature termination of the tracking al-
gorithm. An additional CNN to extract seed points for
the vessels was also proposed in order to make the algo-
rithm automatic. However, a limitation of this algorithm
is that the seed identification CNN requires training im-
ages in which all the coronary arteries have been an-
notated (Wolterink et al., 2019). Hence, this method re-
quires 10 s to extract 4 coronary arteries per CCTA scan.
Bifurcation detection in coronary arteries is a challeng-
ing task. Wolterink et al. (2019)’s CNN tracker extracts
the coronary arteries in two directions without taking
bifurcations into account.

We propose a novel 3D CNN-based algorithm that
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Figure 2: Overview of the proposed method. The red lines represent the inputs given to the direction and bifurcation classification model (DBC-Net)
and the stop patch classification model (STC-Net) during the training phase along with the multi resolution patches P1 and P2.

is able to extract the entire coronary tree automatically.
This approach does not require any pre-processing step
or handcrafted filters. No user interaction is required
to obtain the entire coronary tree. In contrast to the
CNN approach by Wolterink et al. (2019), bifurcations
are also detected by the CNN and consequently the re-
sulting directions are predicted by the CNN which make
it possible for the entire coronary tree to be extracted by
a seed point placed automatically anywhere on the coro-
nary tree instead of requiring one seed point per vessel.
The termination of the tracking in our proposed method
is guided by another 3D CNN which prevents prema-
ture termination. Figure 2 shows overview of the entire
pipeline of the proposed algorithm.

3. Dataset

3.1. Dataset

3.1.1. Philips Dataset
The Philips dataset consists of 43 images acquired

from 9 different clinical sites which were annotated by
clinical experts. Philips dataset contains images from
64-slice Philips Brilliance CT, 256-slice Philips Bril-
liance iCT, Philips Ingenuity CT, Philips IQon Spec-
tral CT scanners and a few images from Siemens SO-
MATOM Force CT scanners. The CCTA images in the
dataset have a resolution ranging from 0.25 × 0.25 ×
0.33 mm3 to 0.48 × 0.48 × 0.80 mm3 with a mean res-
olution of 0.40 × 0.40 × 0.43 mm3. There is consid-
erable variability in the coronary arteries labelled for
each case. The number of annotated coronary arteries
per CCTA scan varies from 4 to 20. The mean number

of annotated coronary arteries per CCTA scan in this
dataset is 9. Depending on the number of annotated
coronary arteries, the number of centerline points per
case varies from 933 to 3200 with a mean of 1737. The
Philips dataset in total contains 428 annotated coronary
arteries. Four-fold cross validation has been performed
in order to evaluate the proposed algorithm.

3.1.2. CAT08 Dataset
The MICCAI 2008 Coronary Artery Centerline Ex-

traction Challenge (CAT08) dataset consists of 32 pub-
lically available CCTA images comprising of 8 training
and 24 test CCTA images.1 The centerline annotations
for test dataset are not available and the extracted cen-
terlines can be evaluated only once on the evaluation
framework. CAT08 dataset contains images from 64-
slice CT Siemens Scanner and dual source CT Siemens
Scanner reconstructed to a resolution of 0.32 × 0.32 ×
0.4 mm3. Both the training and test set images were
utilized as a test set for evaluating the performance of
our algorithm on different scanners. Each image con-
tains annotations for four arteries. The three fixed ar-
teries present in all the CAT08 CCTA images include
Left Anterior Descending Artery (LAD), Left Circum-
flex Artery (LCX) and Right Coronary Artery (RCA).
However, the fourth artery in each case has arbitrarily
been chosen. Since, fully automatic algorithms extract
the entire coronary tree, there is a need to do a vessel
by vessel evaluation (Schaap et al., 2009). Hence, the
CAT08 challenge provides with points in the distal end

1http://coronary.bigr.nl/centerlines/about.php/
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of the arteries that can be used to select the artery and
evaluate metrics. If the entire coronary artery centerline
extraction has not been successful, another point is also
provided in the proximal end of the artery. Only one of
these points may be utilized to select the artery.

4. Method

The training dataset for the direction classification
and bifrucation detection model (DBC-Net) and stop
patch classification model (STC-Net) consists of 3D
isotropic patches P1 of resolution 0.5×0.5×0.5 mm3 and
P2 of resolution 1×1×1 mm3. These training patches are
centered at a location x in a CCTA image in the vicinity
of an annotated centerline point. The radius of the anno-
tated coronary arteries ranges from 0.179 mm to nearly
3.55 mm near the ostium in the Philips dataset. As a rule
of thumb, the size of the patches should be small enough
to not lose the local context in the smaller arteries but it
should be also be big enough to be able to determine the
direction in the broader portion of the arteries. This im-
plies the approximate minimum patch size to be 3.55× 2

0.5
= 14. In order to cover artery sections with a large diam-
eter, we choose the patch size of 19. It is small enough
to allow fast forward and backward pass as well as suf-
ficiently large to encapsulate the whole context of the
coronary artery information.

The direction vectors from the center of the patch cp

to the adjacent centerline points need to be determined
to guide the tracking algorithm. The label direction vec-
tors are obtained by placing a sphere of radius R at the
center of the patch as shown by Figure 3. The anno-
tated centerline points within the sphere are designated
as positive and those outside the sphere as negative. We
determine the exit points of the arteries contained in the
sphere by observing the sign changes associated with
each artery. If there is a bifurcation, there will be three

Figure 3: 2D projection of the 3D sphere of radius R placed at center
of the patch cp for getting label direction vectors. The annotated cen-
terline points inside the sphere are indicated by + sign and the ones
outside are indicated by a - sign. The label direction vectors are ob-
tained by detecting the sign changes.

