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Abstract

Coronary artery disease remains a leading cause of mortality worldwide. Coronary Computed
Tomography Angiography (CCTA) provides a non-invasive basis for diagnosis; however, an
accurate and connectivity-preserving segmentation of the coronary artery tree is essential for
robust automatic and quantitative analyses. Convolutional Neural Networks (CNNs)-based
architectures, in particular U-Net and no-new-U-Net (nnU-Net), have shown outstanding
performance across a wide range of medical image segmentation benchmarks, yet they may
frequently produce fragmented vessel trees when segmenting thin, tubular structures such as
coronary arteries. Recent studies indicate that connectivity-aware loss functions can mitigate
these discontinuities by explicitly penalizing missing centerline segments, but their efficacy
for coronary artery tree segmentation remains to be demonstrated.
This thesis quantifies the benefits and challenges of integrating connectivity-preserving loss
functions into an nnU-Net-based pipeline for one-step coronary artery tree segmentation from
CCTA images. Performance is assessed using complementary metrics covering vessel mask
accuracy, vessel accuracy, centerline completeness, and runtime, capturing volumetric over-
lap, connectivity-related effects, and computational cost. To contextualize the quantitative
results, we conduct qualitative case studies with targeted visualizations.
The comparison of connectivity-preserving losses reveals that the Skeleton Recall (SR)
loss provides the most consistent improvements in connectivity metrics while incurring
substantially lower training time than the other connectivity-preserving loss formulations. In
the final statistical analysis, augmenting the generic loss with a SR term improves coronary
artery tree connectivity in a statistically significant and practically relevant manner, without
substantially degrading volumetric overlap and with negligible computational overhead.
These findings identify SR as an effective, computationally efficient, and straightforward-to-
implement loss function, making it a practically viable choice for accurate and connectivity-
preserving coronary artery tree segmentation.
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Chapter 1
Introduction

1.1 Motivation

Coronary Artery Disease (CAD) continues to be a major cause of global morbidity and
mortality [1]. This disease is characterized by atherosclerotic plaques that narrow the
coronary lumen—a process known as stenosis—which can impair myocardial perfusion
and lead to ischemia or infarction [2]. CCTA has emerged as a primary non-invasive
imaging modality for assessing coronary anatomy and stenosis severity due to its high
spatial resolution [3–5]. However, CCTA primarily provides an anatomical characterization
and does not directly indicate hemodynamic significance. To standardize reporting and
guide downstream management, Coronary Artery Disease Reporting and Data System
(CAD-RADS) is used for patients undergoing CCTA [6]. To assess whether a stenosis
is hemodynamically significant, additional functional evaluation is advised, such as CT
Fractional Flow Reserve (FFR) [7], myocardial CT perfusion [8], or functional biomarkers
[9]. Coronary artery segmentation is a key base technology for these subsequent analyses.
Beyond diagnostics, accurate segmentations also enable virtually reconstructed coronary
models for in-silico stent simulation and planning [10–12] and can support education and
training [13, 14].
General-purpose CNN architectures, such as the U-Net [15] and the self-configuring nnU-Net
[16], demonstrate outstanding performance across a wide range of anatomical structures.
However, they often struggle to preserve topology in thin, branching anatomy. For coronary
trees, structural integrity—particularly connectivity—is critical. Broken branches can conceal
stenotic segments and distort downstream functional computations. In contrast, limited over-
or under-segmentation of the vessel radius can often be tolerated, as it generally does not
substantially affect subsequent functional analyses. To address this limitation, state-of-the-art
methods often rely on complex, multi-stage pipelines that incorporate cascaded subnetworks
[17, 18] or post-processing steps like centerline reconnection and mask reconstruction [19].
In such stage algorithmic pipelines, errors potentially accumulate and amplify and fixing of
issues is cumbersome as there are multiple failure modes.
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2 Chapter 1. Introduction

A plausible reason for the observed performance gaps in generic frameworks lies in the
training objective itself. Generic losses (e.g., Dice, Cross Entropy (CE)) optimize volumetric
overlap, where all voxels contribute equally to the loss, and therefore do not explicitly penal-
ize missed voxels along centerlines. For structures with a high surface-area-to-volume ratio
Surface-Area-To-Volume Ratio (SA/V), predictions are therefore prone to discontinuities.
Recently, connectivity-aware losses, such as centerline Dice (clDice) [20] and the SR [21]
have been proposed to address SA/V effects and tree topology, but their efficacy for coronary
artery trees remains to be established.
Therefore, this work aims to systematically evaluate the benefits and challenges of integrating
tailored loss functions into a generic CNN framework such as nnU-Net for the segmentation
of coronary artery trees from CCTA images in a single analysis step. To this end, we conduct
a comprehensive benchmark to assess performance not only in terms of traditional mask
overlap but, crucially, with respect to topology-aware metrics. Our evaluation covers four
complementary quality criteria: (a) centerline completeness, (b) vessel mask accuracy, (c)
vessel accuracy, and (d) computational runtime.

1.2 State of the Art

Deep learning has transformed medical image segmentation, with U-Net [15] and nnU-Net
[16] providing state-of-the-art baselines across diverse tasks. When sufficient curated data
are available, these models facilitate accurate multi-structure segmentation in a single-stage
setting [22]. Nevertheless, preserving connectivity in thin, curvilinear anatomy remains
challenging for general-purpose tools. To better address such structures, various task-specific
architectures have been proposed. These include attention-based designs tailored to capture
long-range dependencies in curvilinear patterns [23] or vessel-specialized networks that
jointly learn vessel masks, centerlines, and bifurcations [24]. Coronary segmentation is
further complicated by the scarcity of publicly annotated cohorts, vessel diameters near the
resolution limits of clinical CT, and high inter-patient variability in tree topology—especially
in the presence of disease—which limits the utility of strong shape priors.
Community benchmarks reflect both progress and limitations. MICCAI organized challenges
on centerline tracking (CAT, 2008) [25], stenosis assessment (STEN, 2012) [26], and full
coronary tree segmentation (ASOCA, 2022) [27]. The ASOCA challenge is based on 40
CCTA images (20 normal, 20 diseased) with voxel-wise annotations [28]. These 40 cases
served as the training set for ASOCA, complemented by an additional hidden test set of
20 CCTA images, which where provided without labels for submissions. In the ASOCA
challenge, fully automated methods were primarily evaluated with Dice score and 95 %
Hausdorff Distance (HD95). Top entries frequently relied on U-net or nnU-Net as a backbone
within multi-stage pipelines and substantial post-processing to boost these metrics. After the
official challenge phase, research has continued, and the public leaderboard remains active
[29]. Rankings are listed under user handles and do not provide links to methods or public
code, which limits attribution and comparability. As of Nov. 2025, the best result on the
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public leaderboard is held by user “hongqq” with a Dice score of 0.8496 and a HD95 of
1.8879 mm. In the literature, Qiu et al. report leading results on the ASOCA training split
using five-fold cross-validation (Dice 88.53%, HD95 1.07 mm) with a three-stage framework
[19]. The pipeline first produces a voxel-wise coronary mask with nnU-Net. It then applies a
regularized walk to reconnect broken centerlines by integrating distance, centerline-classifier
probabilities, and directional cosine similarity. Finally, the pipeline employs an implicit
neural representation to refine the geometry and recover missing vessel segments. However, a
proper quantification of topological fidelity remains limited, as no explicit connectivity-aware
metrics have been reported.
A complementary line of research modifies the training objective to directly favor topology.
Early formulations inject topological priors using differentiable persistent homology [30]
or enforce Betti-number constraints through a dedicated loss [31]. More recently, the
use of a differentiable skeleton has gained traction with clDice, which introduced both
a skeleton-based metric for topology-preserving similarity and a corresponding training
loss that relies on a soft, differentiable approximation of the skeleton obtained via iterative
min and max pooling [20]. In brief, clDice operates on skeletonized representations rather
than pure volumetric overlap as in standard Dice, making the score sensitive to broken or
missing vessel segments. Building on this idea, the centerline Cross Entropy (clCE) replaces
the clDice ratio with CE terms, that are anchored to target and predicted skeletons. This
change aims to improve robustness to noise and variability in annotations [32]. On the
ASOCA dataset, the authors report 5-fold cross-validation with a Dice score of 84.80% and a
clDice score of 84.95%. To jointly reflect topology and geometry, centerline boundary Dice
(cbDice) augments clDice with boundary-aware terms and incorporates radius information
from the distance transform along the skeleton. This approach addresses diameter imbalance
while preserving connectivity [33]. Notably, cbDice leverages the topology-preserving
differentiable skeletonization of Menten et al. [34], thereby promoting higher topological
accuracy. A practical limitation of soft-skeleton based losses is the training-time overhead of
computing differentiable skeletons. The SR loss, proposed by Kirchhoff et al. addresses this
by precomputing a tubed skeleton from the ground truth and optimizing a soft recall of the
prediction on that skeleton, thereby avoiding GPU-side differentiable skeletonization during
training [21]. Across multiple public datasets of thin tubular structures, SR reports state-
of-the-art performance while requiring only minimal additional training time and memory,
making it an effective and computationally lightweight topology-aware training loss.

1.3 Research Question

Research question

What are the benefits and challenges of integrating connectivity-preserving losses
into a standard architecture such as nnU-Net for coronary artery tree segmentation
compared to using generic losses?



4 Chapter 1. Introduction

This thesis addresses the research question by systematically evaluating connectivity-preserving
losses (SR, clDice, clCE, cbDice) against a generic baseline (Dice + CE) within the nnU-Net
framework. We train and evaluate all models using a 5-fold cross-validation scheme on
a combined dataset comprising the public ASOCA dataset and two in-house cohorts (98
volumes in total). Performance is assessed through a consistent protocol based on four
complementary criteria: (a) centerline completeness, (b) vessel mask accuracy, (c) vessel
accuracy, and (d) computational runtime. To isolate the contribution of the loss function and
contextualize the quantitative results, we conduct targeted ablation experiments and qualita-
tive visualizations. All experiments are performed on the Philips Innovative Technologies
Hamburg compute cluster using an in-house PyTorch-based framework.



Chapter 2
Theoretical Fundamentals

In this chapter, the theoretical foundations required for this work are summarized. Following
the structure of a typical medical image analysis pipeline, we begin by presenting the relevant
medical background, then detail the acquisition of the imaging data, and finally describe
their processing and segmentation.
Section 2.1 introduces the relevant medical background, including the anatomy of the heart
and coronary arteries, as well as the pathophysiology of coronary artery disease, which
provides the clinical context for cardiac imaging. Section 2.2 then reviews fundamental
radiological principles, covering X-ray generation, Computed Tomography (CT), and specific
aspects of CCTA acquisition. Section 2.3 formalizes the voxel-based representation of CCTA
images and segmentation labels, discusses key image processing operations, and introduces
the segmentation architectures employed in this thesis, namely the U-Net and the self-
configuring nnU-Net framework.

2.1 Medical Fundamentals

2.1.1 Cardiac Anatomy

The heart is located in the middle mediastinum and functions as a dual pump that drives both
pulmonary and systemic circulation. It consists of four chambers: the right and left atria,
which function as receiving chambers, and the right and left ventricles, which act as ejecting
chambers. A schematic overview of the cardiac chambers, valves, and great vessels is shown
in Figure 2.1. Blood flow is regulated by the four cardiac valves. The atrioventricular valves
comprise the tricuspid valve between the right atrium and the right ventricle and the mitral
valve between the left atrium and the left ventricle. The semilunar valves are the pulmonary
valve between the right ventricle and the pulmonary artery and the aortic valve between the
left ventricle and the aorta [35].
The heart interfaces with the systemic and pulmonary circulation through the great vessels.
The superior and inferior vena cava return systemic venous blood to the right atrium. The

5
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Figure 2.1: Anterior views of the human heart. Left panel: partially dissected heart. Right panel: exter-nal view. Both panels illustrate themain cardiac regions, heart valves, andmajor blood vessels; coronaryarteries are labeled in bold. Adapted from [38].

pulmonary trunk bifurcates into the pulmonary arteries which supply the lungs. The pul-
monary veins convey oxygenated blood to the left atrium, and the aorta carries oxygenated
blood from the left ventricle into the systemic circulation [36].
The cardiac wall consists of three principal layers: the endocardium, which lines the cardiac
chambers; the myocardium, which forms the contractile muscle layer; and the epicardium,
which covers the outer surface of the heart and is closely related to the visceral layer of the
pericardium [37]. The heart receives its blood supply via the coronary arteries, which run
along the surface of the heart within the epicardial fat and provide branches penetrating the
myocardium.

2.1.2 Coronary Artery Anatomy

The coronary arteries arise from the aortic root at the level of the right and left coronary
sinuses. From the left coronary sinus, the Left Main (LM) coronary artery, also known as the
Left Coronary Artery (LCA), originates, whereas the Right Coronary Artery (RCA) arises
from the right coronary sinus [39].
The LM most commonly bifurcates into the Left Anterior Descending (LAD) artery and the
Left Circumflex (LCx) artery; a trifurcation pattern with an additional Ramus Intermedius
(RI) branch is a frequent anatomical variant [40]. The LAD artery courses within the anterior
interventricular groove towards the cardiac apex and typically gives rise to septal perforator
branches, which supply the interventricular septum, as well as and diagonal branches that
supply the anterolateral wall. The LCx artery runs within the left atrioventricular groove and
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tion images (including MPR format) in views both longitudinal and trans-
verse to the vessel. An image review in the frontal and lateral planes may 
aid in the identification of artifacts. Many experienced readers will review 
the arterial tree in detail beginning in the axial (caudal) view since the 
trans-axial data are more robust as are the less processed. 

Coronary segmentation 
A standardized approach to coronary segmentation improves description 
and communication of findings. The standard American Heart Association 
(AHA) segmentation initially proposed in 1975 has stood the test of time 
and has been used in many long-term outcome studies relating the loca-
tion of stenoses to major adverse coronary events.1 This model has been 
adapted for CCTA with minimal alterations for clarity. An axially based 
version of this standard model is displayed in Figure 1, which has been 
altered to more closely emulate CTA views than the standard views ob-
tained during ICA that were used in the original publication. In addition 
to combining the 3 standard invasive angiographic views into a single 
axial view, this model varies from the 1975 standard AHA segmentation 
in the following ways: a left posterolateral branch is identified as segment 

18, and a ramus intermedius branch has been added as segment 17. An 
optional alternative segmentation model is the 28 segment model that 
was used in the Myocardial Infarction and Mortality in Coronary Artery 
Surgery Study (CASS)53 (see Table 4). 

Analysis of coronary artery anatomy and pathology 
The coronary tree should be initially examined for the course and branch-
ing of the main coronary vessels and subbranches. Coronary anomalies 
should be examined with regard to their origin, course, and relationship 
to important structures such as the cardiac chambers, aorta, pulmonary 
artery, and interventricular septum. 

The lumen of the coronary arteries should be examined for overall caliber 
and smoothness. Variations in CT density within the mural and intralumi-
nal portions of the coronary artery should be noted and compared with 
the adjacent interstitium, contrast-containing lumen, and calcific densi-
ties such as bone or calcified plaque. Atherosclerotic lesions should be 
considered in relationship to their segmental position due to the affected 
extent of myocardium. The impact of luminal plaque should be evaluated 

Figure 1 SCCT Coronary Segmentation Diagram. Axial coronary anatomy definitions derived, adopted, and adjusted from WG Austen, JE Edwards, 
RL Frye, GG Gensini, VL Gott, LS Griffith, DC McGoon, ML Murphy, BB Roe: A reporting system on patients evaluated for coronary artery disease. 
Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation. 
1975;51:5–40. 

RCA

LCX

LM
LAD

Figure 2.2: SCCT 18-segment coronary artery nomenclature adapted from [42]. Proximal (p), middle(m), distal (d). 1: pRCA, 2: mRCA, 3: dRCA, 4: right PDA, 5: LM, 6: pLAD, 7: mLAD, 8: dLAD, 9: D1, 10:D2, 11: pLCx, 12: M1, 13: mLCx, 14: M2, 15: left PDA, 16: right PLB, 17: ramus, 18: left PLB.

supplies the lateral and posterolateral walls of the left ventricle via Obtuse Marginal (OM)
and Posterior Lateral Branch (PLB) [41].
The RCA follows the right atrioventricular groove and typically gives rise to the conus
branch, sinoatrial nodal branch, and acute marginal branches. Distally, it gives rise to the
Posterior Descending Artery (PDA) and PLB, depending on the coronary dominance pattern.
Coronary dominance is defined by the vessel that gives rise to the PDA: approximately
80–85% of individuals exhibit right dominance, 15–20% left dominance, and about 5%
co-dominance, although these proportions can vary across populations[40].
For standardized reporting in CCTA, the Society of Cardiovascular Computed Tomography
(SCCT) recommends an 18-segment coronary artery model. This model assigns segment
labels to proximal, mid, and distal portions of the major coronary branches and their side
branches [42], as illustrated in Figure. 2.2. Common anatomical anomalies include separate
conus origin, dual LAD, and anomalous coronary courses. Awareness of such variants is
essential to avoid misinterpretation; however, a detailed discussion of coronary anomalies
is beyond the scope of this work, and the reader is referred to [43] for a comprehensive
overview.
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Figure 2.3: Schematic illustration of a normal coronary artery with unobstructed blood flow (left) andan artery with atherosclerotic plaque buildup causing luminal narrowing (right). Adapted from [47].

2.1.3 Coronary Artery Disease

CAD arises from the development of atherosclerotic plaque in the coronary arteries. Atheroscle-
rosis is a chronic inflammatory process characterized by subendothelial retention of athero-
genic lipoproteins, fibrous remodelling, and progressive calcification, ultimately leading to
luminal narrowing, a process known as stenosis [44]. An illustrative depiction of normal and
stenotic coronary arteries is shown in Fig. 2.3.
Plaque complications, particularly fibrous cap rupture or erosion with superimposed thrombo-
sis, underlie acute coronary syndromes and myocardial infarction. Beyond these acute events,
progressive luminal narrowing can become hemodynamically significant. A flow-limiting
stenosis imposes an additional pressure drop across the lesion. Resistance vessels distal to
the stenosis dilate to lower microvascular resistance and thereby preserve resting coronary
blood flow via autoregulatory mechanisms. However, once maximal vasodilation is reached,
hyperemic flow becomes limitted, coronary flow reserve declines, and a mismatch between
myocardial oxygen supply and demand develops, resulting in myocardial ischemia [45].
The development and progression of CAD are driven by multiple, often interacting risk
factors. Major causal contributors include hyperlipidemia, arterial hypertension, diabetes
mellitus, cigarette smoking, and a sedentary lifestyle, among others [44]. The anatomical
severity of a coronary stenosis does not always correspond to its hemodynamic signifi-
cance. Lesion-specific ischemia is best assessed by physiological measurements such as
FFR, and management decisions should integrate symptoms, ischemia burden, and overall
cardiovascular risk [46].
For standardized anatomical and functional reporting in CCTA, CAD-RADS 2.0 provides a
graded framework (categories 0–5 with additional modifiers) that harmonizes reporting and
downstream management recommendations across centres [6].
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Figure 2.4: Schematic illustration of X-ray generation in an X-ray tube. Electrons are accelerated fromthe cathode (C) to the anode (A) and produce bremsstrahlung and characteristic X-ray photons upondeceleration in the anode material. Adapted from [50].

