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Zusammenfassung

Das Forschungsprojekt NeuRoBot hat das unüberwachte Erlernen einer neu-
ronal inspirierten Steuerungsarchitektur zum Ziel, und zwar unter den Rand-
bedingungen biologischer Plausibilität und der Benutzung einer Kamera
als einzigen Sensor. Visuelle Merkmale, die ein angemessenes Abbild der
Umgebung liefern, sind unerlässlich, um das Ziel kollisionsfreier Naviga-
tion zu erreichen.

Zeitliche Kohärenz ist ein neues Lernprinzip, das in der Lage ist, Er-
kenntnisse aus der Biologie des Sehens zu reproduzieren. Es wird durch
die Beobachtung motiviert, dass die “Sensoren” der Retina auf deutlich kür-
zeren Zeitskalen variieren als eine abstrakte Beschreibung. Zeitliche Lang-
samkeitsanalyse löst das Problem, indem sie zeitlich langsam veränderliche
Signale aus schnell veränderlichen Eingabesignalen extrahiert. Eine Verall-
gemeinerung auf Signale, die nichtlinear von den Eingaben abhängen, ist
durch die Anwendung des Kernel-Tricks möglich. Das einzig benutzte Vor-
wissen ist die zeitliche Glattheit der gewonnenen Signale.

In der vorliegenden Diplomarbeit wird Langsamkeitsanalyse auf Bild-
ausschnitte von Videos einer Roboterkamera und einer Simulationsumge-
bung angewendet. Zuallererst werden mittels Parameterexploration und
Kreuzvalidierung die langsamst möglichen Funktionen bestimmt. Anschlie-
ßend werden die Merkmalsfunktionen analysiert und einige Ansatzpunkte
für ihre Interpretation angegeben. Aufgrund der sehr großen Datensätze
und der umfangreichen Berechnungen behandelt ein Großteil dieser Arbeit
auch Aufwandsbetrachtungen und Fragen der effizienten Berechnung.

Kantendetektoren in verschiedenen Phasen und mit hauptsächlich hori-
zontaler Orientierung stellen die wichtigsten aus der Analyse hervorgehen-
den Funktionen dar. Eine Anwendung auf konkrete Navigationsaufgaben
des Roboters konnte bisher nicht erreicht werden. Eine visuelle Interpreta-
tion der erlernten Merkmale ist jedoch durchaus gegeben.
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Abstract

The NeuRoBot project aims at unsupervisedly learning a control architec-
ture for an autonomous mobile robot under the constraint of biological plau-
sibility and the use of a stereo camera as single sensory device. Visual fea-
tures providing an appropriate representation of the scene are essential for
approaching the goal of navigation and collision avoidance.

Temporal coherence is a recent learning paradigm, able to reproduce
findings from low-level vision. It is motivated by the observation that the
“primary sensors” of the retina vary on much smaller time scales than a
high-level description. Slow Feature Analysis solves the problem of extract-
ing slowly varying signals from quickly varying sensory input. A general-
ization to signals depending nonlinearly on the input is possible by virtue
of the kernel trick. The only prior knowledge is temporal smoothness of the
extracted signals.

In this thesis, Slow Feature Analysis is applied to image patches of videos
from a robot’s camera and a simulator. In a first step, optimally slow func-
tions are identifed by parameter exploration and cross-validation. Subse-
quently, the feature projections are analyzed and some clues for interpreta-
tion are supplied. Repeated application of the method leads to a multi-layer
architecture which is briefly explored. Due to the large data sets and the
very costly calculations, a part of the work also comprises complexity con-
siderations and means of efficient computation.

Edge detectors in different phases and essentially in horizontal orien-
tation constitute the most prominent class of functions emerging from the
analysis. A concrete application to robot navigation could not be achieved
but visual interpretation of the learned feature images is possible.
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Chapter 1

Introduction

Artificial intelligence, a subfield of computer science, addresses learning
and intelligent behavior in machines. First experimental approaches, going
back to the 1950s, can be divided into two major branches:

• The former, called the symbolic, classic or neat approach consists in
the manipulation of abstract symbolic concepts paving the way to ex-
pert systems.

• The latter, termed connectionist or scruffy approach, rather focuses
on evolution of intelligence by some process and blossoms into the
famous neural networks.

Even the combination of both directions suffers from severe limitations.
Below the line, the early goals such as imitation and simulation of hu-

man behavior were totally missed. Marvin Minsky1, one of the early pio-
neers, sees “no progress towards a general intelligence”. He is even quoted
by Drösser [2006] claiming “artificial intelligence is braindead”. Man and
machine seem to have very opposed capabilities: Computers can perform
fast sequential calculations, man is able to evaluate, interpret and under-
stand in parallel.

New attempts, like the concept of behavior-based artificial creatures sit-
uated in the world, as promoted by Rodney Brooks2, receive inspirations
from biology and focus more on the performance of a machine than on the
processes inside. Many researchers including Sebastian Thrun3 are of the
opinion that “general and everyday knowledge is the ’Holy Grail’ of artifi-
cial intelligence”. There are projects collecting large databases of such facts,
but up to now, nobody is able to build a machine taking advantage of it.