Figure 4: The green dots on the sphere Sd correspond to the Nd ad-
missible movement directions. The center of the patch cp is denoted
by a blue dot and the red squares indicate the closest points on the
sphere grid associated with the direction vectors which are assigned
the value 1. The remaining grid points are assigned the value 0.

exits (sign changes) from the sphere and there will be
only two exits in the normal case. The sphere radius
should be large enough in order to detect three sign
changes associated with the occurrence of the bifurca-
tion. However, if R is made too large, the bifurcations
will be detected well before the patch center cp is at
the bifurcation point. This would allow tracked cen-
terlines to branch prematurely before only to be joined
later. The radius R was fixed to 1.5 mm.

The direction vectors obtained are then discretized
on a unit sphere S d placed at the center of the patch.
Approximate equidistant discrete grid on this sphere is
obtained using Spherical Fibonacci Mapping (Keinert
et al., 2015). Each grid point corresponds to an admissi-
ble movement direction. Given a set of direction vectors
related to a specific center point, the point on the dis-
crete sphere grid which makes the minimum angle with
the corresponding direction vector is assigned the value
1. All other points on the sphere grid which do not have
any direction vector associated with them are assigned
the value 0. Figure 4 shows how the label direction vec-
tors are associated with discrete locations on the sphere.
Finally, the vector encoding the movement directions is
normalized to unit length. The problem of determining
the direction vectors is then simply reduced to the clas-
sification of discrete locations on the unit sphere. The
number of discrete locations Nd on the unit sphere S d is
fixed to 1000.

4.1. Augmentation

We use various augmentation strategies during train-
ing in order to improve the overall robustness of our
tracker. Firstly, augmentation by randomly generated
translations was introduced to teach the tracker how to
recover from centerline deviations. Translation aug-
mentation is introduced by adding a small deviation ∆t

to the center of the patch cp and extracting the patch
at this new translated center Ct = cp + ∆t. This devia-
tion should not be so large that the artery is no longer
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Figure 5: Maximum intensity projections (MIP) in coronal, axial and
saggital views of the 3D patch in order to visualize augmentation.
The direction vectors are shown after applying 3D rotation and 3D
translation augmentation.

within the field of view. It should be ensured that at-
least half of the artery is visible in the patch. Hence, the
translation augmentation is applied with respect the ra-
dius of the artery at the annotated centerline point. The
amount of applied deviation is ∆t = λt × radius where
λt is uniformly sampled from the interval [0,1]. A small
translation may result in a drastic change in direction
vectors. The direction vectors are highly sensitive to the
center of the patch cp. Consequently, the label direction
vectors are determined with respect to a pseudo center
Cpseudo which is closer to the original center in order to
dampen the effect of the translation on the direction.

Cpseudo = 0.8 · cp + 0.2 · ∆t (1)

Patches P1 and P2 are given as input to the DBC-Net
as shown in Figure 7. These patches are extracted at the
translated center Ct and the label direction vectors are
determined with respect to the pseudo center Cpseudo.

Rotational augmentation is also introduced by rotat-
ing the 3D patches around the center randomly around
the three axis (φx, φy, φz). The label direction vectors
are obtained before applying the rotational augmenta-
tion. The rotation of the patches is incorporated in the
corresponding labels by applying the same rotation to
the label direction vectors. The rotated direction vec-
tors are then associated with discrete directions on the

Figure 6: The output response obtained from the direction layer LD of
DBC-Net. Two or three peaks are observed in the response according
to the patch type. The resulting direction vectors obtained are also
shown in black.

sphere S d. Figure 5 shows how the label direction vec-
tors are transformed after applying augmentation.

4.2. Ostia Points for Algorithm Initialization

In order to initialize the fully automatic centerline ex-
traction of the coronary arteries, two seed points corre-
sponding to the left and right coronary trees need to be
obtained automatically. The algorithm can be initialized
by selecting a point which may be located anywhere on
the coronary artery tree. An algorithm based on Model
based Segmentation (MBS) was used to determine the
left and right ostium origin points from the aorta. These
points were used for initialization of the tracking algo-
rithm. The spatial location of the ostia landmarks is de-
rived from the mesh topology (Ecabert et al., 2008).

4.3. Bifurcation Prediction

The entire left and right coronary tree can be traced
by using one seed point each placed anywhere if all of
the bifurcations are correctly detected by an algorithm.
The accurate classification of patch type as bifurcation
or normal is essential to the tracking of entire coronary
tree based on a single seed point. Depending on this pre-
diction, the number of direction vectors obtained will
be two or three respectively. Hence, the subsequent net-
work will also predict the bifurcation type in order to
facilitate the tracking procedure.

In our training set, uniformly sampling center points
from the coronary trees resulted in a rare occurrence of
patches containing bifurcations. We utilized the strategy
of Importance Sampling in order to assure that 20% of
the patches in a mini-batch include bifurcation.

4.4. Direction and Bifurcation Classification Network
(DBC-Net)

We propose a combined approach for classifying di-
rections to the neighboring centerline points from patch
center cp on a unit sphere S d having Nd discrete direc-
tions, as well as patch type classification Pc (Normal
or Bifurcation). The employed CNN network consists
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Figure 7: The proposed dual pathway multi-resolution architecture proposed for simultaneous direction and patch type classification. Patches P1
and P2 of size 19 × 19 × 19 with resolution 0.5 × 0.5 × 0.5 mm3 and 1 × 1 × 1 mm3 respectively are fed to the network to get direction class
predictions on the direction sphere S d . The direction layer LD is then followed by a series of linear layers to get a single patch type prediction PC
(normal or bifurcation).

of a Deep Medic-based architecture (Kamnitsas et al.,
2016). Figure 7 shows that the proposed architecture
has two branches B1 and B2 that take 3D patches P1 and
P2 with resolutions 0.5 × 0.5 × 0.5 mm3 and 1 × 1 ×
1 mm3 as input respectively. Each branch consists of 7
3D convolutional layers with kernel size of 3. Layers
L3 and L4 use dilated convolutions with the spacing of
2 and 4 between the kernel points respectively. After
each convolutional layer, 3D batch normalization was
employed. At the end of these 7 layers, the output of
the branches B1 and B2 is concatenated in Layer L8. L8
is then reduced to the number of direction classes ND to
form the direction class layer LD. The Layer LD is then
subjected to two linear layers L9 and L10 to get patch
type classification PC .