2.2 Radiology Fundamentals

2.2.1 X-rays

X-rays are a form of high-energy, ionizing electromagnetic radiation [48]. In medical
imaging, they are typically generated in an X-ray tube, which consists of an evacuated glass
or metal envelope containing a cathode and a solid metal anode [49]. Thermionic emission
from a heated filament at the cathode releases electrons once the thermal energy exceeds
the binding energy of the filament material. These electrons are then accelerated across a
high potential difference between the negatively charged cathode and the positively charged
anode. Upon impact with the anode, the fast electrons are decelerated and deflected in
the electric field of the target atoms. This rapid deceleration of charged particles produces
electromagnetic radiation, including X-rays. A schematic of X-ray generation in an X-ray
tube is depicted in Fig. 2.4.
X-ray production in the anode material is dominated by two physical processes: bremsstrahlung
and characteristic radiation [48]. In bremsstrahlung interactions, incident electrons are de-
celerated and deflected in the Coulomb field of the atomic nucleus, thereby losing part, and
in extreme cases almost all of their kinetic energy. This energy loss is emitted as an X-ray
photon. Because the fractional energy loss can vary continuously from nearly zero up to
the full incident energy, bremsstrahlung gives rise to a continuous polyenergetic spectrum.
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Figure 2.11: Typical X-ray spectrum for tube voltage of 120keV, inspired from [1] and [15].

established in 1979 shortly after the invention of CT, but due to technical limitations at that
time, it could not be applied for the clinical use case. The terms DECT and SPECT are often
used mistakenly as interchangeable in literature: while SPECT is able to measure with more
than two spectra and therefore needs more advanced systems like photon counting detectors,
DECT uses only two spectra and is a subset of SPECT, [15, 43].
In this work we use DECT data. As already mentioned it contains projection data of two
di�erent spectra, which are combined to get more information about the material. Mostly
X-ray tube voltages of 80 kV for the lower spectrum and 140 kV for the higher spectrum are
applied. It is desirable to have as little overlap of the spectra as possible, but simultaneously
the tube voltage must not be too low because then the radiation will be completely absorbed. If
the tube voltage is too high, it will result in an increased radiation exposure and the di�erence
in soft tissue attenuation might be lower, [15]. There are several methods to acquire low
and high energy spectra data, three of them are drawn in Figure 2.12 which shows typical
DECT configurations. Figure 2.12a shows a dual-source detector configuration, where the
same object is scanned by nearly perpendicular high and low energy spectral X-ray sources.
One advantage is that the spectra are generated in two di�erent tubes independently from
each other, making separation of spectra simple. Disadvantages are limited space by using
two sources and detectors resulting in a smaller field of view and cross-scatter e�ect which
interferes with the respective other measurement. In addition it is vulnerable to motion
artifacts. Figure 2.12b shows a single source detector configuration which switches fast
between low and high energy spectra. The advantages are that this method is really fast and
robust against motion artefacts, but the projections of the two measurements are not perfectly
aligned, making material decomposition in the projection domain di�cult. Figure 2.12c
displays a so-called sandwich detector, which consists of a two-layered scintillator detector,
where the first layer absorbs lower-energy and the second layer absorbs higher-energy photons.
This results in simultaneous measurements of the projection data which is robust to motion
artefacts and can be directly decomposed in the projection domain. One disadvantage is that

Figure 2.5: Example X-ray spectrum of a tungsten anode. Sharp peaks correspond to characteristicradiation, whereas the continuous background represents bremsstrahlung. Adapted from [49].

In characteristic X-ray production, an incident electron transfers sufficient energy to an
inner-shell electron of a target atom to ionize it and create a vacancy. This “hole” is sub-
sequently filled by an electron from an outer shell, and the energy difference between the
two shells is emitted as an X-ray photon. The resulting spectrum consists of discrete lines
at energies characteristic of the target material. An example spectrum of a tungsten X-ray
tube illustrating the continuous bremsstrahlung background with superimposed characteristic
peaks is shown in Fig. 2.5.
In a typical diagnostic X-ray tube, the vast majority of the electron energy is dissipated
as heat through inelastic collisions with atomic electrons, whereas only a small fraction is
converted into bremsstrahlung and characteristic X-rays [48].
When X-rays interact with matter in the diagnostic energy range, the two dominant pro-
cesses in soft tissue and bone are the photoelectric effect and Compton scattering. In the
photoelectric effect, an incident X-ray photon transfers all of its energy to a bound electron
and is completely absorbed. The electron is ejected with kinetic energy equal to the photon
energy minus the binding energy of the electron. This process is strongly dependent on
the atomic number of the material and the photon energy, making it a major contributor
to image contrast. Compton scattering describes an inelastic interaction between an X-ray
photon and a weakly bound outer-shell electron. The photon transfers part of its energy to
the electron, which is ejected as a so-called Compton electron, while the scattered photon
emerges with reduced energy and is deflected from its original direction. Compton scatter
contributes to image noise and reduces contrast because scattered photons may be detected
outside their original projection path [51]. Schematic depictions of the photoelectric and
Compton interactions are shown in Figure 2.6.
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Figure 2.6: Schematic illustration of the two dominant processes for X-ray interaction with matter. Redcircles indicate the atomic nucleus, and grey circles represent electrons in different shells. Left panel:schematic model of the photoelectric effect. Right panel: schematic model of Compton scattering.Adapted from [52].

The diagnostic utility of X-rays arises from their ability to penetrate tissue to a depth
that depends on photon energy and material properties, thereby creating contrast between
structures of different composition. By adjusting the tube voltage, one can modify the energy
spectrum of the emitted X-rays and thus influence both image contrast and radiation dose. In
a simplified, monoenergetic description, attenuation of X-rays in matter can be modeled by
the Beer–Lambert law. When a monoenergetic X-ray beam of initial intensity I0 traverses
a homogeneous object with linear attenuation coefficient µ and intersection length x, the
transmitted intensity I is given by

I = I0 e−µx . (2.1)
This model neglects scatter and the energy dependence of attenuation but forms the basis of
the line-integral model used in CT reconstruction, in which attenuation is described as the
integral of the linear attenuation coefficient accumulated along each X-ray path [53].

2.2.2 Computed Tomography

CT is an X-ray–based tomographic imaging technique in which cross-sectional images of the
body are reconstructed from multiple X-ray projections acquired around the patient [54]. In
conventional axial CT, a three-dimensional volume is obtained by acquiring, reconstructing,
and stacking a series of two-dimensional slices along the axial (z) direction. Compared
to conventional projection radiography, CT provides cross-sectional images that minimize
superposition of overlying structures and therefore enable improved visualization of internal
anatomy and pathology.
In a basic axial CT acquisition, often referred to as step-and-shot mode, the X-ray tube and
detector rotate around the patient within the gantry while the patient table remains stationary
for the duration of the rotation [55]. After each rotation, projection data for a given slice
are reconstructed into a two-dimensional image. The table is then advanced by a predefined
distance, and the process is repeated to acquire the next slice. For a given axial slice, all
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Figure 8.10: In conventional CT, a 3-D image of the body is formed by
acquiring, reconstructing, and subsequently stacking 2-D image slices in axial
direction. For each slice, all projection rays lie in a plane, which is why we
only deal with bivariate functions f(x, y). However, be aware that there are
other geometries where this assumption is no longer valid (cf. Sec. 8.3.3).

8.3.1.1 Filtered Back-Projection

It is possible to invert the process of projection directly, without explicitly
computing the computations in frequency space suggested by Fig. 8.7. In
Geek Box 8.2, it is shown that the required calculations reduce to

f(x, y) =
∫ π

0
pθ(s) ∗ h(s)|s=x cos θ+y sin θ dθ, (8.12)

where h(s) corresponds to the inverse Fourier transform of |ξ|. This amounts
to the back-projection of pθ(s) convolved with h(s). As a consequence, this
method is called filtered back-projection.

Unfiltered back-projection, i. e., just “smearing” line integrals in a projec-
tion pθ(s) back along their corresponding lines without filtering (cf. Fig. 8.12),
is equivalent to adding P (ξ, θ) to F (u, v), as suggested by the Fourier slice
theorem, without considering the factor |ξ|. In fact, this is not the inverse,
but the dual or adjoint of the Radon transform.

8.3.1.2 Filters

Due to the shape of |ξ|, the filter h(s) is typically called ramp filter. Sam-
pling in polar coordinates leads to an oversampling in the center of the Fourier
space (cf. Fig. 8.11). Using a ramp filter, this oversampling is corrected by en-
hancing the high frequency components while dampening the low frequencies
in the center of the Fourier space.

According to the sampling theorem, as described in Sec. 2.4.2 (p. 32), with
a detector spacing of ∆s, the largest frequency that can be detected in pθ(s) is
ξmax = 1

2∆s . Additionally, noise in the projections is amplified when using an
unlimited ramp filter |ξ|. Therefore, high frequencies should be limited in the

Figure 2.7: Conventional axial CT data representation. All projection rays for a given slice lie in a single
x–y plane orthogonal to the beam direction z, so the object can be described by a bivariate function
f (x,y). A three-dimensional CT image is formed by stacking the reconstructed two-dimensional axialslices along the z-axis. Adapted from [55].

projection rays lie approximately within a single x–y plane orthogonal to the beam direction
z, allowing the object to be modeled by a bivariate function f (x,y) (Figure. 2.7).
The X-ray source trajectory and detector geometry are commonly described in terms of
fan-beam geometry [55], in which all rays for a given projection angle emanate from a
single focal spot and impinge on a curved or flat detector (Figure 2.8, left panel). Modern
scanners typically employ Multi Detector Computed Tomography (MDCT) geometries [56].
Instead of a single row of detectors, multiple parallel detector rows are arranged along the
z-axis, allowing simultaneous acquisition of several slices per rotation (Figure. 2.8, right
panel). This increases longitudinal coverage per rotation and enables faster volume scanning.
Even single-detector-row CT systems use multiple detector elements along the fan direction,
but only a single detector row in the longitudinal direction. In MDCT, multiple slices are
reconstructed from each projection set by exploiting the multiple detector rows, which is
particularly advantageous for dynamic studies and angiographic applications.
For volumetric acquisitions, current CT systems typically employ helical CT, also referred
to as spiral CT [57]. In helical CT, the X-ray tube rotates continuously around the patient
while the table is translated at a constant speed along the z-axis, resulting in a helical
source trajectory (Figure 2.9). Compared with step-and-shoot acquisitions, helical CT offers
substantially faster coverage of the scan volume and reduces motion artifacts because the
entire region of interest can be imaged in a single continuous run.
As outlined in Section 2.2.1, under the monoenergetic assumption and neglecting scatter, each
X-ray measurement can be modelled by Beer–Lambert’s law, which relates the measured
intensity to the line integral of the linear attenuation coefficient along the corresponding
ray [53]. In the context of CT, these measurements can therefore be interpreted as line
integrals of µ(x,y,z) along a set of rays through the object. CT reconstruction algorithms
(e.g. filtered backprojection or iterative methods) invert this transform to estimate the spatial
distribution of µ in the scanned volume.
In clinical CT, reconstructed attenuation values are commonly mapped to the Hounsfield Unit
(HU) scale, which is normalized such that water has a value of 0HU and air approximately
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(a) For a parallel beam geometry as introduced in the previous sections (shown
on the left), the X-ray source needs to be shifted perpendicularly (dotted line) to
the direction of projection, casting pencil beams through the object. If all beams
instead emanate from a single position for each angle, we obtain a fan of no
longer parallel rays (fan beam geometry; on the right), increasing acquisition
efficiency at the cost of a slightly more complicated reconstruction problem.
Apart from the flat shape shown here, there also exist curved detectors with an
equiangular spacing.

(b) Multiple detector arrays allow for simultaneous acquisition of multiple im-
age slices from one X-ray source position (multi-slice CT; shown on the left).
However, in this setup, the beams no longer all lie within the rotation plane.
This issue becomes much more important in the case of cone beam CT (shown
on the right): Here, the small stack of detector rows gives way to a larger de-
tector matrix, with the beams now forming a cone in 3-D.

Figure 8.16: Basic acquisition geometries in CT imaging. Blue arrows in-
dicate the trajectory of the X-ray source. The detector is depicted by thick
black lines.
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Fan beam geometry Multi-slice CT

Figure 2.8: Basic acquisition geometries in CT imaging. Blue arrows indicate the trajectory of the X-raysource, and thick black lines depict the detector. Left panel: fan-beam geometry, where all rays fora given projection angle emanate from a single focal spot. Right panel: multi-slice CT geometry withmultiple detector rows, enabling simultaneous acquisition of several image slices from one X-ray sourceposition. Adapted from [55].
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Figure 8.18: In spiral CT, although the X-ray source still conveniently ro-
tates in the x-y plane, the trajectory it describes in relation to the imaged
object is a helix due to the patient table being slowly moved through the
gantry. This enables the acquisition of a large object region while rotating
continuously. Projections for an ideal circular trajectory can be interpolated
along z from neighboring helical segments.

CT is able to capture a large field of view containing all of the object in
a single rotation (Fig. 8.16(b), right). One of the main fields of use for this
technology lies in interventional imaging where the X-ray source and detector
are mounted on a C-arm device (Fig. 8.17). It has to be noted, though, that
for arbitrary objects, an exact reconstruction is only possible in the plane of
rotation. The more the beam diverges from this plane, the more artifacts are
likely to appear: due to the incomplete data obtained from oblique rays, the
reconstruction problem is underdetermined.

For imaging larger parts of the body with few detector rows, it used to
be necessary to perform a rotation, then halt and move the table such that
the next slice to be acquired is lined up with the detector before starting
anew. With the invention of helical CT, a continuous motion of both the
rotating gantry and the table became possible. From the point of view of
the imaged object, the X-ray source rotates in the x-y plane and moves
in the axial direction at the same time, thus following a helix (Fig. 8.18).
From the helical rotation, projections for all angles in an axial plane can be
interpolated, enabling the use of standard reconstruction methods.

8.4 Practical Considerations

So far, we have described the theoretical background and principles for CT
image reconstruction. However, in practice there are several aspects that have
to be considered.

Figure 2.9: Helical CT acquisition geometry. The X-ray source rotates in the x–y plane while the patienttable is translated along the z-axis, resulting in a helical source trajectory. Fan-beam projections for agiven axial position can be obtained by interpolation between neighboring points on the helix.

−1000HU. The HU of a given material is defined as

HU = 1000 · µmaterial −µwater

µwater
, (2.2)

where µmaterial and µwater denote the linear attenuation coefficients of the material and water,
respectively[58]. Typical HU values for relevant tissues and materials are summarized in
Table 2.1.

2.2.3 Coronary Computed Tomography Angiography

Cardiac CT, and CCTA in particular, poses specific challenges due to the continuous motion
of the heart. The key technical requirement is sufficient temporal resolution to effectively
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Table 2.1: Typical HU values and ranges for different tissues and materials. Exact values depend ontissue composition, tube voltage, and temperature [59–61].
Material / Tissue HU
Air −1000Fat −100 to −80Water 0Muscle +10 to +40Blood +30 to +45Soft tissue +40 to +80Opacified blood +250 to +350Bone +400 to +2500

“freeze” cardiac motion. If the acquisition is too slow or occurs at an unfavorable phase of
the cardiac cycle, residual motion can leading to image blurring and impaired diagnostic
quality [62].
Patient preparation is therefore critical. The heart rate is typically lowered to ≤ 60–65,bpm
using oral or intravenous β -blockers [63]. In addition, an iodinated contrast bolus (e.g.
Omnipaque) is administered via an intravenous line to opacify the coronary arteries, thereby
increasing attenuation of the intravascular blood pool and improving image contrast [27].
CCTA acquisition is usually initiated using bolus tracking: scanning starts once the attenua-
tion in a predefined region of interest, typically the ascending aorta, reaches a predetermined
HU threshold [64].
Besides high temporal resolution, correct timing within the cardiac cycle is essential. Image
acquisition is synchronized to the Electrocardiogram (ECG) using ECG gating. Two main
approaches are employed: prospective ECG triggering and retrospective ECG gating. In
prospective ECG triggering, data are acquired only during selected phases of the cardiac
cycle, typically mid-diastole, when cardiac motion is minimal. The scanner monitors the
ECG and initiates X-ray exposure after a specified delay following the R-wave. Between
these acquisition windows, the X-ray tube is switched off, resulting in a step-and-shoot–like
acquisition along the z-axis.
In retrospective ECG gating, the X-ray tube operates continuously with tube current mod-
ulation, and data are acquired over several cardiac cycles while the table moves through
the gantry [62]. The ECG signal is recorded simultaneously, and images are reconstructed
retrospectively at selected phases of the cardiac cycle, such as during systole or diastole.
This approach enables functional assessment of ventricular performance and valve motion
and allows flexible selection of phases with minimal coronary motion. However, it usually
entails a higher radiation dose than purely prospective protocols [62].
A schematic overview of a typical CCTA workflow is shown in Figure 2.10.
Following these acquisition steps, the reconstructed images depict the coronary arteries in
multiple anatomical planes. Figure 2.11 shows representative high-contrast CCTA images in
axial, coronal, and sagittal views.
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Figure 2.10:Workflow of a typical CCTA image acquisition. After administration of heart-rate-loweringmedication, an intravenous contrast bolus is injected and bolus tracking is used to select the optimalscan start time. The patient is connected to ECG monitoring and the scan is synchronized to the R–Rintervals. Data acquisition is performed under ECG gating either with prospective triggering (shadedblue intervals indicate periods when the X-ray tube is on) or with retrospective gating (tall shaded blueboxes indicate diastolic reconstruction windows; the continuous blue line illustrates continuous, ECG-modulated tube current).

Axial view Coronal view Sagittal view

Figure 2.11: Example CCTA images in axial, coronal, and sagittal views illustrating the coronary arteriesand cardiac anatomy.

2.3 Image Processing

2.3.1 Voxel-based Image Representation

In digital image processing, images are represented by numerical values associated with
positions on a regular grid. In two dimensions, a single grid location is referred to as a
pixel, and the associated numerical value is typically given as a gray value or colour channel
intensity [65].
As introduced in Section 2.2.3, this work deals with three-dimensional images. In this setting,
the numerical value is associated with a small volume element in 3D space, referred to as a
voxel. A voxel-based image can therefore be regarded as a discrete mathematical function
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that maps a grid position in three-dimensional space to a scalar value. Formally, the image is
represented as

I[i, j,k] = p , (2.3)
where i, j,k denote the voxel indices along the three image axes and p is a scalar intensity
value. In CCTA imaging, p corresponds to the voxel’s attenuation expressed in HU, as
introduced in Section 2.2.2.
In addition to intensity images I, segmentation labels are represented as voxel-based images
to serve as ground-truth annotations for training and evaluation of segmentation models. A
label image

L[i, j,k] ∈ {0,1, . . . ,C−1} (2.4)
is defined on the same voxel grid as I[i, j,k] and assigns a discrete class label to each voxel. In
the simplest case of binary vessel segmentation used in this work, C = 2 and L[i, j,k]∈ {0,1}
indicate background and coronary artery voxels, respectively.
Following the conventions of SimpleITK [66], each image is characterised by an origin,
specifying the physical location of the first voxel, a voxel spacing, defining the distance
between neighbouring voxels along each axis, a size, giving the number of voxels in each
dimension, and a direction cosine matrix, which describes the orientation of the image
axes [67]. In CCTA images, the voxel grid is generally anisotropic. The in-plane resolution
in x and y is often relatively homogeneous across scans, whereas the slice spacing in z shows
substantially more variability between protocols. This results in elongated voxels along the
through-plane direction and heterogeneous anisotropy across the dataset.
CNNs operate purely on the discrete voxel grid and do not natively account for differences
in physical spacing, so all volumes are typically resampled to a common, near-isotropic
target spacing before training [68]. For images, linear interpolation is commonly used for
resampling intensity images, whereas nearest-neighbour interpolation is employed for label
images to avoid generating mixed or fractional class labels. On a regular grid, each target
voxel inside a grid cell is assigned a weighted average of the surrounding source voxels, with
weights proportional to the relative distances along each image axis so that voxels closer to
the target position contribute more strongly than distant voxels. Figure 2.12 illustrates these
concepts on a 2D grid.

2.3.2 U-Net

U-Net, a fully convolutional neural network introduced in 2015, represents a landmark
architecture for biomedical image segmentation [15]. Its structure is characterized by
a symmetric encoder–decoder layout with skip connections, as illustrated in Fig. 2.13,
combining a contracting path that captures contextual information with an expanding path
that enables precise localization. This design allows simultaneous exploitation of high-
level semantic information and low-level spatial detail, which is crucial for medical image
segmentation tasks [69].
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In the encoder, blocks of two successive convolutions, each followed by a nonlinear activation,
are applied and then downsampled using max-pooling to halve the spatial resolution. With
each downsampling step, the number of feature channels increases, allowing the network to
encode increasingly abstract and semantically rich representations while reducing spatial
dimensionality.
In the decoder, these operations are essentially reversed. Transposed convolutions are used to
increase the spatial resolution and reduce the number of feature channels. At each resolution
level, the upsampled features are concatenated with the correspondingly cropped feature
maps from the contracting path via skip connections, followed by two convolutions with
nonlinear activations. These skip connections help recover fine spatial details that might
otherwise be lost during downsampling. Finally, a 1×1 convolution maps the multi-channel
feature representation of the last decoder layer to the desired number of classes, producing a
dense segmentation map. Since the output typically has the same spatial dimensions as the
input image, a voxelwise loss between prediction and ground truth can be directly computed
for training.