ReLU activation function is used after all the layers
except the layers LD and Pc. Patch type class layer
Pc uses sigmoid activation function and the direction
class layer LD uses softmax activation function. Bi-
nary cross entropy loss (BCEpatch) is used for the patch
type classification and categorical cross entropy loss
(CEdirection) is used for the direction classification. The
combined loss function used to train the network is as
follows:

Total Loss = CEdirection + λb × BCEpatch (2)

λb is fixed at 5. The other hyper-parameters tuned for
this set up include learning rate of 0.0001 with Adam
optimizer and mini-batch size of 64.

Figure 8: The patch labels used for training the stop patch classifi-
cation model. The “Normal” class patches correspond to the green
portion in the figure. The “Stop” class patches correspond to red por-
tion beyond the last annotated centerline point.

4.5. Stop Patch Classification Network (STC-Net)

In order to terminate the tracking algorithm once the
end point of a coronary artery has been reached, we
propose to train a separate 3D CNN. The same archi-
tecture as shown in Figure 7 is used to train the stop
patch classification model (STC-Net). The endpoints
of coronary arteries can be quite ambiguous. In order
to get patches corresponding to the stopping criteria, we
sample points beyond the end of the coronary arteries.
This is achieved by using the direction vector obtained
by subtracting the penultimate centerline endpoint from
centerline endpoint. Points beyond the endpoint up to
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stop_counter_max = 3 # stopping criteria constant for stopping network

dir_entropy_max = 0.8 # stopping criteria constant for direction entropy

stop_prob_max = 0.3 # stop probability threshold for classifying endpoint patches

# active: (3d point , segment_id , parent_id , stop counter , 3d previous dir vector)

active ,centerline = empty_queue ,empty_list # centerline: (3d point , segment_id , parent_id)

next_segment_id = 0 # next possible segment index

for all ostia: # iterate over inlets

active.add(next_point_id ++, next_segment_id ++,None ,0,None) # no parent - seed points

while len(active) >0:

point ,segment_id ,parent_id ,stop_counter ,prev_dir = active.pop()

if stop_counter > stop_counter_max: continue # termination criterion

centerline.append(point ,segment_id ,parent_id) # adding to the set of centerline pts

patch = sample(point) # patch sampler

# get direction , patch_type (bifurcation or normal) predictions from DBC -Net

dir_response ,patch_type_bifur ,dir_entropy = DBC_Net(patch)

# get direction vectors depending on patch_type and dir_response

dir_vect = get_direction_vectors(patch_type_bifur , dir_response)

candidates = (dir_vect * step size ) + point # get candidates from direction vectors

# get patch_type (endpoint or not) predictions from STC -Net

stop_prob = STC_Net(patch)

if stop_prob > stop_prob_max or dir_entropy > dir_entropy_max: stop_counter ++

else: stop_counter = 0 # reset

# nearest neighbor distance check if each candidate point is an active point

candidates = [c for c in candidates if distance(c,centerline) > step_size /2]

dir_vector = (candidates - point)/step_size # get direction vectors back

if len(candidates) == 1: # continue segment

active.add(candidates , segment_id , point_id , stop_counter , dir_vect)

else:

for ind , cand in enumerate(candidates): # start segments from bifurcation at cand

active.add(cand , next_seg_id ++, None , stop_counter , dir_vect[ind])

Listing 1: Pseudo code of the tracking algorithm. get direction vectors function returns the direction vectors to the neighboring centerline points
taking the direction response and bifurcation prediction from the DBC-Net as input. The centerline list contains the tracked coronary tree at the
termination of this algorithm.

5 mm are sampled and labelled as stop patch type. All
the other centerline points are labelled as normal patch
type. Only binary cross entropy loss for stop patch type
classification is employed for training the network. The
overall stopping criteria is based on the predictions by
the STC-Net and the entropy of the direction predic-
tion response by the DBC-Net. Wolterink et al. (2019)’s
stopping criterion is solely based on moving average en-
tropy which results in premature termination as well as
leakage in some of the cases. Our combined stopping
heuristic tries to solve the issue of premature termina-
tion in the presence of plaque and stenosis.

4.6. Tracking Implementation

The tracking starts by obtaining the seed points, one
for each coronary tree, from the ostium initialization
module. These seed points are added to an active queue.
We continue the tracking until there are no points in the
active queue. We obtain two patches P1 and P2 of res-
olution 0.5 × 0.5 × 0.5 mm3 and 1 × 1 × 1 mm3 re-
spectively centered at the point popped from the queue.
These patches are fed to the DBC-Net and STC-Net.
The STC-Net outputs the probability of the patch being

a stop patch or normal patch.

The DBC-Net determines the direction predictions on
the unit sphere S d as well as classifies if the given patch
contains a bifurcation or not. The DBC-Net learns to
predict some relatively high values near the correct di-
rection class as, for example, shown by Figure 6. We
observed that high probabilities were assigned to the
neighbors of the correct direction class as well. Smooth-
ing with a gaussian kernel of size 16 was applied in
order to get rid of the noise. Once the predictions are
smoothed out, we detect two or three peaks depending
on the patch type classification.

Depending on the direction response prediction, the
direction D1 is obtained by taking into account the pre-
viously tracked centerline point. If this is the first point
being extracted, we take the maximum of the direction
response as D1. If a centerline point has been previously
extracted, we take into account the previous direction
Dprev used to obtain this patch. The angle between D1
and Dprev should be less than 60◦ in order to make sure
that the tracker always proceeds forward. The maxi-
mum response obtained in this constrained field of view
is labelled as D1. The second direction D2 should be at
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least 110◦ farther from D1 in order to make sure that the
opposite direction is correctly tracked. The third direc-
tion D3 should be at least 40◦ farther from the first and
second responses. In case the patch type is normal, only
D1 and D2 are determined. The candidate points S candi

are obtained from the direction vectors Di as follows:

S candi = S point + ∆step × Di (3)

i vares from 1 to 2 in normal case and 1 to 3 in case a
bifurcation has been detected. S point represents the cur-
rent patch center and ∆step is the step size. The distance
between all the candidate points and already finalized
centerline points is determined. Candidate points with a
distance > (∆step)/2 are added to the active queue.

A combined criterion based on the predictions of the
STC-Net and entropy determined from the direction
prediction response of the DBC-Net is used to termi-
nate the tracking. If the entropy exceeds a threshold of
0.8 or the stop patch probability goes above 0.5, the stop
counter is updated by one. If the none of these two con-
ditions are satisfied, counter is reset. If the stop counter
exceeds 3, the active point is not included into the list of
the tracked list of centerline points and tracking termi-
nates.

Information related to the previous direction and stop
counter is kept in the active queue along with the 3D
point coordinates. It is also important to keep track of
the separate segments and their parents in the queue.
The segment terminates at each bifurcation point. List-
ing 1 shows the simplified pseudo code for the tracker
implementation. Figure 9 shows how individual vessels
can be obtained making use of the segment information
stored during tracking.

5. Evaluation Measures

A prerequisite to the evaluation of all the metrics is
the conformity in the spacing between the tracked cen-
terline points and the ground truth centerline points.
The ground truth annotations of the coronary arteries

Figure 9: Different vessels in the coronary tree obtained from the
tracked result. Each color represents a different coronary artery.

Figure 10: True Positive Reference (TPR), True Positive Measured
(TPM), False Positive (FP) and False Negative (FN) associated with
different parts of the tracked (blue dotted line) and reference centerline
(red dotted line). Clinically relevant part of the vessel is also shown
in the figure. More details about metric calculation can be found in
Schaap et al. (2009).

and the tracked arteries are resampled uniformly to ob-
tain same spacing between consecutive points (Schaap
et al., 2009).

A point on the ground truth centerline is labelled as
True Positive Reference (TPR) if a tracked centerline
point is present within the corresponding annotated ra-
dius and it is labelled as False Negative (FN) otherwise.
A point on the tracked centerline is labelled as True Pos-
itive Measured (TPM) if a ground truth centerline point
is present within the corresponding annotated radius and
it is labelled as False Positive (FP) otherwise. Figure 10
shows how TPR, TPM, FP and FN are obtained in terms
of tracked and reference centerlines.

The points towards the distal end of the coronary ar-
teries may be ambiguous and not clinically relevant.The
endpoint of the clinically relevant part of each artery is
defined as the most distal point of the vessel with an
radius greater than 0.75 mm.

Sensitivity determines how much of the ground truth
coronary tree has been correctly tracked by the algo-
rithm. A sensitivity value of 1 indicates that the entire
coronary tree has been covered by the centerline extrac-
tion algorithm.

Sensitivity =
T PR

T PR + FN
(4)

The number of annotated coronary arteries varies
from 4 to 20 in the CCTA images in the Philips dataset.
In an effort to obtain the entire coronary tree, the algo-
rithm will also track the arteries that have not been an-
notated. However, a check should be maintained to see
that the algorithm doesn’t detect many spurious vessels.
Hence, the deviation from the coronary reference tree
is kept in check in terms of False Positive Rate (FPR).
For calculating the Sensitivity and False Positive Rate,
we set the threshold radius to 1 mm.

FPR =
FP

T PM + FP
(5)

Overlap measure as defined in equation 6 similar to
dice in segmentation. Average Overlap (OV) takes the
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Figure 11: Qualitative Representation of the Tracked Result. (a) shows the coronary artery centerline extraction result when the algorithm is
initialized by placing the seed points at the ostium. (b) shows the coronary artery centerline extraction result when the algorithm is initialized by
placing the seed points in the middle of LAD and RCA. The green part of the extracted coronary tree indicates the portion tracked within the radius
threshold of the annotated centerline points. The red part corresponds to the part missed by the tracking algorithm. The purple part corresponds
to extra tracked arteries that are not present in the ground truth annotation. In (c), the bifurcation detection in orange is shown overlayed on the
tracked coronary artery tree.

entire reference and extracted coronary artery into con-
sideration. Clinically Relevant Overlap (OT) calcu-
lates the overlap only for the clinically relevant part of
the artery. Overlap until First Error (OF) calculates
the portion of the overlap accurately tracked until the
first error occurs (Schaap et al., 2009).

Overlap =
T PR + T PM

T PR + T PM + FN + FP
(6)

The deviation of the extracted points from the ref-
erence centerline points is determined only for regions
of the reference tree which are labelled as True Posi-
tive Reference. The average of the Euclidean distance
between the reference centerline points and the nearest
tracked centerline point determines the Accuracy In-
side (AI).

6. Results

Fully automatic coronary centerline extraction meth-
ods extract the entire coronary tree without requiring
any manually placed seed point to be provided for the
vessels. The quantitative analysis of the extracted cen-
terlines is performed individually for each coronary
artery. The MICCAI CAT08 dataset provides for each
case a point in the distal end of the coronary artery for
selection. In case the coronary artery centerline is not
present in the distal end, another point is provided in
the proximal part of the artery which can be utilized for
coronary artery selection.2 The evaluation guidelines
of the challenge only allow the usage of one of these
points. In order to keep the evaluation consistent, the
quantitative analysis in Philips dataset is also performed
by utilizing a point in the distal or proximal end of the
coronary artery for selection.