2.3.3 nnU-Net

The nnU-Net framework is a seminal advancement in medical image segmentation, proposing
an automated and dataset-adaptive configuration of U-Net–based architectures [16]. Its
central premise is that a well-configured, “vanilla” U-Net is difficult to outperform across
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the di↵erent operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Figure 2.13: U-Net architecture (example for 32× 32 pixels in the lowest resolution). Each blue boxcorresponds to a multi-channel feature map. The number of channels is denoted on top of the box, andthe x–y size is indicated at the lower left edge. White boxes represent copied feature maps passed viaskip connections. Arrows denote the different operations (convolutions, pooling, upsampling). Takenfrom [15].

diverse segmentation tasks, and that much of the performance gap in practice arises from
suboptimal, dataset-specific design choices rather than from architectural limitations [70].
Consequently, nnU-Net does not fundamentally change the network building blocks but
automates the configuration and training pipeline that would otherwise require extensive
manual tuning.
Conceptually, nnU-Net contrasts a typical U-Net workflow—where hyperparameters, pre-
processing, and architecture variants are iteratively tuned for each new dataset—with an
automated pipeline that infers most design choices from the data itself (Fig. 2.14).
The first step in the nnU-Net pipeline is to compute a dataset fingerprint that captures key
dataset-specific properties, such as image size, voxel spacing, intensity distribution, imaging
modality, number of classes, and number of training cases.
This dataset fingerprint is combined with a set of blueprint parameters, which are dataset-
agnostic, and a set of inferred parameters derived from heuristic rules. Blueprint parameters
include, for example, the loss function, optimizer, learning-rate schedule, and data augmenta-
tion strategy. Inferred parameters are determined from the dataset fingerprint via rule-based
heuristics and include the intensity normalization scheme, resampling strategy for images
and annotations, target spacing, network topology, and batch size.
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Figure 2.14: Comparison of a typical U-Net workflow and the nnU-Net framework. Upper panel: con-ventional workflow involving manual selection of hyperparameters and preprocessing for a specificdataset, training the model, evaluating its performance, and iteratively adjusting the configuration ifthe results are unsatisfactory. Lower panel: nnU-Net, built on a vanilla U-Net architecture, automatesthis loop by deriving most configuration choices from the dataset fingerprint, while only a small set ofblueprint parameters needs to be specified by the user. Adapted from [68].

During training, nnU-Net employs deep supervision by attaching auxiliary loss functions
to upsampled predictions from all decoder levels except the final one, thereby encouraging
meaningful representations at multiple scales [71].





Chapter 3
Materials and Methods

This chapter describes the methodological and computational foundations of the proposed
analysis pipeline, illustrated in Figure 3.1. Section 3.1 introduces the software environment
used throughout this work. Section 3.2 details the composition annotation properties of
the combined coronary CCTA cohorts and summarizes key image- and label statistics that
inform subsequent preprocessing and network design. Section 3.3 formalizes the baseline
generic loss and the evaluated connectivity-preserving losses, providing their mathematical
definitions and implementation details. Section 3.4 describes the full training pipeline, includ-
ing the initial exploratory setup and the configuration used within the nnU-Net framework.
Section 3.5 defines the scoring metrics used to assess segmentation quality, describes the
main visualization strategy employed for qualitative inspection, and outlines the methodology
for the subsequent error analysis. Finally, Section 3.6 outlines the statistical analysis strategy
used to assess distributional assumptions and select appropriate tests.

3.1 Tools and Framework

Python [72] served as the primary programming language for this work. All computations
were executed on the Philips Innovative Technologies Hamburg cluster using OmniLearn[73].
For qualitative inspection of the CCTA volumes, coronary annotations, and segmentation
results, we used ITK-SNAP [74] and the in-house Mirador viewer.

3.1.1 PyTorch

PyTorch [75] is an open-source deep learning library that provides tensor operations, au-
tomatic differentiation and efficient GPU acceleration. It is widely used in medical image
analysis due to its flexibility, dynamic computation graph and extensive ecosystem for
training convolutional neural networks.

21
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Figure 3.1: Overview of the analysis pipeline used in this work. Theworkflow begins with data curation,during which the available coronary CCTA datasets are inspected, validated, and refined where neces-sary. The curated data are then used in two successive training stages. First, an exploratory pipeline isemployed to obtain an initial comparison between the generic loss and a connectivity-preserving lossand to tune the blueprint parameters. In the second stage, these parameters are fixed and an nnU-Net-based setup is trained to systematically compare the generic loss with several connectivity-preservingloss configurations. Segmentation performance is subsequently assessed using appropriate quantita-tive scoring metrics and qualitative inspection. In addition, a dedicated error analysis is conducted toidentify typical failure modes, and statistical tests are employed to evaluate the significance of perfor-mance differences between the loss configurations. Figure for nnU-Net framework adapted from [68].

3.1.2 OmniLearn

OmniLearn is a Philips-internal deep learning framework for medical image analysis, built
on top of PyTorch. Conceptually similar to MONAI [76], it provides modular components
for data preprocessing, model training, inference, postprocessing and evaluation, and thereby
covers the full AI cycle from raw data to deployable models. In addition to segmentation,
OmniLearn supports tasks such as registration, landmark detection and classification, and in-
cludes infrastructure for experiment management and transfer of trained models into business
and product environments. The overall framework structure is illustrated in Figure 3.2.

3.1.3 ITK-SNAP

ITK-SNAP is an interactive tool for displaying and annotating 3D medical images [74]. It
supports efficient slice-based navigation, volume rendering and surface generation, making
it suitable for inspecting anatomical structures and verifying segmentation quality.
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Figure 3.2: Schematic overview of the OmniLearn framework. It comprises modules for preprocessing,network training, postprocessing, evaluation and deployment, and is integrated with the internal GPU-cluster infrastructure for large-scale experiments.

3.1.4 Mirador

Mirador is an in-house visualization tool developed at Philips. It enables synchronized view-
ing of image volumes, ground-truth labels and segmentation predictions, which facilitates
qualitative assessment of coronary artery connectivity and segmentation consistency.

3.2 Dataset

This section describes the CCTA datasets used in this work and their preparation for the
segmentation pipeline. We first outline the composition of the combined cohorts and the
available voxelwise annotations and then summarise key image and label properties that
guide the choice of preprocessing settings and training parameters, before describing the
curation steps applied to correct and refine the annotations.

3.2.1 Overview

The dataset used in this thesis consists of 98 CCTAs drawn from two sources: the public
training dataset of the MICCAI 2020 ASOCA challenge and an in-house dataset comprising
acquisitions from two clinical sites. The CCTA acquisition protocol underlying both cohorts
is described in Section 2.2.3. Both datasets contain voxelwise multi-class annotations of
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Figure 3.3: Visual examples of the voxelwise annotations available in the dataset. Left: axial CCTAslices with overlaid multi-class labels, including the RCA, LAD and aorta (AO) in the first image, andthe right ventricle (RV), left ventricle (LV) and left ventricular myocardium (MLV) in the second image.Right: 3D volume renderings of the annotated coronary arteries, aorta and heart.

the coronary arteries and the aorta, as well as heart masks that delineate the cardiac region.
Representative examples of these annotations are shown in Figure 3.3.
The ASOCA cohort comprises 40 CCTA scans, including 20 scans from healthy subjects and
20 scans from patients with confirmed coronary artery disease [28]. All scans were acquired
on a GE LightSpeed 64-slice CT scanner under heart-rate control below 60 bpm. Coronary
arteries were manually annotated by three expert readers, and a majority-vote fusion of their
annotations was used to obtain the final reference segmentation.
The in-house cohort contributes 58 additional annotated CCTA scans acquired on Philips
Brilliance 64 and Philips iCT 256 CT scanners under heart-rate control below 65 bpm.
Twenty cases were reported as having no significant coronary artery stenosis, whereas the
remaining 38 cases exhibited varying degrees of coronary artery disease.

3.2.2 Properties

In all cases, the in-plane matrix size is fixed at 512×512 voxels in the X- and Y -directions,
consistent with conventional CT reconstruction, where 2D axial slices are acquired and
stacked along the Z-direction (Fig. 2.7). The number of slices in the Z-direction varies
substantially between patients, reflecting differences in the scanned anatomical range and
acquisition protocol. The number of slices in the Z-direction varies substantially between
patients, reflecting differences in the scanned anatomical range and acquisition protocol. The
in-plane voxel spacings in X and Y show only minor variation across cases, whereas the
spacing in Z exhibits markedly larger variability and is also coarser on average.
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Figure 3.4: Distributions of image size and voxel spacing across the dataset. Left panel: distributionsof image size in the X-, Y - and Z-directions. Right panel: distributions of voxel spacings in the X-, Y -and Z-direction.

X Y Z

Min 512 512 168Median 512 512 259Max 512 512 481
Table 3.1: Image size statistics (in voxels) across the dataset. Here, X and Y denote the in-plane imagewidth and height, and Z the number of slices.

X Y Z

Min 0.283 0.283 0.330Median 0.404 0.404 0.505Max 0.494 0.494 0.625
Table 3.2: Image resolution statistics (voxel spacing in mm) across the dataset. Here, X and Y denotethe in-plane spacing, and Z the slice thickness.

Figure 3.4 summarizes the corresponding distributions of image size and voxel spacing,
whereas Tables 3.1 and 3.2 report the main summary statistics.
In contrast-enhanced CCTA, coronary arteries exhibit substantially higher intensities than the
surrounding tissues due to intravascular iodinated contrast. Table 3.3 summarizes selected
percentiles for both the full image and for voxels belonging to the annotated coronary arteries,
illustrating the shift towards higher intensities in the contrast-enhanced vessels.
The overall image intensities span a wide range of HUs, reflecting the mixture of lung,
soft tissue and bone, with a median of around −191HU. For the coronary foreground, the
median intensity is about 306HU, and the central 99 % of foreground voxels range from
about −96HU and 928HU. In both cases, the maximum intensities lie far above the 99.5th
percentile, indicating a small number of extreme high-intensity voxels, for example due to
metallic implants.
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Percentile Overall Foreground

Min -1024 -10010.5th -1024 -96Median -191 30699.5th 591 928Max 3090 2817
Table 3.3: Summary of selected intensity percentiles (in HU) for the overall image and for foregroundvoxels belonging to the annotated coronary arteries.

Foreground Ratio

min 0.0296mean 0.0694max 0.1371
Table 3.4: Foreground ratio statistics (percentage of voxels belonging to the annotated coronary arter-ies) across the dataset.

In terms of label distribution, the coronary arteries occupy only a very small fraction of the
3D volumes. Table 3.4 summarizes the foreground ratio across the dataset.

3.2.3 Curation

The raw datasets contained several imperfections that required manual curation before use
in the segmentation pipeline. The main curation steps are summarized in Figure 3.5 and
comprise heart mask correction, connected-component analysis of the coronary label maps,
and the identification and correction of clearly too short vessel annotations.
Curation followed an iterative multi-step procedure. After each correction, cases were re-
inspected and earlier steps were revisited if necessary, as changes in one step could reveal
additional issues in another.
In one ASOCA case, the heart mask was undersegmented, missing parts of the right ventricle.
The mask was therefore corrected and extended so that it tightly enclosed the cardiac
chambers and proximal coronary arteries.
A connected-component analysis was performed on the coronary label maps to assess the
topological consistency of the annotations. As described in Section 2.1.2, the coronary
arteries form two main connected trees, originating from the left and right coronary ostia.
In some cases, the label maps contained small isolated components or branches that were
not connected to either of the major coronary trees. Such clearly implausible components
were removed or reconnected to the appropriate main branch based on the underlying CCTA
image. In contrast, two cases legitimately contained three connected components. Figure 3.6
illustrates such an example: in addition to the right and left coronary trees, a separate
conus branch originates from a distinct third coronary ositum at the the right coronary sinus,
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Figure 3.5: Overview of themain data curation steps. Top panel : correction of the heart mask to obtainan anatomically appropriate region of interest for cropping. Middle panel : connected-componentanalysis of the coronary label map to enforce anatomically plausible coronary trees. Bottom panel :correction of too short vessel annotations by extending distal segments.

representing a well-known anatomical variant rather than an annotation error. These cases
were therefore retained unchanged.
The length and extent of the coronary annotations were inspected. In several cases, the
vessels clearly continued distally in the CCTA images, while the corresponding labels
stopped prematurely. Such truncated annotations artificially shorten the coronary trees and
cause distally predicted vessel segments to be counted as apparent False Positives (FPs).
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Figure 3.6: Example of a case with three connected components. Left panel: 3D rendering of thecoronary label map showing the left coronary tree (green), the right coronary tree (red), and a separateconus branch (blue). Right panel: CCTA slices. The upper image shows the CCTA slice with the coronarylabels overlaid, the lower image shows the raw CCTA slice. The black circle indicates the region of theseparate conus ostium.

Where the distal vessel course was clearly identifiable, the annotations were manually
extended to follow the contrast-enhanced lumen in the in-house cases.

3.3 Loss Functions

This section introduces the loss functions evaluated in this work. We first present the generic
voxel-based losses that serve as our baseline, followed by four connectivity-preserving losses
specifically designed for thin tubular structures.

3.3.1 Generic Losses

Segmentation networks for medical images are most commonly trained with generic loss
functions that quantify voxel-wise agreement between the predicted segmentation and the
ground-truth label. In this work, we consider the two most frequently used loss functions:
the soft Dice and the soft CE.

3.3.1.1 Soft Dice

We define soft precision π and soft recall ρ as
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π(y,p) =
y⊤p
p⊤1

, ρ(y,p) =
y⊤p
y⊤1

, (3.1)
where y ∈ {0,1}n denotes the binary reference mask and p ∈ [0,1]n the corresponding
prediction probabilities.
Here, y⊤p represents the soft True Positives (TPs), i.e. the summed prediction probabilities
at voxels that belong to the reference foreground. The denominator of π , p⊤1, is the sum of
predicted foreground probabilities, so π measures which fraction of the predicted foreground
lies inside the reference mask (soft precision). Conversely, the denominator of ρ , y⊤1, is
the number of reference foreground voxels, so ρ measures which fraction of the reference
foreground is captured by the prediction (soft recall).
Using these two terms, the soft Dice loss can be written as

LsoftDice(y,p) = 1− 2
1

π(y,p) +
1

ρ(y,p)
, (3.2)

which corresponds to one minus the soft Dice coefficient expressed as the harmonic mean of
soft precision and soft recall.

3.3.1.2 Soft Cross-Entropy

For binary segmentation, the soft cross-entropy loss is defined via a per-voxel error vector

e(y,p) =−y⊙ log(p)− (1−y)⊙ log
(
1−p

)
, (3.3)

where y ∈ {0,1}n denotes the binary reference mask, p ∈ [0,1]n the corresponding prediction
probabilities, 1 the all-ones vector, and ⊙ denotes the Hadamard product. The soft cross-
entropy loss is then obtained as the mean over all voxels,

LsoftCE(y,p) =
1
n

1⊤e(y,p). (3.4)
Here, the first term in e(y,p) penalises foreground voxels with low predicted probabili-
ties, while the second term penalises background voxels with low predicted background
probabilities.

3.3.2 Connectivity-Preserving Losses

For thin branching structures such as coronary arteries, the most critical property of a good
segmentation is the preserved connectedness of the vessel tree rather than absolute voxel-wise
accuracy, see Figure 3.7. To explicitly encode connectivity during training, we consider
four skeleton-based loss functions in this work: the SR [21], clDice [20], clCE [32] and
cbDice [33].
For the SR (Section 3.3.2.4), we follow the original implementation and compute a binary
(hard) skeleton using the 3D skeletonization routine from scikit-image [77], which uses
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Figure 3.7: Illustration of how a generic loss (here Dice) and a connectivity-preserving loss (here SR)behave for different error types. The columns show four scenarios: perfect match, increased thickness,over-completeness and broken connectivity. In the thickness and over-completeness cases, the scorecorresponding to the connectivity-preserving loss remains 1, since the reference skeleton is fully recov-ered, whereas the score corresponding to the generic loss is reduced due to the additional volume. Inthe last column, a clear break in the vessel leads to almost no change in the score for the generic loss,because the overall volumetric overlap remains high, but the score for the connectivity-preserving lossdrops markedly as parts of the reference skeleton are not recovered by the prediction.

an octree-based data structure to examine a 3× 3× 3 neighbourhood of each voxel. The
algorithm iteratively sweeps over the image and removes foreground voxels until the image
stops changing. Each iteration consists of two steps: first, a list of candidate voxels for
removal is assembled; second, voxels from this list are re-checked sequentially to better
preserve the connectivity of the structure. Subsequently, we dilate the resulting skeleton
with a diamond-shaped structuring element of radius 2 to obtain a tubular representation. A
schematic overview of the SR computation is shown in Figure 3.8.
In contrast, clDice (Section 3.3.2.1, clCE (Section 3.3.2.2) and cbDice (Section 3.3.2.3)
require a differentiable (soft) skeleton representation in order to be used as loss functions in
gradient-based optimisation. For these losses, we employ the differentiable skeletonization
method proposed in [34], which approximates the medial axis by a sequence of matrix
additions and multiplications, convolutional operations, basic non-linear functions and
sampling from a uniform probability distribution, all of which are fully compatible with
backpropagation. A schematic overview of the computation for clDice and clCE is shown in
Figure 3.9.
For cbDice, additional distance information is obtained using the GPU-based Euclidean
distance transform routine from MONAI. Starting from the binary reference mask and the
prediction, each foreground voxel is assigned its distance to the nearest boundary (back-
ground). After skeletonization, the distance values at skeleton voxels are interpreted as local
vessel radius, yielding a radius-weighted skeleton. From these radius maps, normalized
weight maps are derived that assign high weights to voxels close to the skeleton and lower
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Figure 3.8: Schematic overview of the SR computation. The prediction mask p produced by the seg-mentation network is compared to the precomputed hard skeleton ys of the reference mask y to obtainthe SR loss term.

weights to voxels near the boundary. A schematic overview of the computation for cbDice is
shown in Figure 3.10.

3.3.2.1 clDice

The clDice loss [20] was introduced as a loss function that leverages differentiable soft-
skeleton representations, thereby increasing sensitivity to connectivity breaks compared to
purely volumetric overlap losses for thin, tubular structures.
For its computation, we reuse the notion of soft precision and soft recall, but now defined on
combinations of masks and soft skeletons. Let y ∈ {0,1}n denote the binary reference mask,
p ∈ [0,1]n the prediction probabilities, and yσ ,pσ ∈ [0,1]n the corresponding soft skeletons.
We define

π(y,pσ ) =
y⊤pσ

p⊤
σ 1

, ρ(yσ ,p) =
y⊤σ p
y⊤σ 1

. (3.5)
Here, y⊤pσ represents the soft TPs of the predicted skeleton inside the reference foreground,
i.e. the summed skeleton probabilities at voxels that belong to the reference mask. The
denominator of π , p⊤

σ 1, is the sum of predicted skeleton probabilities, so π(y,pσ ) measures
which fraction of the predicted skeleton lies inside the reference foreground (soft skeleton
precision). Conversely, y⊤σ p quantifies how much of the reference skeleton is covered by
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Figure 3.9: Schematic overview of the computation for clDice and clCE. The reference mask y and theprediction mask p are transformed into soft skeletons yσ and pσ , respectively. These soft skeletonsand masks are used to obtain the clDice loss term

the prediction, and y⊤σ 1 is the sum of reference skeleton probabilities, so ρ(yσ ,p) measures
which fraction of the reference skeleton is recovered by the prediction (soft skeleton recall).
Using these two terms, the clDice loss can be written as

LclDice(y,p,yσ ,pσ ) = 1− 2
1

π(y,pσ )
+ 1

ρ(yσ ,p)
, (3.6)

which corresponds to one minus the clDice coefficient expressed as the harmonic mean of
skeleton-based soft precision and soft recall.

3.3.2.2 Centerline Cross-Entropy

The clCE loss [32] was proposed to capitalize on the robustness of soft CE and the connec-
tivity focus of the clDice loss, targeting improved overlap while maintaining faithful vessel
network structure.
For its computation in binary segmentation, we first define the per-voxel CE error vector

e(y,p) =−y⊙ log(p)− (1−y)⊙ log
(
1−p

)
, (3.7)

where y ∈ {0,1}n denotes the binary reference mask, p ∈ [0,1]n the corresponding prediction
probabilities, 1 the all-ones vector, and ⊙ denotes the Hadamard product.
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Figure 3.10: Schematic overview of the cbDice computation. For both reference and prediction, aEuclidean distance map (yd, pd) and a radius-weighted skeleton (yr, pr) are derived from the binarymasks. cbDicecombines two topology-aware overlap terms: the predicted radius-weighted skeleton
pr is evaluated against the distance-weighted reference mask yd, and the reference radius-weightedskeleton yr is evaluated against the distance-weighted prediction pd. The harmonic mean of these twoterms yields the cbDice loss.