2http://coronary.bigr.nl/centerlines/about.php/

rules.php

No. of Resolutions S OV OT AI
1 82.3 76.4 85.9 0.37
2 88.9 81.2 87.4 0.32
3 87.4 78.6 86.5 0.34

Table 1: The effect of varying number of resolutions levels in the
DBC-Net in terms of total sensitivity (S, in %), overlap (OV, in %),
clinically relevant overlap (OT, in %) and accuracy inside (AI, in mm).

6.1. Philips Dataset

The Philips dataset comprising 43 CCTA scans was
used to train the DBC-Net for simultaneous direction
classification and bifurcation detection as well as the
model for the detection of stop patches. The dataset was
randomly shuffled and 33 CCTA images were used for
training. The remaining 10 CCTA images were used for
validation. Four-fold cross validation was performed for
the final model. The seed point for the initialization of
the tracker in order to obtain the centerlines for left or
right coronary tree can be given anywhere on the coro-
nary tree. However, the seed point for all the experi-
ments was given near the ostium as this point can be
obtained automatically from the model based segmen-
tation.

Table 1 shows the overlap metrics and accuracy inside
on the validation set when the number of input resolu-
tion levels and consequently the pathways in the archi-
tecture are varied. In case of a single pathway, only 1
resolution of 0.5 x 0.5 x 0.5 mm3 is used. In case of a
dual pathway, 2 resolutions of 0.5 x 0.5 x 0.5 mm3 and
1 x 1 x 1 mm3 are utilized. In case of three pathways, 3
resolutions of 0.5 x 0.5 x 0.5 mm3, 1 x 1 x 1 mm3 and
1.5 x 1.5 x 1.5 mm3 are employed. The dual pathway
architecture with only two resolutions performs better
as indicated by overlap and accuracy metrics.

Figure 11 (a) shows that the result of automatic coro-
nary centerline extraction when the seed points for
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Figure 12: Clinically relevant overlap of all the arteries present the Philips dataset which occur more than 3 times. The number of occurrences
of each artery is also shown in the plot. The horizontal axis shows the names of different coronary arteries, the left vertical axis shows their
corresponding mean clinically relevant overlap obtained and the right vertical axis shows the number of times each artery is encountered in Philips
dataset.

Figure 13: The effect of number of discrete direction points Nd on the
unit sphere S d for direction classification in terms of sensitivity and
accuracy inside.

tracker initialization are placed at the left and right coro-
nary ostium. 11 (b) shows that when the seed points are
placed in the middle of LAD and RCA coronary arter-
ies. The extracted coronary tree is almost similar in both
the cases. The sensitivity obtained when the seed points
are placed at the coronary ostia for fold 3 is 88.9% and
it is 87.3% when the seed points are placed in the mid-
dle of LAD and RCA. This shows that the seed point
can essentially be placed anywhere on the coronary tree.
Figure 11 (c) shows the bifurcation detection overlayed
on the tracking result. The orange color on the coro-
nary tree indicates that a bifurcation has been detected
at that centerline point by the DBC-Net which means
that three direction vectors will be obtained to generate
the candidate points.

Figure 13 shows the effect of increasing the number

of sphere direction points. As the number of the direc-
tion points increase, average accuracy inside and sen-
sitivity drops after a maximum. Based on this obser-
vation, we fixed the number of direction points on the
sphere at 1000 for further analysis

There is a data imbalance in the patches extracted
from the CCTA images. Due to low number of patches
with bifurcations, importance sampling is applied in
order to ascertain that a percentage of the mini-batch
during training contains bifurcation patches. Figure 14
shows the effect of increasing the importance sampling
factor while using a fixed mini-batch size of 64. As
the importance sampling parameter increases, the sen-
sitivity increases due to better detection of bifurcations.
However, the detection of vessels not annotated in the
dataset also increases. The importance sampling param-
eter is fixed at 10 in order to keep the false positive rate

Figure 14: The effect of importance sampling parameter while using
a mini-batch of size 64 on sensitivity and false positive rate.



Multi-Resolution 3D Convolutional Neural Networks for Automatic Coronary Centerline Extraction in Cardiac CT Angiography Scans 12

Loss Function S OV OT AI
Softmax and

Categorical Cross Entropy 88.9 81.2 87.4 0.32

Sigmoid and
Binary Cross Entropy 88.4 78.6 86.7 0.34

Table 2: The comparison between two different types of loss functions
for direction classification in terms of senstivity (S, in %), overlap
(OV, in %), clinically relevant overlap (OT, in %) and accuracy inside
(AI, in mm).

in check so that spurious vessels are not detected.
The final model uses softmax activation function for

the direction classification layer (D) in the model and
categorical cross entropy loss. Table 2 shows that this
choice performs slightly better than sigmoid activation
for the direction layer (D) and binary cross entropy loss.
For the final hyper-parameter choice, we conducted a
four-fold cross validation on randomly generated splits
of the Philips dataset. The quantitative measures were
averaged across the folds and we obtained an aver-
age sensitivity of 87.1%, clinically relevant overlap of
89.1% and overlap of 80.4% was obtained. An aver-
age accuracy inside of 0.34 mm was obtained which is
within the average voxel size of 0.40× 0.40× 0.43mm3.

6.2. CAT08 Training Dataset

The training dataset of CAT08 challenge was used as
a test set in order to determine the performance of the
proposed algorithm. The best model from the cross val-
idation of the Philips dataset was used to extract cen-
terlines for CAT08 training dataset. This model was not
re-trained on CAT08 dataset. The tracker was initialized
using ostium points derived from the Model Based Seg-
mentation of the heart. The training dataset of CAT08
challenge consists of 8 CCTA images containing 32 an-
notated vessels. This dataset contains images of varying
quality and calcium score.

Table 3 shows that an average overlap of 93.4%,
clinically relevant overlap of 95.9% and overlap until
first error of 76.5% was obtained for these 8 CCTA
scans. All these CCTA scans have an image resolution
of 0.32×0.32×0.4 mm3.The average accuracy obtained
was 0.36 mm which is approximately within the dimen-
sion of the one voxel. The average time taken to extract
the entire coronary tree on a GTX 1080 GPU is 41 s.
For all cases, 15 out of 16 vessels were automatically
detected. One vessel from case 3 which was missed
due to failure in corresponding bifurcation detection re-
quired an additional seed point in order to be detected.
This is a good test of generalization of the algorithm
as the model was trained on CCTA scans from Philips
scanners and CCTA scans in CAT08 dataset come from
different types of Siemens scanners.

Figure 15 shows the results of automatic coronary
centerline extraction for case 4 from CAT08 training set

No. Image
Quality

Calcium
Score OV OF OT AI T

0 Moderate Moderate 94.2 77.7 95.1 0.4 55
1 Moderate Moderate 97.3 99.4 99.6 0.32 39
2 Good Low 98.3 99.7 100 0.31 43
3 Poor Moderate 86.3 63 89.1 0.4 41
4 Moderate Low 92.9 57.3 97.9 0.33 31
5 Poor Moderate 97.6 77.5 99.7 0.43 33
6 Good Low 96.7 87.2 99.6 0.3 36
7 Good Severe 83.9 49.1 86.3 0.38 48

Avg 93.4 76.5 95.9 0.36 41

Table 3: Results of our method on CAT08 training set which was used
as a test set. For each case, overlap (OV, in %), overlap until first error
(OF, in %) and clinically relevant overlap (OT, in %) ,average accuracy
inside (AI, in mm), time taken for coronary tree extraction (T, in s)
along with subjective image quality and calcium score is shown.

and case 11 from CAT08 test set. The blue dots corre-
spond to the ostia locations obtained from model based
segmentation for tracker initialization. The proposed al-
gorithm extracts the entire coronary tree while annota-
tions for only 4 coronary arteries were provided in the
ground truth.

6.3. CAT08 Testing Dataset
The CAT08 test dataset comprises of 24 CCTA scans

of varying image quality and calcium scores. We tested
our algorithm on these 24 CCTA images containing 96
vessels in order to benchmark the performance of our
algorithm against methods available on the leaderboard
of CAT08 challenge. Both the DBC-Net and the STC-
Net were now trained on 43 cases of Philips dataset and
8 cases of CAT08 training dataset. These models were
used to extract centerlines of the coronary arteries in the
CAT08 test set which were then submitted to the evalu-
ation framework online.

Table 4 shows the performance of the algorithm on
the testing set of MICCAI 2008 challenge. An average
overlap of 93.6%, clinically relevant overlap of 96.4%
and overlap until first error of 76.3% was obtained for
these 24 CCTA scans. Cases 8, 10 and 27 required one
additional seed point due to failure in the detection of
bifurcations for one of the vessels. There are significant

Figure 15: The left and right coronary trees extracted without any
user intervention for two cases in training and testing set of CAT08
Challenge. The blue dots correspond to the ostia locations used for
tracker initialization obtained automatically.
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motion artifacts present case 26 which hamper the bi-
furcation detection. Hence, additional seed points are
provided for 3 of the vessels in this CCTA image. There
are 132 vessels present in the training and test set of
CAT08 dataset. Overall, 125 vessels were automatically
detected without requiring any seed points.

Table 5 shows the comparison of the performance of
our algorithm AuCoTrack against the current automatic
coronary centerline extraction techniques and the state-
of-the-art CNN-based technique which requires at-least
one point per vessel for the centerline extration. Our
proposed method achieves better overlap rank of 9.87
than other automatic techniques of Zheng 10.43, Kita-
mura 13.81 and Yang 10.55. Wolterink’s CNN-based
approach requires atleast one seed point per vessels.
AuCoTrack successfully detected approximately 95%
percent of the vessels in CAT08 dataset requiring no
user interaction. However, Wolterink’s approach gives
OV, OF and OT values of 93.7% , 81.5% and 96% re-
spectively. Our method achieves almost the same per-
formance as the Wolterink’s CNN approach while re-
ducing the need of interaction to almost zero. Our ap-
proach also requires an average time of 42.6 s using
a GTX 1080 GPU to extract the entire coronary tree.
Our method is faster than all other automatic approaches
but, the comparison is difficult as the computational re-
sources of all the methods are not same.

No. Image
Quality

Calcium
Scores OV OF OT AI T

8 Poor Low 84.6 48.7 91.1 0.46 31
9 Good Low 95.4 70.2 98.5 0.34 37

10 Moderate Moderate 94.8 91.4 97.3 0.36 36
11 Good Moderate 91 53.7 91.8 0.39 49
12 Good Moderate 89.1 29.4 94.2 0.38 55
13 Moderate Low 97.8 96.4 97.8 0.37 39
14 Moderate Severe 97.7 67.2 98.7 0.4 57
15 Moderate Moderate 96.1 100 100 0.34 65
16 Good Low 97.4 92.4 100 0.4 45
17 Poor Severe 91.6 68.3 95.8 0.41 33
18 Good Moderate 96.6 95.9 98.9 0.3 38
19 Moderate Moderate 95 100 100 0.34 35
20 Moderate Moderate 90.1 46.2 90.5 0.45 43
21 Good Low 96.7 97.2 99.3 0.36 36
22 Good Low 96.8 99.6 99.7 0.35 33
23 Moderate Moderate 98.3 97.4 99.2 0.36 47
24 Moderate Severe 93.3 52.2 95.3 0.3 35
25 Good Moderate 95.1 69.5 98.2 0.39 51
26 Poor Low 76.7 34.8 86.6 0.5 47
27 Good Moderate 85 55.3 85.6 0.42 47
28 Good Low 95.9 94.4 97.4 0.32 38
29 Poor Moderate 98.4 95.1 99.7 0.32 44
30 Good Low 95.1 77.5 98.5 0.33 42
31 Good Moderate 98.8 99.2 100 0.31 40