For clCE, this voxel-wise error is weighted by the soft skeletons of reference and prediction.
Let yσ ,pσ ∈ [0,1]n denote the differentiable soft skeletons of y and p, respectively. The clCE
loss is then defined as

LclCE(y,p,yσ ,pσ ) =
1
n
(yσ +pσ )

⊤e(y,p). (3.8)
Here, (yσ +pσ ) acts as an importance-weighting map: voxels that lie close to the reference
or predicted centerline receive higher weights, so their cross-entropy contribution dominates
the loss, whereas voxels far from any skeleton have little influence.

3.3.2.3 Centerline Boundary Dice

The cbDice loss [33] extends the clDice formulation by incorporating boundary-aware and
radius-related information, aiming to better capture geometric details.
For its computation, both the reference mask and the prediction are enriched with geometric
information in the form of distance maps and radius-weighted skeletons. Let yd ,pd ∈
[0,dmax]

n denote the Euclidean distance maps of the reference and prediction, assigning to
each foreground voxel its distance to the nearest boundary. Likewise, let yr,pr ∈ [0,rmax]

n
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denote the corresponding radius-weighted skeletons, constructed by propagating the distance
values onto the skeleton voxels. Using these representations, we define skeleton-based soft
precision and soft recall as

πr(yd ,pr) =
y⊤d pr

p⊤
r 1

, ρr(yr,pd) =
y⊤r pd

y⊤r 1
. (3.9)

Here, y⊤d pr measures how much of the predicted radius-weighted skeleton lies inside the
distance-weighted reference mask (soft radius-skeleton precision), while y⊤r pd measures how
much of the reference radius skeleton is recovered by the prediction (soft radius-skeleton
recall).
Using these two terms, the cbDice loss can be written as

LcbDice(yd ,pd ,yr,pr) = 1− 2
1

πr(yd ,pr)
+ 1

ρr(yr,pd)

. (3.10)
which corresponds to one minus the cbDice coefficient expressed as the harmonic mean of
skeleton-based soft precision and soft recall.

3.3.2.4 Skeleton Recall

The SR loss [21] was designed to preserve connectivity in thin tubular structures by maximiz-
ing recall on the reference skeleton. Since the skeleton is extracted once from the reference
mask and treated as fixed during training, SR adds only a minor computational overhead
compared with all other connectivity-preserving losses discussed in this section, which
require differentiable skeletonization.
For its computation, let ys ∈ {0,1}n denote the binary skeleton extracted from the reference
mask, and let p ∈ [0,1]n be the predicted probability map. The SR loss is defined as

LSR = 1− y⊤s p
y⊤s 1

. (3.11)
The numerator y⊤s p corresponds to the soft TPs on the reference skeleton, i.e. the summed
prediction probabilities at skeleton voxels. The denominator y⊤s 1 is the total number of
skeleton voxels, so the fraction represents the proportion of the reference skeleton that is
recovered by the prediction.

3.4 Training Pipeline

This section describes the training pipelines used in this work. The methodology is centered
on a nnU-Net-based evaluation pipeline, which is used to obtain the primary results reported
in this study. In addition, a lightweight exploratory pipeline was designed to enable rapid
iteration and low-overhead preliminary experiments, thereby validating key design choices
before establishing the nnU-Net-based evaluation setup.
The two pipelines share the same conceptual structure—preprocessing, network training,
inference, and postprocessing—but differ in implementation details and computational cost.
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Figure 3.11: Preprocessing workflow of the exploratory pipeline. The figure shows two parallel pro-cessing streams for the CCTA images (top) and the coronary label masks (bottom). Both streams beginwith a cropping step, where the volumes are restricted to a heart-centered Region of Interest (ROI).The cropped volumes are then resampled to a common target spacing to enable the network to learnspatial semantics consistently across cases. For the images, intensities are subsequently clipped to apredefined HU window and normalized, while the multi-class coronary annotations are converted intoa binary mask representing foreground versus background.

3.4.1 Preprocessing

Preprocessing comprised of three main steps applied to the CCTA images and their corre-
sponding label mask. The overall preprocessing workflow is summarized in Figure 3.11.

3.4.1.1 Cropping

nnU-Net performs cropping to the region of non-zero values. For our dataset, this operation
has no effect, because the background in the CCTA images corresponds to air rather than
water and therefore does not have a HU value of zero (Table 2.1).
To reduce computational cost in selected experiments and to enable faster turnaround during
ablations, we therefore introduced an explicit, anatomically motivated cropping step based
on the available heart mask.
For each case, the CCTA image together with its label mask was cropped by computing
a bounding box around the union of the left ventricular myocardium and right ventricle
labels derived from the heart mask. This bounding box was then isotropically expanded by
40 voxels in all directions to ensure that the full course of the coronary artery labels was
contained within the cropped volume. To provide sufficient spatial context at the crop borders
and reduce boundary artifacts during CNN training, an additional margin of 20 voxels was
added prior to extracting the final crop. The overall procedure is illustrated in Figure 3.12.
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Figure 3.12: Visual illustration of the cropping workflow for a representative case. The left panelof the figure consists of three columns showing, from left to right, the original CCTA image vol-ume (512×512×204), the Region of Interest (ROI) mask obtained, and the resulting cropped volume(342×359×204), each displayed in axial, coronal, and sagittal views. The right panel of the figuredemonstrates that all coronary artery labels remain fully included in the cropped volume, which isquantitatively confirmed by a Dice score of 1 between the original and cropped label masks. Overall,this procedure reduces the image size by approximately 50%.

3.4.1.2 Resampling

nnU-Net determines a dataset-level target spacing by taking the per-axis median spacing
across the training set and resamples all images accordingly. For image data, third-order
spline interpolation is used, while label masks are resampled using nearest-neighbour inter-
polation.
In our dataset, in-plane spacing is already tightly clustered around 0.4 mm, whereas variability
and coarser resolution primarily occur along the through-plane (Z) direction (Section 3.2.2).
We therefore resample only along the Z-axis to 0.4 mm to standardize through-plane reso-
lution while preserving the native in-plane sampling. For the CCTA images, we use linear
interpolation, whereas the label masks are resampled using nearest-neighbour interpolation
in the exploratory pipeline. Compared to the third-order spline interpolation used in nnU-Net,
linear interpolation is computationally less expensive.

3.4.1.3 Normalization

nnU-Net collects foreground intensities across the training set and clips them to the [0.5th,
99.5th] percentiles of this distribution. In our dataset, this corresponds to a clipping range of
[−96,928] HU. Subsequently, the clipped intensities are normalized using a z-score based
on the mean and standard deviation of the same foreground distribution.
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Figure 3.13: Effect of different upper clipping limits on the appearance of a contrast-enhanced coronarysegment, highlighted with a black ellipse, in a representative CCTA case. From left to right, the sameslice is shown with upper bounds of 500HU, 1070HU, and 1311HU (lower bound fixed at -330HU).With 500HU, the contrast-enhanced lumen is heavily saturated and appears almost uniformly white.Extending the window to 1070HU reduces saturation but still leaves parts of the lumen and calcifica-tions fully clipped. Using the upper bound of 1311HU preserves most of the intensity variation withinthe coronary lumen, although small regions of extremely high attenuation may still reach the upperlimit and appear saturated.

For intensity normalization, we aimed in our exploratory pipeline to preserve the dynamic
range of high-attenuation coronary voxels while suppressing clearly irrelevant extremes. A
commonly used cardiac CT window is [−330,500] HU. However, as shown in Table 3.3, the
99.5th percentile of the coronary foreground intensities is substantially higher than 500 HU,
so this range would clip a considerable fraction of coronary voxels.
As a clinical reference, we therefore considered a cardiac CT viewing preset in the Philips
Advanced Visualization Workstation, which uses an upper window limit of 1070 HU. Even
with this extended range, any voxel with an attenuation above 1070 HU is clipped to that
value, causing extremely dense structures—such as heavily opacified coronary segments or
calcifications—to appear uniformly white. As a result, relevant intensity differences in the
high-attenuation range are lost.
We therefore adopted a data-driven approach: for each case, we computed the 99.5th intensity
percentile within the coronary foreground and took the maximum across all cases as the
global upper clipping value, which resulted in an upper bound of 1311 HU. Figure 3.13
illustrates, for a representative case, the effect of the three different upper limits.
After clipping to [−330,1311] HU, intensities were linearly mapped to the range [−3,3].

3.4.1.4 Binarization

All coronary artery vessel labels were merged into a single binary foreground class, and all
remaining voxels were set to background. This also included the aorta, which was treated as
background because it is not part of the coronary artery tree.
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3.4.2 Network Training

All models are trained from scratch for 1000 epochs using 3D patches and evaluated using
five-fold cross-validation on the training set. We train all networks with a generic baseline
loss given by the sum of Dice loss and CE loss:

Lgeneric = LDice +LCE. (3.12)
For the connectivity-preserving configurations, an additional connectivity term Lℓ is added
to this baseline loss with a fixed weighting factor of 1,

Lconnectivity,ℓ = Lgeneric +Lℓ, ℓ ∈ {SR,clDice,cbDice,clCE}, (3.13)
where Lℓ denotes one of the connectivity-preserving losses described in Section 3.3.2.
In the exploratory pipeline, we compared the Lgeneric to the SR configuration Lconnectivity,SR,
whereas the extended set of connectivity-preserving losses Lconnectivity,SR, Lconnectivity,clDice,
Lconnectivity,cbDice and Lconnectivity,clCE was evaluated within the nnU-Net framework.
Given the small volumetric extent of the coronary arteries relative to the full CCTA volume,
patch sampling is a crucial design choice, as it determines how often coronary voxels are
seen during training and how much anatomical context is available within each patch. In
the exploratory pipeline, patch centres are sampled based on precomputed bounding boxes
around the SCCT segments (Figure 2.2), and an additional bounding box is defined for the
entire volume. During training, a bounding box is first selected according to predefined
sampling probabilities: 30% of patches are drawn from the bounding box of the entire
volume, and the remaining 70% are distributed uniformly across all coronary segment boxes.
Given the selected bounding box, the patch centre is then sampled uniformly within this box,
and a fixed-size 3D patch of 72×72×72 voxels is extracted around that centre. With this
strategy, 78% of patches contained at least one coronary foreground voxel, while the average
foreground proportion within a patch was 0.85%.
nnU-Net applies a built-in foreground oversampling mechanism. Given a batch size B and an
oversampling fraction p, the number of foreground-enforced samples per batch is given by

#FG = B− round
(
B(1− p)

)
. (3.14)

For our configuration with a patch size of 160×160×96 voxels, a batch size of B = 2, and
an oversampling fraction of p = 0.33, this setting resulted in 100% of patches containing at
least one coronary foreground voxel, while the mean foreground voxel fraction per patch
was 0.15%.
Table 3.5 summaries the key fixed training hyperparameters used for the final exploratory
pipeline and the nnU-Net-based setup. Each augmentation is applied with a specified
probability. Additional experiments with alternative architecture templates, optimizers and
learning-rate schedules were conducted as part of preliminary ablation studies and are
reported in Section 4.2.3.
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Table 3.5: Comparison of key fixed training hyperparameters between the exploratory pipeline and thennU-Net-based setup.
Hyperparameters Exploratory pipeline nnU-Net

Epochs 1000 1000Epoch size 200 250Batch size 8 2Patch size 72×72×72 160×160×96Normalization operation Batch normalization Instance normalizationDeep supervision No YesData augmentation Scaling, rotation, Gaussiannoise, Gaussian blur, gamma Scaling, rotation, Gaussiannoise, Gaussian blur, gamma,contrast, low-resolutionsimulation, mirroring

3.4.3 Inference

During inference, prediction was performed patch-wise, consistent with the patch-based
training strategy. Due to the limited receptive field, prediction quality typically decreases
towards patch borders. To mitigate stitching artifacts, neighboring patches are overlapped.
In this setup, the network is applied in a sliding-window fashion and processes windows of
the same size as the patch size used during training. The impact of different overlap sizes on
segmentation performance is quantitatively assessed in Section 4.1.
Predictions are merged by averaging the softmax outputs of the network across all patches
covering a voxel. The aggregated probability for class c at voxel x is given by

pfinal(c,x) =
1
K

K

∑
k=1

pk(c,x), (3.15)

where pk(c,x) denotes the softmax probability of class c from patch k, and K is the number
of overlapping patches at voxel x. The final segmentation mask is obtained by a voxel-wise
argmax over pfinal(c,x).
nnU-Net additionally employs a Gaussian weighting scheme within the sliding-window
inference that assigns higher weights to voxels near the patch center and lower weights near
patch borders. Furthermore, it uses test-time augmentation by mirroring patches along all
spatial axes.

3.4.4 Postprocessing

A connected component analysis (26-neighborhood connectivity) of the predicted foreground
labels was performed to investigate different postprocessing strategies. In one variant, all
connected components with fewer than 100 voxels are removed, treating these small clusters
as noise artifacts. In an alternative variant, only the largest connected components are
retained: typically the two largest components, corresponding to the left and right coronary
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trees, while in the two cases with three coronary trees in the ground truth, all three largest
components are preserved to match the underlying anatomy.
In contrast to the exploratory pipeline, nnU-Net is trained without spatial cropping during
preprocessing. Empirically, we observed false-positive predictions near the borders of
the original field-of-view when operating on full volumes. To reduce these artifacts, we
subsequently apply the previously described heart-mask-based cropping (Section 3.4.1)
as a postprocessing step for the nnU-Net segmentations, but without the additional 20-
voxel margin. All cropping and postprocessing variants are quantitatively compared in
Section 4.4.3.

3.5 Evaluation

To compare the performance of the different loss configurations within the proposed pipeline,
we evaluate the models using quantitative scoring metrics and dedicated visualization tech-
niques. The quality criteria comprise standard voxel-wise vessel mask accuracy as well as
topology- and connectivity-aware measures that target vessel accuracy and centerline com-
pleteness. In addition, we report the runtime characteristics of each loss configuration. For
qualitative assessment, we employ stretched Multiplanar Reformat (sMPR), which provides
a standardized view along the entire vessel course and facilitates the interpretation of the
quantitative metrics compared to conventional visualization views. Finally, a dedicated error
analysis of FP and False Negative (FN) regions is conducted to characterize recurring failure
patterns across the evaluated models.

3.5.1 Vessel Mask Accuracy

Vessel mask accuracy quantifies the voxel-wise agreement between the predicted coronary
artery mask and the reference annotation.
As a volumetric overlap measure, we employ the Dice similarity coefficient. Let y ∈ {0,1}n

denote the binary reference mask and p̂ ∈ {0,1}n the segmentation derived from the network
output. Using the precision and recall notation introduced in Section 3.3.1.1, but evaluated
on the binary masks (y, p̂), we obtain

π(y, p̂) =
y⊤p̂
p̂⊤1

, ρ(y, p̂) =
y⊤p̂
y⊤1

. (3.16)

Here, y⊤p̂ denotes the number of true-positive voxels, p̂⊤1 the number of predicted fore-
ground voxels, and y⊤1 the number of reference foreground voxels.
The Dice similarity coefficient can then be written as the harmonic mean of precision and
recall,

Dice(y, p̂) =
2

1
π(y,p̂) +

1
ρ(y,p̂)

. (3.17)
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To complement vessel mask accuracy, we additionally quantify spatial discrepancies using
the Hausdorff Distance (HD) between surfaces derived from the binary masks y and p̂. The
directed HD from the reference to the segmentation and vice versa is defined as

d(y, p̂) = max
x∈y

min
z∈p̂

∥x− z∥2, d(p̂,y) = max
z∈p̂

min
x∈y

∥x− z∥2. (3.18)
The symmetric HD is then given by

HDsym = max
(
d(y, p̂),d(p̂,y)

)
. (3.19)

In practice, several variants of the HD are commonly used in medical image segmentation.
Among the most widely used are the 95th percentile HD (HD95), the average surface distance
(HDavg), and one-sided directed variants. HD95 is defined as the 95th percentile of the
bidirectional surface distance distribution. The average surface distance HDavg computes
the mean boundary deviation between reference and prediction. A one-sided directed HD
considers only the distances from the reference surface to the predicted surface (HDGT).
The use of these variants for evaluating coronary artery segmentations in CCTA is discussed
in Section 4.2.2.

3.5.2 Vessel accuracy

Vessel accuracy assesses how well the predicted segmentation reproduces the course and
branching pattern of the coronary artery tree, while tolerating small boundary deviations.
To quantify vessel topology accuracy, we employ the clDice metric. Let y ∈ {0,1}n denote
the binary reference mask and p̂ ∈ {0,1}n the segmentation derived from the network output.
Conceptually, we reuse the same precision and recall structure as for the clDice loss in
Section 3.3.2.1, but for evaluation purposes differentiability is no longer required, so we
operate on binary masks and hard skeletons. The corresponding hard skeletons, ys and p̂s,
are computed using the binary skeletonisation procedure described in Section 3.3.2. The
associated precision and recall are defined as

π(y, p̂s) =
p̂⊤

s y
p̂⊤

s 1
, ρ(ys, p̂) =

y⊤s p̂
y⊤s 1

. (3.20)
Here, π(y, p̂s) measures which fraction of the predicted skeleton lies inside the reference
foreground (skeleton precision), whereas ρ(ys, p̂) measures which fraction of the reference
skeleton is recovered by the prediction (skeleton recall). The clDice score is then given by
their harmonic mean,

clDice(y, p̂) =
2

1
π(y,p̂s)

+ 1
ρ(ys,p̂)

. (3.21)
To tolerate small boundary deviations of the vessel masks, we report an ε-relaxed Dice score,
denoted by εDice. Let y ∈ {0,1}n denote the binary reference mask and p̂ ∈ {0,1}n the
segmentation derived from the network output. We denote the sets of foreground voxels of
reference and prediction by

R = {x | y(x) = 1}, P = {x | p̂(x) = 1}. (3.22)
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Schematic Overview

εDICE

Figure 3.14: Schematic illustration of the ε-relaxed TP, FP and FN voxels for ε = 3mm. Predictedvoxels with at least one reference voxel within 3mm are counted as ε-TP, predicted voxels withoutsuch a neighbour become ε-FP, and reference voxels without any predicted voxel within 3mm arecounted as ε-FN.

We choose ε = 3mm, which roughly corresponds to the typical diameter of the major
coronary arteries. For this fixed distance threshold, we define the ε-relaxed sets of TP, FP
and FN as

TPε = { p ∈ P | ∃r ∈ R : d(p,r)≤ ε },
FPε = { p ∈ P | ∀r ∈ R : d(p,r)> ε },
FNε = {r ∈ R | ∀p ∈ P : d(r, p)> ε },

(3.23)

where d(·, ·) denotes the Euclidean distance between voxel centers. For improved readability,
we use set notation for the ε-relaxed definitions. This is equivalent to representing the
same voxel subsets by binary indicator vectors, as used throughout this work. For instance,
intersections correspond to the Hadamard product of binary masks. A schematic overview of
the ε-relaxed confusion sets is shown in Figure 3.14.
The corresponding ε-relaxed precision and recall are given by

πε(TPε ,FPε) =
|TPε |

|TPε |+ |FPε |
, ρε(TPε ,FNε) =

|TPε |
|TPε |+ |FNε |

. (3.24)
The εDice score is then defined by their harmonic mean,

εDice =
2

1
πε(TPε ,FPε)

+
1

ρε(TPε ,FNε)

. (3.25)
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3.5.3 Centerline Completeness

Centerline completeness quantifies to which extent the predicted segmentation recovers the
full extent and connectivity of the coronary artery centerline. It directly measures missing
branches, disconnections and gaps along the vascular tree and therefore provides the most
informative assessment of quality for coronary artery tree segmentation.
To quantify how much of the reference centerline is covered by the predicted vessel mask,
we employ the centerline True Positive Rate (clTPR). The clTPR corresponds to the skeleton
recall term of the clDice metric formulation (Section 3.5.2). Let ys denote the binary
reference skeleton and p̂ the binary segmentation derived from the network output. The
clTPR is defined as

clTPR(ys, p̂) =
y⊤s p̂
y⊤s 1

, (3.26)
which measures the fraction of reference centerline voxels that are recovered by the predicted
segmentation.
To specifically assess whether the correctly recovered part of the coronary tree contains
disconnections, we compute the TP β0 Error. Let y ∈ {0,1}n denote the reference mask and
p̂ ∈ {0,1}n the predicted vessel mask, and define the TP mask as the voxel-wise intersection

TP = y⊙ p̂ . (3.27)
Let β0(·) denote the number of connected components of a binary mask under 26-neighborhood
connectivity in 3D. The TP β0 Error is then defined as

TP-β0E =
∣∣β0(TP)−β0(y)

∣∣ . (3.28)
To distinguish whether additional components correspond to small gaps that could be bridged
by simple postprocessing or to major structural breaks, we compute the Gap Count (GC).
Let {Ci} denote the set of connected components of the true-positive vessel tree, and let A

be the set of component pairs that are adjacent along the underlying coronary anatomy. For
two components Ci and C j we define their minimal distance as

d(Ci,C j) = min
x∈Ci,y∈C j

∥x− y∥2 . (3.29)
To account for anisotropic voxel spacing, we use a spacing-aware distance threshold

δ =
√

s2
x + s2

y + s2
z , (3.30)

where (sx,sy,sz) denote the voxel spacing in mm and δ corresponds to the voxel diagonal
length. The GC is then defined as

GC = ∑
(i, j)∈A

[[d(Ci,C j)> 3δ ]], (3.31)

where [[·]] denotes the Iverson bracket. Only breaks with an inter-component distance larger
than 3δ are counted as gaps.
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Schematic Overview

TPβ0E

3

GC

Example A Example B

C1

C2

C3

C1

Figure 3.15: Schematic illustration of the TPβ0 error and the GC. The upper row shows two exampleswhere the true-positive vessel mask produces either no additional connected components (Example A)or two additional components (Example B), resulting in TPβ0E = 0 and 2, respectively. The lower rowillustrates the computation of the GC, where distances between anatomically adjacent connected com-ponents are evaluated to identify gaps between them.