Avg 93.6 76.3 96.4 0.37 42.6

Table 4: Results of our method on CAT08 test set. For each test case,
overlap (OV, in %), overlap until first error (OF, in %) and clinically
relevant overlap (OT, in %) ,average accuracy inside (AI, in mm), time
taken for coronary tree extraction (T, in s) along with subjective image
quality and calcium score is shown.

Method OV OF OT AI T
AuCoTrack 93.6 76.3 96.4 0.37 42.6
Zheng et al 93.7 76.5 95.6 0.21 60

Kitamura et al 93.5 70.9 92.5 0.2 160
Yang et al 90.6 74.2 95.9 0.25 120

Wolterink et al (Interactive) 93.7 81.5 97 0.21 10

Table 5: The comparison of our proposed AuCoTrack algorithm and
the top automatic coronary artery centerline extraction techniques in
terms of overlap (OV, in %), overlap until first error (OF, in %) and
clinically relevant overlap (OT, in %), average accuracy inside (AI, in
mm) and time taken (T, in s). The interactive CNN-based method by
Wolterink et al. (2019) is separated by a dotted line.

7. Discussion

We aimed to provide a deep learning-based automatic
approach for centerline extraction in CCTA images. The
proposed algorithm was first tested on CCTA scans ac-
quired using Philips scanners from multiple sites. The
sweeps for hyper-parameter tuning were performed on
Philips dataset using 33 CCTA scans for training and 10
CCTA scans for validation. The method was then eval-
uated using four-fold cross validation on these CCTA
scans. A high average clinically relevant overlap of
89.1% and average sensitivity of 87.1% was obtained.
The average accuracy inside for the Philips dataset was
reported to 0.34 mm which is less than the average voxel
dimensions.

The generalization of this approach was then evalu-
ated by testing the proposed algorithm on the CAT08
training dataset. The model from four-fold cross valida-
tion on Philips dataset was used to extract centerlines for
CAT08 training dataset. The images from CAT08 train-
ing dataset contained considerable variability in terms
of calcium scores and image quality. An average over-
lap of 93.4% and clinically relevant overlap of 95.9%
was obtained on evaluating CAT08 training dataset as a
test set.

In order to benchmark the performance, we also
tested the algorithm by submitting the extracted cen-
terlines of 96 vessels on the evaluation framework of
CAT08 challenge. In order to extract centerlines for
CAT08 test set, the method was trained on all 43 CCTA
scans from Philips dataset and 8 CCTA scans from
CAT08 training set. The bifurcation detection failed in
7 out of these 132 vessels. A seed point was required in
these cases in order to retrieve these coronary arteries.

The proposed algorithm achieves better overlap rank
than the previously available fully automatic coronary
artery centerline extraction algorithms. An overlap
rank of 9.87 was achieved by AuCoTracker while the
top three automatic algorithms on the CAT08 leader-
board by Zheng et al. (2013), Kitamura et al. (2012)
and Yang et al. (2011) had an overlap rank of 10.43,
13.81 and 10.55 respectively. The accuracy inside for
the CAT08 testing data set was 0.37 mm. The state-
of-the-art automatic centerline extraction algorithm by
Zheng et al. (2013) utilizes segmentation masks for their
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Figure 16: Stretched multiplanar reformation (sMPR) and curved multiplanar reformation (cMPR) images constructed from extracted centerlines
using our proposed method “AuCoTrack”. The blue box in case 0 from training set of CAT08 challenge shows the presence of severe stenosis.
Case 26 from testing set of CAT08 challenge has severe motion artifacts. MPR and cMPR images of a case from Philips dataset shows the presence
of coronary calcification. The red lines shows the extracted centerline overlayed on the sMPR image.

model driven and data driven approach. Their algorithm
uses 108 CCTA scans from their properiety dataset.
Our proposed algorithm achieves state-of-the-art over-
lap metrics on training set of CAT08 challenge when
trained with only 33 CCTA scans from a distinct in-
house dataset. Hence, this method can be trained effi-
ciently on low number of CCTA scans.

Table 4 shows the evaluation metrics for the testing
set of CAT08 challenge with variable image quality and
calcium score. An average overlap of 87.8%, 95.4%
and 94.4% was achieved for CCTA scans with poor,
moderate and good image quality respectively. Poor
image quality is defined by the presence of image de-
grading artifacts and evaluation is only possible with
low confidence (Schaap et al., 2009). Our algorithm’s
performance is effected by poor image quality but the
performance is consistent over moderate and good im-
age quality. CCTA images with calcium scores of low,
moderate and severe had an average overlap of 92.9%,
94.0% and 94.2% respectively. This shows the perfor-
mance of the algorithm is not strongly effected by the
presence of coronary calcification.

The proposed algorithm aims at extracting the entire
coronary tree from a single seed point. The compara-
tive low metrics for the CCTA scans in Philips dataset
as compared to CAT08 dataset can also be attributed
to the fact that average number of annotated arteries in
the Philips dataset is 9 as compared to 4 in the CAT08
dataset. High clinically relevant overlap in the cases
with large number of annotated arteries show that our
algorithm is capable of extracting the entire coronary
tree. Some of the arteries that may be missed can re-
trieved by a single seed point.