A schematic illustration of the TPβ0 error and the GC is provided in Figure 3.15.
Beyond the proposed centerline-based metrics, connectivity is often assessed in the literature
using global topological descriptors such as Betti numbers [30]. The zeroth Betti number β0

counts connected components, whereas the first Betti number β1 counts loops (“holes”) in a
binary mask. Both can therefore be interpreted as global indicators of topological correctness
and connectivity: deviations in β0 reflect fragmented or spuriously merged components,
while deviations in β1 indicate the appearance or disappearance of loops.
Beyond the proposed centerline-based metrics, connectivity is often assessed in the literature
using global topological descriptors such as Betti numbers. The zeroth Betti number β0

counts connected components, whereas the first Betti number β1 counts loops (“holes”) in a
binary mask. More recently, the Discrepancy between Intersection and Union (DIU) metric
has been introduced in [78], which compares the topology of the union and intersection
of prediction and reference and counts surplus as well as fragmented components that do
not correspond one-to-one between the two shapes. In this sense, DIU aims to capture
topological discrepancies in a more refined manner than simple Betti number errors. These
additional topology-aware measures and their suitability for assessing coronary artery tree
connectivity are discussed in Section 4.2.2.
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3.5.4 Runtime

To assess the computational efficiency of the different loss configurations, we analyse their
runtime behaviour.
For each model, we measure the total training time for 1000 epochs and the effective time-to-
convergence, defined retrospectively as the time at which the validation Dice score no longer
improves within the subsequent 100 epochs.

3.5.5 Stretched Multiplanar Reformats

For qualitative assessment of vessel continuity and overall segmentation quality, we employ
sMPRs, which provide a straightened view of the coronary arteries and allow the reference
and predicted vessel masks to be inspected jointly in a common layout.
The coronary artery tree is represented by a global centerline together with a segmentation
of this centerline into individual anatomical vessels; for each vessel, a specific subsegment
of the global centerline is considered, and along this subsegment local cross-sectional planes
orthogonal to the centerline direction are defined. The underlying CCTA data are resampled
on a regular grid in each plane, and the resulting cross-sections are stacked along the
centerline parameter, yielding a 2D stretched representation in which one axis corresponds
to vessel length and the other axis represents the cross-sectional extent of the lumen and
wall. The same transformation is applied to the reference and predicted vessel masks, which
enables a direct, vessel-wise comparison in a consistent layout. Compared to conventional
3D renderings or axial slices, this representation allows inspection of the entire vessel course
from the proximal to the distal segments in a single, continuous view.

3.5.6 Error Analysis

To obtain a more fine-grained understanding of the failure modes, we perform a structured
error analysis based on a categorization of FP and FN voxels.
For the FP analysis, we use the ε-relaxed confusion sets introduced in Section 3.5.2, thereby
explicitly tolerating small boundary deviations between reference and prediction. In particu-
lar, we decompose the ε-false-positive set into three disjoint subclasses,

FPε = FPprox ∪̇FPdist ∪̇FPfloat. (3.32)
Let C = {ci}N

i=1 denote the centerline of the coronary tree together with its segmentation into
individual vessels via the corresponding index ranges. Each voxel p ∈ FPε is mapped to the
nearest centerline position

ν(p) := argmin
c∈C

d(p,c), (3.33)
and the centerline points associated with root start locations (i.e. proximal origins of the
major coronary vessels) and vessel termination points define the sets of proximal and distal
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endpoints, Eprox ⊂C and Edist ⊂C, respectively. Using these sets, we obtain the following
definitions:

FPprox :=
{

p ∈ FPε

∣∣ ν(p) ∈ Eprox
}
,

FPdist :=
{

p ∈ FPε

∣∣ ν(p) ∈ Edist
}
,

FPfloat := FPε \
(
FPprox ∪FPdist

)
.

(3.34)

Here, FPprox captures proximal oversegmentation near the coronary ostia, FPdist corresponds
to distal overextension beyond the annotated vessel ends, and FPfloat comprises the remaining
FPε voxels that appear as free-floating structures in the volume.
For the FN analysis, we deliberately set the distance threshold to ε = 0, which means that
we operate on the original confusion sets. The rationale is that even small spatial tolerances
would already bridge narrow gaps in the vessel mask and thereby hide false-negative voxels
that cause connectivity breaks. In particular, we decompose the classical FN set into three
disjoint subclasses,

FN = FNdisc ∪̇FNthin ∪̇FNshort. (3.35)
Let κ26(·) denote the number of connected components of a binary mask under 26-neighborhood
connectivity in 3D, and let LFN(x) be the label of the connected component of FN that con-
tains the voxel x. We denote the corresponding component mask by

ΩLFN(x) := {y | LFN(y) = LFN(x)}. (3.36)
A false-negative voxel is classified as disconnectivity-inducing if its component reduces the
number of connected components in the true-positive mask when hypothetically added back:

FNdisc =
{

x ∈ FN
∣∣ κ26

(
TP∪ΩLFN(x)

)
< κ26(TP)

}
. (3.37)

The remaining false negatives are collected in

FNother := FN\FNdisc. (3.38)
To further distinguish locally thin from prematurely shortened vessels in the prediction
relative to the reference, we use the skeleton of the reference. Let Ys := supp(ys) = {x ∈ Ω |
ys(x) = 1} denote the set of reference skeleton voxels. Using the TP indicator, we define

Ts := {x ∈ Ys | TP(x) = 1}, Fs := Ys \Ts. (3.39)
Each voxel x ∈ FNother is projected onto the closest skeleton point via

ν(x) := argmin
s∈ys

d(x,s), (3.40)
and we define

FNthin = {x ∈ FNother | ν(x) ∈ Ts },
FNshort = {x ∈ FNother | ν(x) ∈ Fs }.

(3.41)
Intuitively, FNdisc captures gaps along reference vessels where missing voxels interrupt
connected segments, FNthin corresponds to regions where the prediction follows the reference
vessel course but with a thinner lumen than the annotation, and FNshort corresponds to distal
reference segments that are not reached by the prediction and therefore appear as prematurely
truncated vessels.
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3.6 Statistical Analysis

In this work, statistical analysis is used to compare measurements obtained from two models
with different loss configurations evaluated on the same test cases. The resulting observations
are therefore paired, and all inferential comparisons are performed on the paired per-case
differences.
In paired designs, the most common parametric test is the paired t-test, which tests whether
the mean of the paired differences equals zero and assumes that these differences are
approximately normally distributed [79]. If this assumption is not reasonable, a common
non-parametric alternative is the Wilcoxon signed-rank test, which tests whether the median
paired difference equals zero and is more robust to non-normality and outliers[80].
To determine whether a parametric or non-parametric procedure is appropriate, all mea-
surements obtained from the models with different loss configurations were analyzed. For
each metric, both visual and formal normality assessments were performed. Specifically,
Quantil-Quantil (Q-Q) plots were inspected and the Shapiro–Wilk test was applied to assess
univariate normality. The Q-Q plots compare the empirical distribution of each measurement
with a theoretical normal distribution. Data points lying approximately on the reference line
indicate normality, whereas systematic deviations from this line suggest non-normality. In
line with standard practice, a p-value greater than 0.05 in the Shapiro–Wilk test is interpreted
as indicating that the data are consistent with a normal distribution, whereas a p-value smaller
than 0.05 indicates a significant deviation from normality [81].
Beyond the choice of parametric versus non-parametric tests, hypotheses can be formulated
either as superiority or non-inferiority. In a superiority test, the null hypothesis states that
there is no improvement, and we seek evidence that one loss configuration performs better
than the other. In a non-inferiority test, the goal is to show that a loss configuration is not
worse than a reference loss configuration by more than a predefined margin ∆ > 0. The
margin ∆ must be chosen a priori based on practical relevance.
We assume that all measurements in our dataset represent independent observations. There-
fore, no tests accounting for data structure were required.





Chapter 4
Results and Interpretation

This chapter presents the experimental results and their interpretation in a stepwise progres-
sion toward testing the central research hypothesis. Before conducting the final statistical
comparison, we first perform a series of preparatory experiments to establish a robust eval-
uation pipeline and to reduce confounding influences on the loss comparison. Section 4.1
analyzes the impact of sliding-window patch overlap on connectivity and inference time
and motivates the overlap setting used thereafter. Section 4.2 reports findings from the
exploratory pipeline, including an assessment of metric distributions and suitability, and de-
rives stable blueprint choices for the nnU-Net framework. Building on this controlled setup,
Section 4.3 provides a systematic comparison of connectivity-preserving loss formulations
under a unified training configuration. Section 4.4 investigates the sensitivity of the selected
loss to design choices such as input encoding, recall targets, and postprocessing. Finally,
Section 4.5 conducts the statistical comparison between Lgeneric and Lconnectivity,SR to test
the central research hypothesis.

4.1 Patch Overlap Study

Inference follows the patch-wise sliding-window scheme described in Section 3.4.3. In this
setting, the volume is reassembled from locally predicted windows, which can introduce
stitching artifacts at patch borders and, in turn, lead to connectivity breaks in the coronary
artery tree after discretization. To study how strongly the overlap parameter controls these
patch-induced effects, we evaluated three overlap configurations (0%, 25%, and 50%) and
analyzed their impact on the preservation of coronary artery tree connectivity.
To quantify connectivity preservation under different overlap settings, we measured the
TPβ0 error. Since larger overlaps reduce the effective stride between patches, they increase
the number of windows processed during sliding-window inference and thus the overall
inference time. We therefore additionally compared the per-volume inference times to assess
the computational impact of each configuration. Figure 4.1 shows the comparison between
the patch-overlap settings with respect to the TPβ0 error and the per-volume inference time.

49



50 Chapter 4. Results and Interpretation

TPβ0E Overlap 50%

In
fe

re
nc

e 
Ti

m
e 

O
ve

rla
p 

25
%

 &
 0

%

Inference Time Overlap 50%

TP
β0

E 
O

ve
rla

p 
25

%
 &

 0
%

Figure 4.1: Scatter plots comparing the patch-overlap settings. Each point corresponds to one case.Blue diamonds show the values for 25% overlap plotted against the corresponding 50% values, andred circles show the values for 0% overlap plotted against the 50% values. The left panel shows the
TPβ0 error, whereas the right panel shows the corresponding per-volume inference time. Points on thediagonal indicate identical values for the compared settings. Points above the diagonal indicate highererrors or longer runtimes for 0% or 25% overlap than for 50% overlap, and points below the diagonalindicate lower values than the 50% reference.

The scatter plots show a consistent effect of the overlap configuration on connectivity and
runtime. For the TPβ0 error, most points lie above the diagonal when comparing 0% and
25% overlap with the 50% configuration. This indicates that 0% and 25% overlap tend to
yield higher TPβ0 errors than 50% overlap, which is also reflected in the mean values of
2.95, 2.76, and 2.23 for 0%, 25%, and 50% overlap, respectively. In contrast, the runtime
comparison shows that 0% and 25% overlap yield almost identical inference times, with
mean values of 5.71 s and 6.14 s, respectively, while 50% overlap results in substantially
higher runtimes, with a mean inference time of 25.22 s.

These observations support that larger overlaps mitigate border-induced stitching artifacts
and thereby reduce connectivity breaks after discretization. However, increasing the overlap
from 25% to 50% substantially increases inference time (mean 6.14 s vs. 25.22 s). In this
setup, inference accounts for only ≈ 1.5% of the end-to-end runtime (preprocessing +
training + inference + evaluation). Therefore, this overhead is negligible. Since connectivity
preservation is the primary objective of this work, we use 50% overlap in all subsequent
experiments.

4.2 Baseline Experiments

To establish a reference point for the subsequent large-scale experiments, we first performed a
set of baseline studies within the exploratory pipeline using the setup described in Section 3.4.
These experiments provide an initial comparison between the generic loss and a connectivity-
preserving SR configuration (as defined in Section 3.4.2), allow us to characterize the
distributional properties of the employed evaluation metrics and assess their suitability.
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Figure 4.2: Q-Q plots of the case-wise distributions of selected evaluation metrics. The top row showsDice and HD95 as representative vessel mask accuracy metrics, the middle row shows clDice and εDiceas representative vessel accuracy metrics, and the bottom row shows clTPR and TPβ0E as representa-tive centerline completeness metrics. For each metric, the left plot corresponds to Lgeneric (labelled
Generic) and the right plot to Lconnectivity,SR (labelled SR).

Finally, they support the selection of a stable blueprint configuration that will be reused in
the later nnU-Net experiments.

4.2.1 Metric Distributions

To determine how the results should be reported, we first assessed the distribution of the eval-
uation metrics. For each metric and for both loss configurations, Lgeneric and Lconnectivity,SR,
we visually inspected Q-Q plots and applied the Shapiro–Wilk test for normality. Represen-
tative Q-Q plots are shown in Figure 4.2, and the corresponding p-values are reported in
Table 4.1.

Apart from the Dice score and HD95 under Lconnectivity,SR, all metrics exhibited significant
deviations from normality. The remaining evaluation metrics were assessed analogously and
likewise did not satisfy the normality assumption. To ensure a consistent presentation across
all metrics, we therefore report all results as median and interquartile range Q1–Q3.

4.2.2 Metric suitability

We next examined which evaluation metrics are suitable for comparing the segmentation
performance obtained with a generic and a connectivity-preserving loss. To this end, we first
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Table 4.1: Shapiro–Wilk normality test for each metric and loss configuration. Reported are the p-values for the null hypothesis of normality. Bold values indicate significant deviation from normality(p< 0.05).
Metric Lgeneric Lconnectivity,SR
Dice 2.40×10−4 2.66×10−1

εDice 2.48×10−9 4.45×10−5

clDice 5.58×10−4 9.30×10−3

clTPR 2.69×10−5 2.82×10−8

HD95 3.81×10−6 5.19×10−2

TPβ0E 7.03×10−4 2.78×10−7

Metric Lgeneric Lconnectivity,SR
Dice 70.68 [65.90, 75.10] 67.47 [63.89, 72.70]
HD95 18.15 [11.17, 28.28] 30.43 [20.62, 41.24]
clDice 82.55 [76.68, 84.78] 77.21 [72.28, 81.77]
εDice 91.80 [88.47, 93.68] 89.21 [85.10, 91.36]
clTPR 87.59 [81.47, 91.18] 93.38 [89.51, 96.24]
β0E 24 [19, 31] 33 [26, 48]
β1E 0 [0, 0] 0 [0, 0]
TPβ0E 5 [3, 8] 4 [2, 5]
DIU 24 [19, 31] 33 [27, 49]

Table 4.2: Median and interquartile range Q1–Q3 of all evaluation metrics applied to Lgeneric and
Lconnectivity,SR. The first block contains vessel mask accuracy metrics, the second block contains vesselaccuracy metrics, and the third block contains centerline completeness metrics.

applied all evaluation metrics introduced in Section 3.5 to both Lgeneric and Lconnectivity,SR.
The resulting median values and interquartile ranges (Q1–Q3) are summarized in Table 4.2.

For the vessel mask accuracy metrics, the Dice score is slightly higher under Lgeneric than
under Lconnectivity,SR (Table 4.2). In contrast, HD95 shows a pronounced systematic increase
for Lconnectivity,SR, rising from 18.15mm to 30.43mm, with comparatively large values for
both configurations. To clarify this behavior, Figure 4.3 shows the case with the largest HD95

for each loss configuration.
Across this and many other cases, HD95 is dominated by peripheral FP structures located at
the image borders. These components form large distant clusters whose maximal surface
distance to the reference substantially inflates HD95. Although HD95 is intended as a robust
variant of the HD, in segmentation of thin structures a small number of border FPs can
dominate the 95th percentile and thereby obscure otherwise reasonable vessel delineation
in the Region of Interest (ROI). Under Lconnectivity,SR, these peripheral FPs occur more
frequently and tend to be larger, which aligns with the recall-type nature of the added SR
term that does not penalize FPs. HDavg is far less influenced by such outliers, and HDGT is
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Figure 4.3: Representative case with the largest HD95 for Lgeneric (left) and Lconnectivity,SR (right). Top:Volume rendering of the predicted coronary artery tree. Bottom: Corresponding values for HD95,HDavg, and HDGT.

not affected by boundary FPs at all. As seen in the example case, both decrease substantially
for both predictions. These variants are less sensitive to boundary FPs by construction, but
were not analyzed further in this work. We therefore use the Dice score as the representative
vessel mask accuracy metric, i.e. as our primary measure of volumetric overlap.

The vessel accuracy metrics clDice and εDice show a similar pattern for both loss configura-
tions. Both attain higher values than the standard Dice score, indicating that the vascular
structures and their topology are largely preserved in the segmentations. While these metrics
are still influenced by spurious structures at the image borders, they explicitly tolerate small
boundary shifts as well as mild under- and over-segmentation, making them less sensitive to
minor local discrepancies than purely mask-based measures.

clTPR exhibits the strongest difference between the two loss configurations, with clearly
higher values under Lconnectivity,SR than under Lgeneric. This indicates that the connectivity-
preserving loss substantially improves the recovery of the ground-truth centerline. In the
literature, the β0E is commonly used as a connectivity metric. In our setting, however, β0E
partly reflects the boundary FPs discussed above rather than connectivity of the coronary
tree itself. To mitigate this, we consider the TPβ0E, which restricts the analysis to con-
nected components that overlap the ground-truth tree. For both loss configurations, the
first Betti error β1E is zero, indicating that loops do not occur in our masks and that this
metric can be neglected for the comparison. The DIU metric was originally proposed to
provide a more refined topology-aware assessment than simple β0-based errors. While the
original work demonstrated examples where DIU captured discrepancies that β0E missed,
our results in Table 4.2 show very similar median values and interquartile ranges for DIU
and β0E across both loss configurations, indicating that DIU does not provide substantial
additional discriminative power in our setting. To keep the metric set focused on clinically
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U-Net F-Net
Metric Lgeneric Lconnectivity,SR Lgeneric Lconnectivity,SR
Dice 70.68 [65.90, 75.10] 67.47 [63.89, 72.70] 69.47 [64.73, 73.40] 63.74 [56.98, 69.26]
clDice 82.55 [76.68, 84.78] 77.21 [72.28, 81.77] 78.33 [72.71, 82.31] 70.51 [61.16, 77.30]
εDice 91.80 [88.47, 93.68] 89.21 [85.10, 91.36] 91.58 [88.89, 93.71] 86.12 [79.45, 90.28]
clTPR 87.59 [81.47, 91.18] 93.38 [89.51, 96.24] 87.52 [80.78, 92.16] 94.76 [91.13, 97.52]
TPβ0E 5 [3, 8] 4 [2, 5] 8 [4, 12] 4 [1, 7]

Table 4.3: Comparison of the U-Net and F-Net architecture templates under the generic loss Lgenericand the connectivity-preserving loss Lconnectivity,SR. Values denote median [Q1, Q3] over all cases.

relevant connectivity properties, we therefore use clTPR and TPβ0E as the primary centerline
completeness measures in the subsequent analyses.

4.2.3 Blueprint Parameters

The nnU-Net framework defines a set of blueprint parameters, which are fixed architectural
and training presets that are not automatically adapted to a given dataset. One of these
fixed parameters is the architecture template, which specifies the overall network family
from which the final model is instantiated. To select an appropriate template, we compared
the standard U-Net architecture with an F-Net architecture. An F-Net consists of multiple
resolution levels, where each level is defined by an encoder and a decoder. The outputs of
the encoders are integrated in a dedicated feature-integration pathway, which is implemented
as a series of decoders defined by the respective decoder field of each network level. To
select an appropriate architecture, we compared the U-Net with the F-Net template under
both Lgeneric and Lconnectivity,SR. Table 4.3 summarizes the median performance for both
templates and both loss configurations.

Since clTPR is the only metric that improves under the F-Net template when using the
connectivity-preserving loss, and the improvement is limited to approximately 1.4 percentage
points, we select the U-Net template as the architectural blueprint.

Another blueprint parameter concerns the choice of optimizer. While the exploratory pipeline
employed Adadelta, widely used alternatives in medical image segmentation include AdamW
and SGD with Nesterov momentum [82]. To determine an appropriate optimizer for the
subsequent experiments, we compared these three methods. To keep the comparison fo-
cused and concise, we report only the median values under the connectivity-preserving loss
Lconnectivity,SR and use one representative metric for each category (Dice for vessel mask
accuracy, εDice for vessel accuracy, and TPβ0E for centerline completeness).

AdamW performs worst across all three metrics and is therefore not considered further.
Compared to SGD with Nesterov momentum, Adadelta yields slightly higher Dice and
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Metric Adadelta AdamW SGD (Nesterov)
Dice 67.47 63.61 66.65
εDice 89.21 85.55 88.15
TPβ0E 4 5 3

Table 4.4: Median performance of different optimizers under the connectivity-preserving loss
Lconnectivity,SR for representative metrics.

Metric PolyLR CosineAnnealingLR
Dice 66.65 66.86
εDice 88.15 88.25
TPβ0E 3 4

Table 4.5: Comparison of PolyLR and cosine annealing learning rate schedulers under SGD with Nes-terov momentum and Lconnectivity,SR. Values denote medians of representative metrics over all cases.

εDice scores (by roughly 1 percentage point), but at the cost of an increased TPβ0E (4 vs. 3),
indicating more connectivity-related component errors. Given the limited magnitude of these
differences and the exploratory nature of this comparison, the results should be interpreted
with caution. However, since nnU-Net by default employs SGD with Nesterov momentum
and this optimizer achieves the lowest TPβ0E while maintaining competitive overlap scores,
we adopt SGD with Nesterov momentum as the optimizer for the nnU-Net-based framework
in all subsequent experiments.

The last blueprint parameter we investigated is the learning rate scheduling strategy. In
the experiments above, the PolyLR scheduler with an initial learning rate of 0.01 was
employed together with the SGD optimizer. Alternative scheduling schemes, most notably
cosine annealing, are frequently used in conjunction with SGD due to their smoother decay
behavior and their tendency to stabilize late-stage optimization [83]. To assess whether cosine
annealing provides an advantage for our task, we compared PolyLR and CosineAnnealingLR
under the SGD optimizer with Nesterov momentum and the connectivity-preserving loss
Lconnectivity,SR. As in the optimizer comparison, we report one representative metric per
category. The resulting median values are summarized in Table 4.5.

Since training with the cosine annealing scheduler does not yield a relevant improvement
in overlap metrics and even increases the TPβ0E, we retain PolyLR as the learning rate
scheduler for all subsequent experiments.
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Loss Configuration Dice clDice εDice
Lgeneric 78.76 [73.32, 81.42] 87.32 [83.92, 90.26] 93.58 [91.53, 95.71]
Lconnectivity,SR 78.31 [74.86, 81.25] 86.95 [82.81, 89.34] 93.61 [91.18, 95.38]
Lconnectivity,clDice 78.40 [73.48, 80.88] 87.87 [84.37, 90.32] 93.64 [91.27, 95.81]
Lconnectivity,cbDice 78.06 [73.12, 81.44] 87.11 [83.58, 90.24] 94.08 [91.15, 95.69]
Lconnectivity,clCE 78.28 [73.51, 81.46] 87.61 [83.57, 89.93] 93.57 [91.46, 95.89]

Table 4.6: Overlap-based metrics (Dice, clDice, εDice) for the generic loss and its extensions withconnectivity-preserving terms. Values denote medians with interquartile ranges (Q1, Q3). Best me-dian per metric is highlighted in bold.

4.3 Connectivity-Preserving Loss Functions

In contrast to the exploratory pipeline, which compared only the generic loss and the SR
configuration, we here employ the nnU-Net framework to systematically assess the complete
set of connectivity-aware losses introduced in Section 3.3.2. We use the blueprint parameters
established in Section 4.2.3 and let nnU-Net determine the remaining hyperparameters based
on the data fingerprint, as summarized in Table 3.5. As explained in Section 3.4.1.1, the
built-in cropping procedure of nnU-Net has no effect on our dataset. To accelerate training,
we therefore apply our custom heart-mask-based cropping strategy, resulting in an effective
patch size of 160×128×112 voxels. Apart from this modification, the overall training and
inference workflow follows the setup described in Section 3.4. In all configurations, the
generic loss Lgeneric serves as the baseline, and the respective connectivity-preserving term
is added in an unweighted manner, as defined in Equation 3.13.

Table 4.6 and the boxplots in Fig. 4.4 show that the volumetric overlap metrics, which
quantify vessel mask accuracy (Dice) and vessel accuracy (εDice, clDice), remain largely
invariant under the choice of connectivity-preserving loss. Median values differ by less
than one percentage point across all configurations and metrics, and the distributions show
substantial overlap. These observations indicate that the connectivity-preserving terms do
not adversely affect volumetric accuracy. The remaining differences lie within the natural
variability of stochastic training.

A markedly different behavior is observed for the connectivity metrics, summarized in Ta-
ble 4.7 and visualized in Fig. 4.5. The Lconnectivity,SR achieves the highest clTPR values with
a median of 93.0 %, shifting the entire distribution upward and reducing the number of low-
performing outliers. At the same time, Lconnectivity,SR yields the lowest TPβ0E values with a
median of 1.0, indicating fewer fragmented or spurious components. The Lconnectivity,clDice

term provides only a modest improvement over the generic loss, increasing clTPR from
89.3 % to 90.2 %, but does not reduce the TPβ0E median. In contrast, the Lconnectivity,cbDice

term exhibits the weakest connectivity performance among all configurations, with a median
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ℒconnectivity,SRℒgeneric ℒconnectivity,clDice ℒconnectivity,cbDice ℒconnectivity,clCE ℒconnectivity,SRℒgeneric ℒconnectivity,clDice ℒconnectivity,cbDice ℒconnectivity,clCE

ℒconnectivity,SRℒgeneric ℒconnectivity,clDice ℒconnectivity,cbDice ℒconnectivity,clCE

Figure 4.4: Boxplots of Dice, clDice, and εDice for the generic loss and all connectivity-preservinglosses.

Loss Configuration clTPR TPβ0E
Lgeneric 89.32 [83.88, 93.50] 2 [1, 3]
Lconnectivity,SR 93.01 [88.21, 96.84] 1 [0, 3]
Lconnectivity,clDice 90.19 [84.69, 94.39] 2 [0, 3]
Lconnectivity,cbDice 86.56 [80.77, 90.64] 3 [1, 4]
Lconnectivity,clCE 89.26 [83.04, 93.41] 2 [1, 4]

Table 4.7: Connectivity metrics (clTPR and TPβ0E) for the generic loss and its extensions withconnectivity-preserving terms. Values denote medians with interquartile ranges (Q1, Q3). Best me-dian per metric is highlighted in bold.

clTPR of 86.6 % and a TPβ0E of 3. Notably, both Lconnectivity,cbDice and Lconnectivity,clCE

perform even worse than the generic loss in this setup.

To complement the quantitative connectivity metrics, Fig. 4.6 shows sMPRs of the major
vessels RCA and LCx for the same case, with overlaid reference and predicted segmentations
for all loss configurations. For the RCA, only the Lconnectivity,SR model yields a fully
continuous segmentation of both the main vessel and the small marginal side branch. All
other configurations exhibit a connectivity break in the marginal branch and at least one
interruption in the main vessel, with Lconnectivity,cbDice even showing two interruptions.
Moreover, the gap produced by the generic loss configuration is markedly larger than those
observed for the connectivity-preserving losses. For the latter, the discontinuities typically
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ℒconnectivity,SRℒgeneric ℒconnectivity,clDice ℒconnectivity,cbDice ℒconnectivity,clCE ℒconnectivity,SRℒgeneric ℒconnectivity,clDice ℒconnectivity,cbDice ℒconnectivity,clCE

Figure 4.5: Boxplots of clTPR and TPβ0E for the generic loss and all connectivity-preserving losses.

ℒconnectivity,SR

ℒconnectivity,clDice

ℒgeneric

ℒconnectivitycbDice

ℒconnectivityclCE

RCA LCX

Figure 4.6: sMPRs of the RCA and LCx for the same test case, with reference segmentations in blueand voxels where reference and prediction overlap appear in magenta.

correspond to short gaps that could, in principle, be closed by light-weight postprocessing,
whereas the generic loss often leaves extended missing segments. This distinction between
small, potentially recoverable gaps and substantial discontinuities motivated the introduction
of the GC metric (see Section 3.5.3), which is subsequently employed as an additional
connectivity descriptor in the final experiment in Section 4.5.

Beyond improved connectivity, we also observe that Lconnectivity,SR consistently produces ves-
sel predictions that follow the distal course more completely and do not terminate prematurely.
This effect is clearly visible in the LCx example, where several alternative loss configurations
stop too early, while the SR-based model adheres more closely to the reference.

To directly contrast the worst performing connectivity-preserving loss with the best perform-
ing configuration, we consider the case in which Lconnectivity,cbDice attains its lowest clTPR
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4

Right Tree

Left Tree

Figure 4.7: Qualitative comparison of the worst-performing Lconnectivity,cbDice case with the corre-sponding Lconnectivity,SR prediction. The reference is shown in blue, the predictions in red. All resultsare visualised as 3D-rendered volumes. Column 1 shows the reference, column 2 the prediction ob-tained with the Lconnectivity,cbDice, and column 3 the prediction obtained with the Lconnectivity,SR. Thetop row visualises the left coronary tree view, the bottom row the right coronary tree view.

and highest TPβ0E. Fig. 4.7 compares the prediction obtained with Lconnectivity,cbDice for this
case to the corresponding Lconnectivity,SR prediction.
For the left coronary tree, the cbDice-based model fails to preserve continuity at several
locations: side branches are fragmented or terminate prematurely, and even the main RCA
trunk is interrupted before reaching its distal course. In contrast, the SR-based prediction
yields a much more continuous vessel tree, with extended distal segments and largely
preserved branch connectivity. The degradation becomes even more pronounced in the right
coronary tree, where the cbDice model produces anatomically implausible structures that no
longer resemble coronary vessels. The SR-based prediction, on the other hand, reproduces
the overall right coronary geometry, exhibiting only a single residual discontinuity.

It is important to note that the original formulations of clDice [20], cbDice [33], and clCE [32]
differ from the uniform, unweighted setup used in this work. In their respective publications,
these loss terms are combined with weighting schemes that control the relative strength of
the generic and connectivity-preserving components. In our notation, such configurations
can be expressed as

Lℓ = α LCE +β LDice +λ Lconn,ℓ, ℓ ∈ {clDice,cbDice,clCE}, (4.1)
with method-specific choices of α , β , and λ as proposed in the original papers.
For clDice and clCE, the authors set α = 0, β = 1, and λ = 1, so that the generic loss
does not include a CE term and is combined with a unit-weighted connectivity term. In
contrast, cbDice includes both CE and Dice in the generic loss. For 3D binary segmen-
tation problems, the authors propose either (α,β ,λ ) =

(
1, 1

2 ,
1
2

)
, so that the generic loss

is dominated by the CE term while the Dice and connectivity components receive equal
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ℒconnectivity,SR ℒconnectivity,clDice ℒconnectivity,cbDice ℒconnectivity,clCE

Figure 4.8: Comparison of the total training time for the fastest fold of each loss configuration. Thehatched bars indicate the runtime of the Lgeneric baseline, while the solid bars show the correspondingruntime when adding a connectivity-preserving term.

weight, or (α,β ,λ ) =
(
1, 1

3 ,
2
3

)
, which further down-weights the Dice term and emphasizes

the connectivity component relative to Dice, while CE still carries the largest weight.
It is possible that using their original settings would lead to improved performance compared
to the results obtained with the unified configuration used in this study. However, the unified
weighting ensures that the observed differences primarily reflect the specific behavior of the
loss terms rather than differences in hyperparameter choices.

Beyond segmentation accuracy and connectivity, the computational cost of each loss configu-
ration must also be taken into account. In this context, the training time is largely insensitive
to the specific choice of weighting parameters, as these only rescale existing loss terms but
do not change the underlying operations. To this end, we assessed the training runtime of the
fastest fold for all losses, using the generic loss as the baseline, as shown in Figure 4.8.
Lconnectivity,SR increases training time only marginally, from 26.5 h to 29.1 h, whereas
Lconnectivity,clDice and Lconnectivity,clCE require roughly six times and Lconnectivity,cbDice even
about seven times the baseline runtime. This behavior is consistent with the underlying
implementations of the connectivity terms. For Lconnectivity,SR, the hard reference skeleton is
precomputed on the CPU during data loading, such that the loss evaluation during training
only involves an additional mask-based overlap computation. In contrast, Lconnectivity,clDice,
Lconnectivity,clCE , and Lconnectivity,cbDice rely on a differentiable soft-skeletonisation operator
applied on the GPU to both the reference and the prediction in every training iteration, which
substantially increases the computational burden. The runtime of Lconnectivity,cbDice is highest
because, in addition to the skeletonization, a three-dimensional Euclidean distance transform
has to be computed. In our implementation, we adopt the soft skeletonisation scheme pro-
posed in [34], which provides high topological fidelity at the expense of runtime. Using a
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ℒconnectivity,SR ℒconnectivity,clDice

ℒconnectivity,cbDice ℒconnectivity,clCE

Figure 4.9: Training and validation curves for the nnU-Netmodelswith the four connectivity-preservingloss configurations. The panels show, from left to right, in the top row the configurations with
Lconnectivity,SR and Lconnectivity,clDice, and in the bottom row the configurations with Lconnectivity,cbDiceand Lconnectivity,clCE . For each configuration, the curves depict the evolution of training loss (blue), val-idation loss (red), and validation Dice (green) over 1000 epochs.

faster but less accurate skeletonisation algorithm, as proposed for example in [20], would
likely reduce the computational cost but may further degrade connectivity performance.

Beyond the per-epoch computational cost, the convergence behavior provides additional
insight into the optimization dynamics of the connectivity-preserving losses. As shown
in Figure 4.9, the Lconnectivity,clDice and Lconnectivity,clCE configurations reach a plateau in
validation Dice after roughly 900 epochs, indicating full convergence within the allocated
training budget. In contrast, both Lconnectivity,SR and, more pronounced, Lconnectivity,cbDice

still exhibit a noticeable upward trend at epoch 1000, suggesting that they have not fully
converged. This observation is particularly relevant for Lconnectivity,cbDice, as it may still
benefit from extended training, albeit at the cost of a markedly increased computational
burden.

Taken together, the results show that all connectivity-preserving losses maintain comparable
volumetric overlap performance relative to the generic baseline. Among them, Lconnectivity,SR

provides the most consistent improvements in connectivity metrics, yields more complete
distal vessel courses, and reduces the size of residual gaps, while incurring only a marginal
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increase in training time. In contrast, the alternative connectivity-preserving terms offer
weaker connectivity gains and are associated with a substantially higher computational cost.
These findings identify the SR loss as the most effective and practical connectivity-preserving
extension of the generic loss. Consequently, Lconnectivity,SR is selected as the representative
connectivity-aware loss for the final experiment in Section 4.5, thereby addressing the central
research question of this work.

4.4 Ablation Studies

This section investigates three design choices that may influence coronary artery tree segmen-
tation performance. First, we evaluate whether adding a Difference of Gaussian (DoG)-based
vesselness map as an auxiliary input channel improves overlap and connectivity metrics in
Section 4.4.1. Second, we study how different recall targets (thin skeleton, tubed skeleton,
full mask) affect the behavior of Lconnectivity,SR in Section 4.4.2. Third, we analyze postpro-
cessing choices, including postprocessing-time cropping to avoid anisotropic patch geometry
and lightweight connected-component filtering in Section 4.4.3.

4.4.1 Vesselness Filter

Several top-performing approaches in the ASOCA challenge employ vesselness filters as an
additional input channel [27]. Vesselness filters are multiscale image operators that assign
high responses to tubular, vessel-like structures while suppressing background. This suggests
that explicitly enhancing tubular structures may facilitate coronary artery segmentation,
particularly in low-contrast distal regions. We therefore investigated whether adding a
vesselness map as an auxiliary input improves segmentation performance in our setting
as well. Furthermore, we assess whether input-level vessel enhancement can partially
compensate for the absence of a connectivity-preserving loss term.

To isolate the effect of vesselness-based input encoding, all models were trained using the
same setup as in Section 4.3 and only employ a vesselness filter as an additional input
channel to the CCTA intensities. The vesselness map was computed using a multiscale
DoG-based filter. To incorporate anatomical prior knowledge, the analysis was restricted
to tubular structures that are connected to the aorta. As a result, many spurious vessel-like
responses that are not attached to the aortic lumen are discarded, which is expected to reduce
the number of FP candidates.
To assess the impact of DoG-based vessel enhancement as an additional feature input on seg-
mentation performance, we evaluated both Lgeneric and Lconnectivity,SR with and without the
vesselness channel. In addition to the previously used overlap and connectivity metrics, we
report the Positive Predictive Value (PPV) to explicitly quantify the burden of FP predictions.
PPV corresponds to the precision term in the Dice formulation (see Equation 3.16). The
results are summarized in Table 4.8.
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CCTA CCTA + Vesselness
Metric Lgeneric Lconnectivity,SR Lgeneric Lconnectivity,SR
Dice 78.76 [73.32, 81.42] 78.31 [74.86, 81.25] 78.95 [74.46, 81.41] 79.22 [74.51, 81.00]
PPV 81.13 [74.00,85.03] 76.52 [69.65,80.38] 80.72 [74.26, 84.14] 76.26[69.80, 79.94]
clDice 87.32 [83.92, 90.26] 86.95 [82.81, 89.34] 87.67 [83.30,90.65] 87.04 [83.13, 89.37]
εDice 93.58 [91.53, 95.71] 93.61 [91.18, 95.38] 93.66 [91.96, 95.71] 93.60 [91.74, 95.25]
clTPR 89.32 [83.88, 93.50] 93.01 [88.21, 96.84] 90.35 [84.34, 95.09] 93.82 [89.04, 97.69]
TPβ0E 2 [1, 3] 1 [0, 3] 2 [1, 3] 1 [0, 3]

Table 4.8: Ablation of DoG-based vesselness input under the Lgeneric and the Lconnectivity,SR. Valuesdenote median [Q1, Q3] over all cases.

Across all metrics, the inclusion of the vesselness map does not lead to consistent improve-
ments. Dice, εDice, and clDice remain largely unchanged, indicating that the network already
captures the relevant multiscale tubular appearance from the raw CCTA intensities alone.
Interestingly, PPV systematically decreases for both loss configurations, showing that the
vesselness channel tends to introduce additional FP predictions despite the aortic connectivity
prior. A plausible explanation is that the vesselness map was added as an auxiliary input
channel using the same normalization as the CCTA intensities. As a consequence, coronary
arteries and other vessel-like structures that are connected to the aorta can obtain similar
vesselness values. This reduces the network’s ability to distinguish true coronary branches
from neighbouring arterial or tubular structures, which is reflected in a drop in PPV.

While connectivity metrics increase slightly for both loss configurations when adding the
vesselness channel, the Lgeneric with vesselness still does not reach the connectivity levels
achieved by the Lconnectivity,SR without vesselness. This indicates that input-level vessel
enhancement cannot substitute for an explicit connectivity-preserving loss term.

Overall, these findings show that DoG-based vessel enhancement does not provide a mea-
surable benefit in our setting and cannot reproduce the connectivity gains achieved with
Lconnectivity,SR.