Wolterink et al. (2019) achieved near state-of-the-art
performance as an interactive method for the CAT08
dataset. This method was based on a CNN classifier

which simultaneously predicts direction to the center-
lines and radius. The main constraint of this method is
that it requires one or more seed points per vessel. Our
method removes the requirement of seed points per ves-
sel. A seed point is required only when the bifurcation
detection fails for the corresponding artery. Successful
vessel detection was observed in 95 percent of the cases
in CAT08 dataset. The ostia points required for tracker
initialization were automatically obtained from an MBS
model. Wolterink et al. (2019)’s tracker termination is
guided by a moving average entropy criteria which fails
in case of a severe stenosis. This is the reason that in
some of the cases more than one point is required per
vessel in order to warm-start the tracking process. Our
method utilizes a model trained on patches beyond the
end point in order to determine if the end of a coronary
artery has been reached. We employ a voting mecha-
nism of stop patch classification as well as moving av-
erage entropy in order to terminate the tracking.

The number of annotated centerlines in Philips
dataset varies from 4 to 20. This attributes to severe
label noise for bifurcation classification because the un-
derrepresented bifurcation patches may be labelled as
normal patches in cases where the number of annotated
centerlines are low. This problem may be mitigated
by labelling the missing bifurcation points on the an-
notated arteries. Alternatively, active learning or label
noise suppression strategies can also be explored for the
solution (Karimi et al., 2020; Wang and Smedby, 2008).

The extraction takes on average 42.1 s for the entire
coronary tree in CAT08 dataset. The time complexity of
the tracking algorithm in Listing 1 in worst case is softly
bounded by O(n2) where n represents the total number
of tracked points. Hence, the total time taken depends
on the size of the extracted coronary tree. This time can
be reduced by many folds by optimizing the tracker. The
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different sub-trees can be processed in a parallel fash-
ion making use of the bifurcation predication. Within
the same sub-tree, different threads can access the main
active queue and process the data in a parallel fashion
keeping track of the visited points. The tracking result
on the CCTA image can be displayed in real time as
tracking is being performed.

Figure 16 shows stretched multiplanar reformation
(sMPR) and curved multiplanar reformation (cMPR)
images reconstructed using centerlines obtained from
“AuCoTrack” algorithm. These reformatted images
can be directly used for the diagnosis of coronary artery
disease. The proposed algorithm makes use of the lo-
cal intensity information in the patches in order detect
the direction to the centerlines and the bifurcation. We
have shown that the model trained on CCTA images
from Philips dataset works well for the images from old
Siemens scanners for CAT08 dataset.

8. Conclusions

We proposed a deep learning-based automatic coro-
nary artery centerline extraction algorithm which con-
sists of three major modules. The first module com-
prises of a novel multi-resolution CNN which simulta-
neously determines the direction to the coronary artery
centerlines and detection of bifurcation in the patch.
The second module consists of a similar architecture for
the classification of end points of the coronary arteries
based on patch extraction near the end points. The third
module consists of a tracking algorithm that utilizes the
information from the first two modules to obtain the en-
tire coronary tree efficiently. This is the first automatic
deep learning-based approach for centerline extraction
based on a single seed point per coronary tree. Utiliz-
ing a model based segmentation module, we are able to
automatically detect suitable ostium landmarks. Hence,
the proposed overall pipeline requires zero user inter-
action. Previous CNN approach by (Wolterink et al.,
2019) requires one or more seed points per vessel.

The proposed algorithm was first validated on dataset
from Philips scanners which contained considerable
variability in terms of annotation. The algorithm
demonstrated high accuracy and speed. The algorithm
was then benchmarked against previous automatic cen-
terline extraction algorithms on CAT08 dataset. The
proposed algorithm achieves better overlap rank as com-
pared to previous state-of-the-art automatic centerline
extraction techniques. Total overlap, clinically relevant
overlap and overlap until first error metrics are approx-
imately similar to the previous CNN approach requir-
ing multiple seed points per vessel. The vessels that are
missed by the proposed algorithm can also be retrieved
by specifying a single seed point.

The high speed of coronary artery centerline extrac-
tion combined with high overlap performance make it
suitable for deployment in real time applications. The

generalization of the algorithm is demonstrated by the
fact that it was trained on recent CCTA images from
Philips scanners and tested on CAT08 dataset with
considerable variability. Since the algorithm is based
on local intensity of the patches, the same proposed
pipeline/model can be used to obtain centerlines in other
applications e.g. rib centerline extraction. A novel
architecture was proposed employing multi-resolution
patches with patch-type regularization. The proposed
network can be trained to perform automatic tracking in
many computer vision applications.

9. Future Work

We proposed a fully automatic deep learning-based
centerline extraction algorithm. In future work, a re-
centering of the extracted centerline points based on lo-
cal intensity values could be performed in order to im-
prove the accuracy inside. A rough segmentation algo-
rithm may be used to obtain seed points for centerline
extraction in the regions not already covered by auto-
matic extraction performed by this method. This will
aid in detecting the missed coronary artery centerlines
due to failure in bifurcation detection. Further experi-
ments can be performed in order to try the model trained
on these CCTA scans to extract centerlines in 3D tubular
structures such as lung, bronchia and other blood ves-
sels. In any case, the proposed pipeline can be re-trained
to detect centerlines in any tubular structure.

An anatomical prior such as fast segmentation of the
ventricles can be used to define a volume of interest
in order to apply constraints on the movement of the
tracker. In future, the coronary centerlines extracted
from the algorithm will also be used to obtain a segmen-
tation of the coronary arteries by also predicting the ra-
dius simultaneously. This segmentation result will then
be used to further evaluate the performance of AuCo-
Track algorithm on Automated Segmentation of Coro-
nary Arteries (ASOCA) challenge dataset.3
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