4.4.2 Tubed Skeleton

As described in Section 3.3.2, we follow the original mask transformation proposed in [21]
to obtain the skeleton used for the SR loss calculation. Here, the one-voxel-wide skeleton is
dilated with a diamond-shaped structuring element to form a tubular skeleton, which results
in a three-voxel-wide representation of the reference mask. Given the voxel spacing of
approximately 0.4 mm after preprocessing, a three-voxel-wide skeleton corresponds to an
effective thickness of about 1.2 mm in our dataset.
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Distribution of All Vessels Distribution of Major Vessels

Figure 4.10: Distribution of vessel radii in the reference segmentations. The left panel shows theper-vessel median radius for all coronary vessels. The right panel shows the corresponding distributionrestricted to themajor vessels (RCA, LAD, and LCx),summarized by the per-vessel 95th percentile radiusto reduce the influence of long, thin distal segments.

Metric Thin skeleton Tubed skeleton Full mask
Dice 78.28 [73.94, 81.11] 78.31 [74.86, 81.25] 76.68 [72.89, 79.91]
clDice 85.73 [81.41, 88.59] 86.95 [82.81, 89.34] 87.63 [83.02, 90.23]
εDice 94.23 [92.38, 96.56] 93.61 [91.18, 95.38] 93.47 [90.89, 95.17]
clTPR 93.66 [89.42, 96.79] 93.01 [88.21, 96.84] 93.16 [88.45, 96.28]
TPβ0E 2 [1, 3] 1 [0, 3] 1 [0, 2]

Table 4.9: Ablation of different recall targets for the SR loss. The thin skeleton is the one-voxel-wideskeleton, the tubed skeleton is the dilated three-voxel-wide variant used in the original formulation,and the full mask variant uses the full binary reference mask. Values denote median [Q1, Q3] over allcases.

Since the vast majority of coronary arteries have radii below this value, as shown in the left
panel of Figure 4.10, the tubed skeleton occupies almost the entire extent of the reference
mask for most vessels. Consequently, the transformed skeleton becomes highly similar to
the original reference mask, with noticeable differences remaining only for the major vessels
whose radii exceed 1.2 mm, as illustrated in the right panel of Figure 4.10.

Given this, we investigate how different recall targets affect the behavior of the SR loss. To
this end, we compare three variants of Lconnectivity,SR that differ only in the definition of the
recall mask used for the SR loss term: a thin skeleton without tubing, the original tubed
skeleton, and the full binary reference mask. The results are summarized in Table 4.9.

Across the Dice metric, the thin skeleton and the tubed skeleton yield almost identical
performance, whereas the full-mask variant shows a noticeable decrease. For the vessel
accuracy metrics, all recall targets differ by less than 1 pp. Interestingly, the thin skeleton
achieves the highest clTPR but shows an increased TPβ0E compared to the other variants.
The full-mask variant has the same median TPβ0E as the tubed skeleton, but fewer cases
with pronounced component fragmentation, as indicated by its lower upper quartile.
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Thin Skeleton Tubed SkeletonReference

Figure 4.11: Qualitative comparison of recall targets for the SR loss. All results are visualized as 3D-rendered volumes. Column 1 shows the reference segmentation (blue). Column 2 shows the TP mask(magenta) obtained with the thin skeleton as recall target. Column 3 shows the TP mask (magenta)obtained with the tubed skeleton. Arrows highlight exemplary locations where the recall target affectslocal TP coverage and continuity.

A plausible explanation for these trends is the spatial support of the SR recall term, i.e., how
widely it supervises the foreground and thereby controls the extent of its gradient signal.
The thin, one-voxel-wide skeleton provides a highly sparse supervision signal that primarily
enforces skeleton coverage, which is consistent with its slightly higher clTPR. However, the
limited support around the thin skeleton suggests that voxels in immediate proximity to the
skeleton do not consistently receive a recall-driven gradient. Consequently, the supervision
provided by the SR term can be too spatially limited to reliably enforce continuity in the
surrounding foreground, such that TP regions fragment into multiple components and TPβ0E
increases. In contrast, tubing the skeleton increases the spatial support of the recall term by
extending the supervised band around the vessel axis. This makes the SR loss less sensitive to
minor discretization effects and one-voxel misalignments, as voxels adjacent to the skeleton
now also contribute to the recall signal. As a result, the recall-driven gradients provide a
more coherent stabilizing signal for the surrounding foreground, which helps preserve local
continuity and reduces component fragmentation, as reflected by the lower median TPβ0E.
This difference in spatial support is illustrated in Fig. 4.11, where the black arrow highlights
a vessel course for which some voxels are recovered with the thin-skeleton target. However,
this TP signal is fragmented into multiple components. In contrast, the corresponding vessel
course is completely absent in the TP mask for the tubed-skeleton variant.

Notably, since the tubed skeleton already covers a large fraction of the reference mask in
our data, the full-mask target does not primarily add geometric support. Instead, it changes
the selectivity of the recall term by providing dense supervision across the entire reference
mask. This can further suppress extreme TP fragmentation (lower upper quartile of TPβ0E)
but also biases the optimization towards higher foreground recall at the expense of precision,
which is consistent with the reduced Dice. This shift in precision–recall behavior is reflected
in Fig. 4.12, where the full-mask variant achieves the highest True Positive Rate (TPR) but
shows a noticeable drop in PPV compared to the skeleton-based targets.
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PPV TPR

Figure 4.12: Precision–recall characteristics for different recall targets in the SR loss. Boxplots showPPV (left) and TPR (right) for the thin skeleton, tubed skeleton, and full-mask variants.

Overall, the tubed skeleton provides the most suitable recall target for our setting, as it offers
a robust trade-off between overlap accuracy and connectivity preservation. At the same time,
this ablation illustrates that even for segmentation problems where connectivity is the primary
objective, volumetric overlap remains an important constraint. More generally, increasing the
support of the recall target shifts the optimization towards higher foreground coverage and,
in turn, higher centerline completeness, as the stronger gradient provides more supervision
to the foreground. However, this also reduces the penalty for false positives, leading to lower
precision and, consequently, a reduced Dice score. Therefore, the recall target should be
chosen in a task-dependent manner: it should provide sufficient spatial support to reliably
cover the relevant tubular structures—which can improve apparent continuity by reducing
missed segments—while remaining selective enough to avoid predicting foreground beyond
the true vessel extent.

4.4.3 Postprocessing

In Section 4.3, we used our heart-mask-based cropping strategy (described in Section 3.4.1.1)
to accelerate training, which also affects the nnU-Net dataset fingerprint computed during
its planning stage and thus the resulting patch size. In our case, planning on the cropped
volumes led to a patch size of 160×128×112. Since 3D CNN segmentation performance
may deteriorate on anisotropically sampled data [84], we additionally performed the nnU-
Net fingerprint extraction on the full volumes, which yields a patch size of 160×160×96.
Empirically, inference on full volumes produced FP predictions near the borders of the
original field of view, i.e., outside the anatomical ROI. To mitigate these border artifacts, we
applied the heart-mask-based cropping as a postprocessing step. The protocol is described in
Section 3.4.4.

We first analyzed the effect of the cropping strategy on segmentation performance. Specifi-
cally, we compared the configuration trained with the anisotropic patch geometry induced
by preprocessing-time heart-mask cropping with a configuration trained with an in-plane
isotropic patch geometry, where heart-mask cropping was applied during postprocessing.
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Pre-crop Post-crop
Metric Lgeneric Lconnectivity,SR Lgeneric Lconnectivity,SR
Dice 78.76 [73.32, 81.42] 78.31 [74.86, 81.25] 79.11 [74.19, 81.46] 77.99 [74.40, 81.38]
clDice 87.32 [83.92, 90.26] 86.95 [82.81, 89.34] 87.58 [84.46, 90.78] 86.71 [82.91, 89.14]
εDice 93.58 [91.53, 95.71] 93.61 [91.18, 95.38] 94.17 [91.77, 95.92] 93.58 [91.43, 95.24]
clTPR 89.32 [83.88, 93.50] 93.01 [88.21, 96.84] 89.89 [84.49, 95.41] 93.86 [90.54, 97.60]
TPβ0E 2 [1, 3] 1 [0, 3] 2 [1, 3] 1 [0, 2]

Table 4.10: Ablation of the heart-mask cropping strategy under Lgeneric and Lconnectivity,SR. In the Pre-crop setting, cropping is applied during preprocessing, resulting in anisotropic patch geometry duringtraining. In the Post-crop setting, cropping is applied during postprocessing, with training performedusing an in-plane isotropic patch geometry. Values denote median [Q1, Q3] over all cases.

All other training settings were kept identical. For both configurations, we report results for
Lgeneric and Lconnectivity,SR in Table 4.10.

Across the volumetric overlap metrics, applying cropping during postprocessing slightly
improved performance under Lgeneric, whereas under Lconnectivity,SR the overlap scores de-
creased marginally but remained within a comparable range. In contrast, clTPR consistently
improved for both loss configurations in the post-crop setting. The TPβ0E remained un-
changed for Lgeneric, while for Lconnectivity,SR the upper quartile decreased, indicating fewer
cases with pronounced fragmentation.

Taken together, these results suggest that postprocessing-time cropping improves connectivity
related metrics without compromising volumetric overlap. Consequently, we adopt the post-
crop configuration for all subsequent connected component filtering experiments.
Connected component analysis is a common postprocessing step for segmentations of thin
tubular structures, as it can suppress small spurious clusters and improve the apparent
connectivity of the predicted tree. In contrast to topology-reconstruction approaches that
explicitly reconnect or reconstruct vessel trees (e.g. [19]), which would add substantial
computational overhead, we focus on lightweight postprocessing variants and evaluate
whether they already improve segmentation quality.
We evaluated two connected-component-based postprocessing variants. In one variant, all
connected components smaller than 100 voxels were removed and treated as noise artifacts.
In the other variant, only the two largest connected components were retained, corresponding
to the left and right coronary trees. The exact filtering settings are described in Section 3.4.4.
To analyze the effect of postprocessing, we apply both connected-component filtering variants
to the predictions obtained with the post-crop configuration. Empirically, many of the small
connected components correspond to floating FP clusters. Therefore, removing components
smaller than 100 voxels is expected to have only a minor impact on the TP-mask-based
centerline completeness metrics reported in this work. Moreover, since these components
contain only a small number of voxels, the effect on volumetric overlap metrics is expected
to be negligible. To explicitly quantify the effect of filtering on the predicted mask, we
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Metric None Size Largest
Dice 79.11 [74.19, 81.46] 78.99 [74.19, 81.43] 78.75 [73.44, 81.71]
clDice 87.58 [84.46, 90.78] 87.66 [84.25, 90.47] 87.48 [83.18, 90.25]
εDice 94.17 [91.77, 95.92] 94.01 [91.74, 95.65] 93.69 [89.49, 95.65]
clTPR 89.89 [84.49, 95.41] 89.81 [83.91, 95.14] 84.01 [78.43, 92.35]
TPβ0E 2 [1, 3] 2 [1, 3] 0 [0, 0]
β0E 6 [4, 9] 4 [2, 6] 0 [0, 0]

Table 4.11: Ablation of connected-component-based postprocessing under Lgeneric. In the None set-ting, no connected component filtering is applied. In the Size setting, components smaller than 100voxels are removed. In the Largest setting, only the largest connected components are retained. Val-ues denote median [Q1, Q3] over all cases.

Metric None Size Largest
Dice 77.99 [74.40, 81.38] 77.98 [73.98, 81.27] 79.28 [75.24, 82.11]
clDice 86.71 [82.91, 89.14] 86.40 [82.73, 89.28] 87.76 [84.47, 90.79]
εDice 93.58 [91.43, 95.24] 93.35 [91.07, 95.18] 94.21 [92.09, 96.26]
clTPR 93.86 [90.54, 97.60] 93.62 [90.35, 97.43] 92.33 [84.64, 95.18]
TPβ0E 1 [0, 2] 1 [0, 2] 0 [0, 0]
β0E 6 [4, 8] 3 [2, 5] 0 [0, 0]

Table 4.12: Ablation of connected-component-based postprocessing under Lconnectivity,SR. In theNone setting, no connected component filtering is applied. In the Size setting, components smallerthan 100 voxels are removed. In the Largest setting, only the largest connected components are re-tained. Values denote median [Q1, Q3] over all cases.

additionally report the global β0E. Table 4.11 reports the results under Lgeneric, whereas
Table 4.12 reports the results under Lconnectivity,SR.

Beyond the expected negligible effect of removing small connected components, volumetric
overlap metrics remain largely unchanged when retaining only the largest components for
both loss configurations. This suggests that the proximal parts of the coronary trees are
captured reliably in the predictions under both losses. However, under Lgeneric, overlap
metrics decrease slightly when retaining only the largest components, suggesting that distal
vessel segments and small branching vessels are frequently not connected to the retained
main components and are therefore removed by the filtering. This behavior is consistent
with the pronounced drop in clTPR, whose median decreases from 89.89 to 84.01, indicating
reduced centerline coverage for these thin, peripheral branches and distal vessel segments.
In contrast, under Lconnectivity,SR, overlap metrics increase when retaining only the largest
components, while clTPR decreases only marginally from 93.86 to 92.33. This suggests that
the removed components mainly represent floating FPs clusters rather than disconnected
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Before Postprocessing After Postprocessing

Figure 4.13: Qualitative examples illustrating the effect of connected-component-based postprocess-ing. Two cases are shown before (left) and after (right) connected-component filtering. Referencesegmentations are shown in blue, and voxels where reference and prediction overlap are shown in ma-genta.

distal and peripheral vessel segments. This interpretation is supported by the reduction of
the β0E, whose median decreases from 6 to 3. For both loss configurations, TPβ0E becomes
0 after retaining only the largest components, which is expected since the number of retained
components is chosen to match the number of reference connected components.

Overall, filtering out small connected components can be considered a viable lightweight
postprocessing step, as it has little, if any, adverse effect on volumetric overlap and centerline
completeness for both loss configurations while reducing the global connected-component
error. Nevertheless, the small performance drop observed for some metrics indicates that
size-based filtering may also remove correctly predicted vessel parts. In particular, true
vessel segments may appear as small components and can then be discarded, as illustrated by
two examples in Figure 4.13. In these cases, the discarded component is separated from the
main tree by only a small gap. A simple reconnection heuristic may therefore be preferable,
e.g. by linking components that are spatially close along the expected vessel course [85],
thereby preserving more of the coronary artery tree.

The same caveat applies when retaining only the largest components. This strategy requires
prior information about the number of connected components for the given case. In most
patients, retaining the two largest components is sufficient, as they typically correspond to
the left and right coronary trees. However, anatomical variants such as multiple ostia, as
observed in our cohort, can yield more than two major trees. An overly restrictive choice may
therefore remove an entire correctly predicted vessel tree. If such case-specific information
is available and this postprocessing is to be used, it should be applied only when the
predicted coronary tree is already largely connected. Otherwise, in fragmented predictions,
retaining only the largest components may discard correctly predicted vessel segments. This
behavior is reflected in the strong decrease in clTPR observed under Lgeneric, whereas under
Lconnectivity,SR the decrease is only marginal. Since the main goal of this work is to compare
loss configurations rather than to optimize the overall segmentation performance, we do
not apply connected-component filtering in the final experiment (Section 4.5), as it would
introduce an additional factor that disproportionately benefits Lconnectivity,SR.
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4.5 Final Experiment

In the final experiment, we statistically compare the two loss configurations Lgeneric and
Lconnectivity,SR to address the research hypothesis. The comparison is conducted via 5-fold
cross-validation on 98 cases. We use the nnU-Net-based evaluation pipeline with the param-
eter settings and processing steps established in the preceding sections. Volumetric overlap
is quantified using Dice for vessel mask accuracy as well as clDice and εDice for vessel
accuracy. Connectivity is evaluated using clTPR and TPβ0E for centerline completeness,
complemented by GC to quantify residual gaps. Computational cost is measured by the total
training time. In light of these evaluation criteria, the research hypothesis is defined as:

Research Hypothesis

Adding Skeleton Recall to the generic loss improves coronary artery tree connectiv-
ity compared to the generic loss alone, without substantially degrading volumetric
accuracy or increasing computational cost.

To formally test this hypothesis, we formulate the following null hypotheses:

Null Hypotheses

◦ Hvol
0 : Lconnectivity,SR substantially degrades volumetric overlap compared to

Lgeneric.
◦ Hconn

0 : Lconnectivity,SR does not improve coronary artery tree connectivity com-
pared to Lgeneric.

◦ Hcomp
0 : Lconnectivity,SR substantially increases computational cost compared to

Lgeneric.

As shown in Section 4.2.1, the evaluation metrics exhibit predominantly non-normal distri-
butions. We therefore employ non-parametric statistical tests. Specifically, we use one-sided
Wilcoxon signed-rank tests at a significance level of α = 0.05, as detailed in Section 3.6. To
test Hvol

0 and Hcomp
0 , we perform non-inferiority tests with margins of δvol = 1 and δcomp = 3,

corresponding to one percentage point in volumetric overlap and approximately 10% of
the training time observed for Lgeneric, respectively. We choose one percentage point as a
practical equivalence margin, since differences of this magnitude are typically within the
expected variability of overlap metrics and rarely reflect a meaningful qualitative change.
We consider a 10% increase in training time a modest and acceptable overhead, as training is
performed offline and does not affect clinical turnaround, provided that it yields measurable
improvements in coronary tree connectivity. To test Hconn

0 , we apply a superiority test to
assess whether Lconnectivity,SR achieves significantly higher connectivity.

For volumetric overlap and connectivity, Table 4.13 reports the per-metric results together
with the corresponding p-values obtained from paired statistical tests across 98 cases. For
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Metric Lgeneric Lconnectivity,SR p-value
Dice 79.11 [74.19, 81.46] 77.99 [74.40, 81.38] 9.15×10−4

clDice 87.58 [84.46, 90.78] 86.71 [82.91, 89.14] 4.26×10−3

εDice 94.17 [91.77, 95.92] 93.58 [91.43, 95.24] 2.53×10−4

clTPR 89.89 [84.49, 95.41] 93.86 [90.54, 97.60] 2.61×10−17

TP β0 E 2 [1, 3] 1 [0, 2] 2.70×10−6

GC 1 [0, 2] 1 [0, 1] 1.00×10−3

Table 4.13: Comparison of volumetric overlap and connectivity metrics between Lgeneric and
Lconnectivity,SR. Values are reported as median [Q1, Q3] across 98 cases; p-values are obtained frompaired one-sided Wilcoxon signed-rank tests.

Metric Lgeneric Lconnectivity,SR p-value
Runtime 26.50 [25.47, 26.53] 29.28 [29.08, 29.85] 3.13×10−2

Table 4.14: Comparison of training runtime in hours across the five paired cross-validation folds. Valuesare reported asmedian [Q1, Q3]; p-value is obtained from paired one-sidedWilcoxon signed-rank tests.

computational cost, Table 4.14 reports the results and the corresponding p-value obtained
from paired tests across the five cross-validation folds.

Overall, the results show that adding the SR leads to clear improvements in coronary artery
tree connectivity, accompanied by only minor reductions in volumetric overlap and a modest
increase in training time. All observed effects were statistically significant under the applied
testing framework, either in terms of superiority or non-inferiority.
Accordingly, we reject Hvol

0 , Hconn
0 , and Hcomp

0 and accept following alternative hypotheses:

Alternative Hypotheses

◦ Hvol
A : Lconnectivity,SR does not substantially degrade volumetric overlap com-

pared to Lgeneric.
◦ Hconn

A : Lconnectivity,SR improves coronary artery tree connectivity compared to
Lgeneric.

◦ Hcomp
A : Lconnectivity,SR does not substantially increase computational cost com-

pared to Lgeneric.

To put the aggregate findings into a practical perspective, we complement the quantitative
comparison with qualitative case studies. As a first step, we illustrate representative extreme
cases by selecting the best and worst cases according to the Dice score across both loss con-
figurations. Table 4.15 reports the corresponding quantitative metrics, whereas Figures 4.14
and 4.15 provide qualitative comparisons based on rendered 3D volumes and sMPRs, respec-
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Worst case Best case
Metric Lgeneric Lconnectivity,SR Lgeneric Lconnectivity,SR
Dice 51.75 53.44 87.12 87.24
εDice 95.80 95.75 98.16 97.80
TPβ0E 3 0 4 0

Table 4.15: Quantitative metrics for the global best and worst cases selected according to the Dicescore across Lgeneric and Lconnectivity,SR.

Best Case 

Worst Case 

M2

D1 D1

M2

D3
PDA

D3
PDA

LAD LAD

Figure 4.14: Qualitative comparison of the global worst (top row) and best (bottom row) cases selectedaccording to the Dice score across Lgeneric and Lconnectivity,SR. The reference is shown in blue andthe predictions in red. All results are visualized as 3D-rendered volumes. Column 1 shows the ref-erence, Column 2 the prediction obtained with Lgeneric, and Column 3 the prediction obtained with
Lconnectivity,SR. Red arrows highlight disconnected vessel segments, whereas green arrows indicatesegments that remain connected.

tively. The sMPRs focus on vessel segments that exhibit visible connectivity breaks in the
TP mask, allowing a direct comparison between the corresponding segmentations obtained
with Lgeneric and Lconnectivity,SR.

The quantitative metrics of the selected cases are consistent with the global statistical
findings. While differences in volumetric overlap are small in magnitude, connectivity-
related metrics show pronounced improvements under Lconnectivity,SR. For the worst case,
Dice is substantially lower than εDice for both loss configurations, indicating that most
discrepancies arise from boundary inaccuracies and locally reduced vessel thickness rather
than from failures in capturing the underlying vessel topology. This behavior is also visible
in the rendered volumes, where the reference annotation appears noticeably thicker than both
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Figure 4.15: sMPRs of the vessel segments highlighted by arrows in Figure 4.14, shown for both
Lgeneric and Lconnectivity,SR. The reference segmentation is shown in blue, and voxels where referenceand prediction overlap are shown in magenta.

predictions. The sMPRs further reveal incomplete boundary coverage along representative
vessel segments.
While these boundary deviations largely explain the low Dice in this case, they do not
account for the main qualitative difference between both loss configurations, which lies
in the connectivity of the segmented tree. Specifically, under Lgeneric several distal vessel
segments are fragmented, resulting in multiple disconnected TP components. These breaks
are highlighted by the red arrows in the rendered volumes and are also evident in the
corresponding sMPRs, where the vessel course is interrupted. In contrast, Lconnectivity,SR

preserves these segments as a continuous vessel course, yielding a TPβ0E of 0.
For the best case, Dice and εDice are closely aligned for both loss configurations. Qualita-
tively, this is reflected in the rendered volumes, where the predictions follow a similar vessel
course as the reference. Compared to the worst case, the reference annotation exhibits a less
pronounced vessel thickness. Consistently, the sMPRs show a more complete coverage of
the vessel boundaries.
Nevertheless, connectivity-related differences also persist in this case. While Lgeneric still
exhibits small discontinuities in distal branches, Lconnectivity,SR again yields a fully connected
true-positive mask, reflected by a TPβ0E of 0.

Notably, along the LAD a distal connectivity break can still be observed under Lconnectivity,SR.
This break occurs beyond the annotated reference extent and is therefore classified as distal
FP, and thus does not affect TPβ0E. Interestingly, we observed this pattern in many cases: the
prediction extends beyond the end of the reference annotation and subsequently fragments
shortly after the reference terminates. To systematically identify and quantify this and
related error patterns, we analyze the proposed subclasses of FP and FN voxels introduced in
Section 3.5.6. An example of this distal FP fragmentation pattern is shown in Figure 4.16.
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Figure 4.16: Example of a case with distal FP fragmentation beyond the annotated reference extentunder Lconnectivity,SR. The prediction is decomposed into TP voxels (magenta) and FPdist voxels (beige).Column 1 shows the 3D-rendered volume of the decomposed prediction. Column 2 shows a corre-sponding CCTA slice with voxel overlay. Column 3 shows a contrast-adjusted CCTA slice; the beigeellipse highlights an anatomical region contributing to the FPdist extension.

The prediction contains a noticeable proportion of FPdist voxels extending beyond the
annotated reference extent. The corresponding CCTA views suggest the presence of vessel-
like structures with similar intensities beyond the annotation terminus, indicating that the
reference may be truncated in this region. However, the distal continuation is not predicted as
a single coherent course, such that a small gap within the extension leads to distal connectivity
breaks.
Notably, the same distal fragmentation pattern is also observed under Lgeneric, indicating
that this behavior is not specific to the added SR loss. Instead, it appears to be a more general
property of the network and the training data. In particular, when vessel-like structures are
visible beyond the annotated reference extent, the network tends to extrapolate the vessel
course based on local appearance cues. In the absence of a supervisory signal beyond the
annotation boundary, such extrapolations can become unstable and fragment shortly after the
reference’s distal end.

Another typical FP pattern observed in the predictions, independent of the loss function,
corresponds to the FPfloat subclass. In many cases, these isolated components coincide not
only with noise-driven artifacts but also with vessel-like structures visible in the CCTA
volume, such as veins or other tubular anatomical structures. Figure 4.17 illustrates an
example of this pattern.
In this example, the largest FPfloat component has a tubular shape that resembles a typical
coronary vessel. Similar to FPdist extensions, the corresponding CCTA image exhibits vessel-
like structures and contrast-enhancement patterns at this location, suggesting the presence
of a vascular anatomical structure. In this particular case, the structure is consistent with a
venous vessel rather than a coronary artery. This observation indicates that the network relies
strongly on local appearance cues, which can lead to the segmentation of vessel-like tubular
structures that do not belong to the coronary artery tree.
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Figure 4.17: Example of a case with floating FP components. The prediction is decomposed into TPvoxels (magenta) and FPfloat voxels (cyan). Column 1 shows the 3D-rendered volume of the decom-posed prediction. Column 2 shows a corresponding CCTA slice with mask overlay. Column 3 shows acontrast-adjusted CCTA slice; the cyan ellipse highlights an anatomical region associated with a FPfloatcomponent.

A plausible contributing factor is contrast timing. Although CCTA is optimized for arterial
coronary opacification, veins can exhibit comparable attenuation depending on bolus timing,
cardiac output, and patient-specific hemodynamics. As contrast passes through the cardiac
chambers and subsequently opacifies the venous circulation, parts of the venous system may
appear strongly enhanced at the time of acquisition, providing appearance cues that can
trigger FPfloat predictions. Moreover, limited training data may prevent the network from
learning a strong spatial prior for the typical location of the coronary arteries.

The remaining subclass, FPprox, occurs only in two cases with a noticeable magnitude. Visual
inspection suggests that these instances can be attributed to missing proximal annotations
near the coronary ostium, which were subsequently corrected during data curation. Since the
observed FPprox pattern is thus not representative of the finalized dataset, we do not further
analyze this subclass in the following.

Although Lconnectivity,SR improves connectivity significantly, a subset of cases still exhibits
residual discontinuities in the predicted coronary artery tree. We therefore analyze subclasses
of FN voxels to characterize systematic missing voxels relative to the reference segmentation.
While our FN confusion set subdivides into FNthin for locally reduced vessel thickness
and FNshort for prematurely truncated predictions, the subclass FNdisc directly affects tree
connectivity and is therefore particularly relevant in the context of this work.
We therefore focus on voxels classified as FNdisc that persist even under Lconnectivity,SR

and thus represent failure modes that are not resolved by connectivity-aware supervision.
Figure 4.18 illustrates a representative case in which an FNdisc segment corresponds to
a missing vessel portion that would connect two otherwise disconnected TP components,
thereby manifesting as a connectivity break in the network prediction. In the contrast-adjusted
CCTA image, the proximal and distal parts of the vessel show clear contrast enhancement,
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Figure 4.18: Example of a case with decomposed prediction for FN subclasses under Lconnectivity,SR.The prediction is decomposed into TP voxels (magenta), FNdisc voxels (yellow), FNthin voxels (cyan) and
FNshort voxels (beige). Column 1 shows the 3D-rendered volume of the decomposed prediction. Col-umn 2 shows a CCTA slice with voxel overlay focusing on the FNdisc region. Column 3 shows thecorresponding contrast-adjusted CCTA slice; the yellow ellipse highlights the anatomical region associ-ated with the FNdisc component.

TP FNdisc FNthin FNshort

HU 354.33 172.13 181.02 139.87
Table 4.16: Median HU values over all TP voxels and FN voxel subclasses in the cases under
Lconnectivity,SR.

whereas the intermediate segment exhibits markedly reduced attenuation, coinciding with
the region missed by the model. This observation is consistent with Table 4.16, where FNdisc

voxels exhibit substantially lower median HU values than TP voxels.

Similar trends are observed for FNthin and FNshort, suggesting that FN predictions preferen-
tially occur in vessel portions with reduced HU values relative to typically well-enhanced
adjacent coronary segments. Notably, this pattern is observed irrespective of the loss config-
uration. In particular for FNdisc, it indicates that locally reduced vessel contrast constitutes a
key appearance-related bottleneck that persists even under connectivity-aware supervision.
To further support this interpretation, we compare the predicted foreground softmax probabil-
ity on FNdisc voxels and, for reference, on TP voxels under both Lgeneric and Lconnectivity,SR

in Table 4.17.
Both losses assign high foreground probability to TP voxels, whereas FNdisc voxels consis-
tently receive low foreground probability. This supports our interpretation that appearance-
related limitations dominate these errors and are not substantially mitigated by the choice of
loss configuration.
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Lgeneric Lconnectivity,SR
TP FNdisc TP FNdisc

FG Probability 92 18 93 20
Table 4.17: Foreground (FG) softmax probabilities for TP and FNdisc under Lgeneric and Lconnectivity,SR.Values denote the median over all voxels in the respective set.

Step Artefact Motion Artefact High Curvature Close To Air

Figure 4.19: Representative examples of image-related root causes of connectivity disruptions.

Figure 4.20: Boxplot of TPβ0E for the left and right coronary artery tree under Lconnectivity,SR.

Beyond low-contrast vessel portions, additional image-related factors were identified as
recurrent root causes of connectivity disruptions in the predicted coronary artery tree that can
still occur under Lconnectivity,SR. Figure 4.19 illustrates representative examples, including
step artifacts, motion-induced blurring, high vessel curvature, and vessel segments located
close to air-filled structures.

In addition to the error pattern analysis, we observed systematic differences between the left
and right coronary artery trees. As illustrated in Figure 4.20, the left coronary tree exhibits
a lower median TPβ0E and a comparatively compact interquartile range, whereas the right
coronary tree shows a broader distribution with several pronounced outliers. This indicates
that severe connectivity disruptions occur more frequently in the right coronary tree.
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This indicates that severe connectivity disruptions occur more frequently in the right coronary
tree. A plausible contributing factor is the use of a late-diastolic ECG-gated reconstruction
window in our cohort. Late diastole often provides high image quality for the LAD and LCx,
but can be suboptimal for the RCA and may increase sensitivity to motion- and reconstruction-
related artifacts [86]. Furthermore, we observed that the reference annotations were more
complete for the left coronary tree than for the right tree, which can affect both model
supervision and the evaluation of connectivity-related errors and may therefore contribute to
the observed differences.

Taken together, the qualitative case studies and the error decomposition suggest that the
main failure modes are largely driven by appearance- and acquisition-related limitations in
coronary artery segmentation. Nevertheless, the statistical analysis demonstrates that adding
SR to the generic loss yields statistically significant and practically relevant improvements
in coronary artery tree connectivity, while maintaining comparable volumetric overlap and
incurring only a modest increase in training time. This makes SR a robust and lightweight
approach for improving connectivity and topology preservation without relying on complex
pipelines or extensive postprocessing.



Chapter 5
Conclusion

This chapter summarizes the experiments and discusses the main findings and their implica-
tions. It concludes by answering the research question posed in Section 1.3 and by outlining
potential directions for future work.

The thesis follows a typical end-to-end machine learning workflow for medical image seg-
mentation. It starts with data curation and dataset analysis, which involves validating the
available cohort and refining it via consistency checks and quality control. A lightweight ex-
ploratory pipeline enables rapid iteration and low-overhead preliminary experiments, thereby
validating key design choices. Building on these insights, an nnU-Net-based evaluation
pipeline quantifies the benefits and limitations of connectivity-preserving losses compared
to a generic baseline loss for coronary artery segmentation. Performance is assessed using
complementary metrics covering vessel mask accuracy, vessel accuracy, centerline com-
pleteness, and runtime, thereby capturing volumetric overlap, connectivity-related effects,
and computational cost. In addition, paired statistical tests determine whether observed
differences between the generic baseline loss and the SR-based connectivity-preserving
configuration are statistically significant.

The experimental results are summarized in the following. We first examine three sliding-
window overlap configurations (0%, 25%, and 50%) in Section 4.1, focusing on their
impact on connectivity and inference time. A 50% overlap yields the best connectivity but
substantially increases inference time. However, since inference accounts for only 1.5% of
the end-to-end runtime in this setup, this overhead is negligible in practice, and 50% overlap
is adopted for all subsequent experiments.

The baseline experiments in Section 4.2 use the exploratory pipeline to provide an initial
comparison between Lgeneric and Lconnectivity,SR and to establish a reference configuration
for the subsequent nnU-Net-based evaluation pipeline.
The data distribution analysis in Section 4.2.1 shows that most evaluation metrics exhibit
non-normal distributions, motivating the use of medians and interquartile ranges for reporting
as well as non-parametric paired tests in the final statistical analysis.
The metric suitability analysis in Section 4.2.2 shows that HD95 is strongly influenced by
peripheral FP structures and therefore poorly reflects vessel delineation quality in this setting.
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Similarly, the commonly used β0E is partly dominated by boundary-related FP components
rather than reflecting true coronary tree connectivity. Consequently, Dice is adopted as the
representative vessel mask accuracy metric, clDice and εDice are used as vessel accuracy
metrics, and clTPR together with TPβ0E are selected as the primary connectivity measures.
Finally, the blueprint parameter study in Section 4.2.3 identifies the U-Net template with
SGD and Nesterov momentum combined with the PolyLR learning-rate schedule as a stable
configuration for the nnU-Net framework.

In Section 4.3, the nnU-Net-based evaluation pipeline systematically compares Lgeneric with
multiple connectivity-preserving losses (Lconnectivity,SR, Lconnectivity,clDice, Lconnectivity,cbDice,
and Lconnectivity,clCE).
Across all overlap-based metrics, including Dice, clDice, and εDice, performance remains
largely invariant, indicating that connectivity-aware supervision does not compromise volu-
metric accuracy.
In contrast, the connectivity metrics exhibit pronounced differences between loss configura-
tions. Lconnectivity,SR provides the most consistent improvement, reflected by higher clTPR
and lower TPβ0E, with favorable distribution shifts and fewer low-performing outliers. Qual-
itative analysis further confirms that the SR-based model yields more continuous coronary
trees with more complete distal vessel courses, whereas other loss formulations frequently
exhibit premature terminations or fragmentation.
In addition, computational analysis shows that Lconnectivity,SR incurs only a marginal in-
crease in training time, while the other connectivity-preserving losses substantially increase
computational cost.
Taken together, these results identify SR as the most effective and practically viable connectivity-
preserving term in this setting.

The ablation studies in Section 4.4 investigate how selected design choices influence coronary
artery tree segmentation.
Adding a multiscale DoG-based vesselness map as an auxiliary input channel in Section 4.4.1
does not yield consistent improvements in either overlap or connectivity metrics under
Lgeneric or Lconnectivity,SR, indicating that vesselness-based input augmentation cannot repro-
duce the connectivity gains provided by the SR term.
Section 4.4.2 compares a thin skeleton, a tubed skeleton, and the full reference mask as
recall targets for the SR loss. The results show that larger spatial support improves centerline
completeness but shifts the optimization toward higher foreground coverage, reducing
precision. In this dataset, the tubed skeleton provides the most robust trade-off and is selected
as the preferred recall target.
The postprocessing study in Section 4.4.3 shows that applying heart-mask cropping during
postprocessing rather than during preprocessing improves connectivity-related metrics while
maintaining comparable volumetric overlap, as it allows training with an in-plane isotropic
patch geometry.
Beyond cropping, Section 4.4.3 also evaluates lightweight connected-component filtering as
an additional postprocessing option. This filtering reduces the global connected-component
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error but can remove correctly predicted distal segments, particularly for fragmented predic-
tions under Lgeneric, leading to reduced centerline completeness. Since it disproportionately
benefits Lconnectivity,SR, it is not applied in the final experiment to ensure a fair comparison.

Section 4.5 reports the final, hypothesis-driven experiment that formally addresses the
research question. The analysis tests superiority for connectivity and non-inferiority for
volumetric overlap and training time when comparing Lconnectivity,SR against Lgeneric. The
results show a clear and statistically significant improvement in connectivity, while the
small reductions in volumetric overlap and the increase in training time remain within the
predefined non-inferiority margins.
A recent manuscript [87] questions the general effectiveness of Lconnectivity,SR and reports
that it does not consistently outperform the generic loss. However, the study does not include
connectivity-aware evaluation metrics, which are essential for assessing thin tubular structure
segmentation quality. As a result, conclusions drawn solely from volumetric overlap metrics
do not fully capture the primary objective of adding the SR term, namely improved centerline
completeness and fewer connectivity breaks, a trend that is consistent across our experiments
and becomes statistically significant in the final analysis.

Despite these improvements, a subset of cases still exhibits residual errors and local discon-
tinuities. One recurring pattern is distal extension beyond the annotated reference extent
followed by fragmentation shortly after the annotation terminates, which is primarily driven
by annotation truncation. Future work can investigate endpoint extension strategies or
continuity-aware regularization terms that explicitly stabilize distal predictions beyond the
annotated reference extent.
Another failure mode corresponds to vessel portions with reduced HU values relative to
adjacent segments. For these voxels, the network assigns low foreground confidence, result-
ing in gaps along otherwise continuous vessel courses. Additional image-related factors,
such as motion blur and high curvature, also contribute to disruptions. Improved robustness
can be pursued by increasing training-data diversity with respect to anatomical variants and
acquisition conditions and by emphasizing low-attenuation vessel voxels during training.
Besides connectivity-breaking errors, the network also segments non-coronary vessel-like
structures, such as veins, as foreground. Potential mitigation strategies include additional
supervision by labeling venous structures and training a multi-class model or adding a loss
term that penalizes predictions in regions annotated as veins.

We conclude and directly answer the research question; the benefits and challenges of
integrating connectivity-preserving losses depend strongly on their specific configuration.
Across all investigated loss formulations, overlap-based performance remains comparable
to the generic baseline, indicating that connectivity-aware supervision does not inherently
degrade volumetric agreement. However, substantial differences arise in connectivity gains
and computational cost. Lconnectivity,clDice, Lconnectivity,cbDice, and Lconnectivity,clCE rely on
differentiable skeleton-based methods and incur pronounced increases in training time while
providing limited or inconsistent improvements in connectivity-related metrics. In contrast,
augmenting the generic loss with an SR term improves coronary artery tree connectivity in
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a statistically significant and practically relevant manner while keeping the training-time
overhead negligible. Its advantages stem from a simple and robust design: the loss requires
only a precomputed reference skeleton, which can be generated during data loading using
standard libraries. Furthermore, the approach is architecture-agnostic and straightforward
to implement, providing a practical connectivity improvement without relying on complex
pipelines or extensive postprocessing.

Beyond the scope of this work, several directions for future research emerge. A central
aspect concerns annotation consistency across datasets. In this study, the two cohorts differ in
annotation protocols and annotated extent, leading to systematic differences in distal vessel
labeling and label thickness. These discrepancies bias both overlap- and skeleton-based
evaluation and can induce apparent fragmentation at annotation boundaries. Standardizing la-
beling guidelines across cohorts, potentially supported by interactive annotation tools, would
reduce such dataset-specific effects and enable a more reliable comparison of segmentation
methods.
In addition, enlarging the cohort and rolling out the pipeline to larger multi-center datasets,
such as ImageCAS [88], would allow for a more robust evaluation of generalization.

Another promising direction is the explicit handling of recurrent FP predictions. Model
predictions can be used in an iterative, model-assisted workflow to identify hard negatives:
repeatedly collecting high-confidence FP regions (e.g., veins or other vessel-like structures),
manually annotating them as an additional negative mask, and fine-tuning the model with
loss terms that penalize coronary predictions in these confounder regions. This hard-negative
mining strategy could reduce spurious components. Complementarily, explicitly predicting a
coronary-specific ROI, e.g., via a dedicated localization network or joint multi-task learn-
ing, could suppress FP predictions outside the coronary tree and simplify the subsequent
segmentation task.

To address residual FNs and small connectivity breaks, future work can further investigate
strategies that explicitly target gap closure and distal completeness. This includes postpro-
cessing techniques such as centerline-guided reconnection or constrained morphological
bridging, as well as training-time approaches that emphasize low-confidence vessel voxels in
low-attenuation or artifact-affected segments.
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