Modern machine learning is strongly rooted in statistics and pursues far
less ambitious objectives. One is occupied by extracting knowledge from

1Professor at the MIT Media and Artificial Intelligence Laboratories and one of the ini-
tiators of the famous Darmouth Conference: http://web.media.mit.edu/~minsky/

2Professor of robotics and director of the MIT Computer Science and Artificial Intelli-
gence Laboratory (CSAIL): http://people.csail.mit.edu/brooks/

3Associate professor and director of the Stanford Artificial Intelligence Laboratory
(SAIL): http://robots.stanford.edu/

1

http://web.media.mit.edu/~minsky/
http://people.csail.mit.edu/brooks/
http://robots.stanford.edu/
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large corpuses of data, unsupervisedly learning the structure of data sets,
recognizing patterns, predicting the generalization of statistical methods
and by finding evidence for hypotheses. Machine learning is a practical
field solving more concrete problems, e.g. control or speech recognition.
Topics like genuine machine intelligence and conscience are rather consid-
ered to be philosophical gimmicks.

The NeuRoBot project is a fundamental research study combining robotics
and machine learning. As major guideline serves the question, to what ex-
tent, recent methods of neural information processing are capable of learn-
ing adaptive control.

1.1 Research Project NeuRoBot

This thesis is part of the DFG project NeuRoBot [Musial et al., 2004] which
aims at developing a neurally and biologically inspired steering architecture
for a mobile robot. Initiated as a collaboration between the Neural Informa-
tion Processing Group and the Real Time Systems & Robotics Group of the
Technische Universität Berlin, a variety of fields of research is involved. For
a period of 3 years, starting in July 2004, a group of six people, comprising
one post-doc position, one PhD student and four student assistants, jointly
work on the project.

The main tasks to solve are collision avoidance and navigation to known
places. However, the focus is on biological plausibility rather than on true
performance. Much of the learning is supposed to be done in a simulator
environment which mainly consists of a modified game engine to prevent
the robot from damage, to have an absolutely controlled scenario and to
speed up simulations. After a pre-learning phase, the stereo camera serves
as solitary sensor.

Continuous reinforcement learning is evaluated based on the sonar beam
measurements for collision avoidance by the Real Time Systems & Robotics
Group. Furthermore classification and recognition abilities of Leabra net-
works are assessed. Also the simulator and onboard software of the robot is
developed by the Robotics group. Any symbolic body of rules is prevented
and neural learning methods are used instead.

Low-level visual information processing and feature extraction falls in
the domain of the Neural Information Processing Group. From the cam-
era inputs, in a second step one would like to learn a representation of the
scene which is more abstract than the gray values of the pixels and contains
information such as motion and landmarks. Higher cognitive tasks like ob-
stacle detection and self-localization should build on that description of the
world and naturally lead to intelligent behavior like specific motor control
and collision avoidance.



1.1. RESEARCH PROJECT NEUROBOT 3

Figure 1.1: The autonomous mobile robot Pioneer 3-DX 8 as manufactured
by MOBILEROBOTS Inc (formerly ActivMedia Robotics) is endowed with
a stereo camera mounted on a pan-tilt unit.

1.1.1 The robot

Among standard general purpose mobile robots, the Pioneer 3DX built by
MOBILEROBOTS Inc4 as depicted in Figure 1.1 is one of the most
widespread platforms currently in use. It is suitable for a large variety of
different applications such as research and science as well as security and
surveillance. Many different components and accessories like laser,
compass, GPS, grippers and sound systems are available.

The present system has a built-in PC with a PIII 850 MHz processor, a
40 GB hard disk and both wireless and Ethernet network adapters. Slopes
up to 25 per cent can be handled by the robot, that measures 44×40×24 cm3

and achieves velocities up to 1.2 m
s ,4.3km

h on plain ground. Several sensors
provide the system with information:

• Physical contact, e.g. with an obstacle, is measured by bumper panels
on the front and on the rear side of the robot with five bumpers each.
A pair of 100 g pressure sensors provides the sensory information.

• Distances are metered by a bank of eight ultra-sonic sensors with a
field of view comprising 180◦. At a rate of 25 Hz ranges reaching from
10 cm to 5 m can be captured.

• Stereo images are supplied by a camera that can be panned and tilted
via a serial interface.

A set of 5 batteries allows the robot to independently operate for more than
an hour.

4See the website http://www.activrobots.com/ for details on mobile robots and
information on Pioneer systems in general.

http://www.activrobots.com/
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Figure 1.2: The Bumblebeer stereo camera is produced by POINT GREY
Research and grabs color videos at 30 frames per second.

1.1.2 The camera

Two Sony ICX084 color cameras with 1
3

,, progressive scan CCD are the main
building block for the Bumblebeer 1.2 stereo camera 5.

Videos at a resolution of 2· 640×480 pixels can be grabbed at 30 frames
per second for mono and 15 frames per second for stereo images. The
“golden brick” weighs approximately 375 g and measures 160×40×50 mm3.
Shutter speed reaches from 1

8000
s to 1

30
s. The device is interfaced by the IEEE-

1394 firewire bus which is also the way the power consumption of 2.1 W is
satisfied.

There are no major complaints concerning hardware. Problems start if
one tries to operate the unit using Linux as operating system. POINT GREY
Research seems to favor software development on Windowsr XP. Two li-
braries, namely Digiclopsr and Triclopsr are provided to access the camera
and perform some low-level stereo vision tasks respectively. Both applica-
tion programming interfaces are written in C/C++ but are only distributed
in binary format which obfuscates the underlying mechanisms and require
a lot of blind trust on the part of the user. Algorithms regarding disparity
and depth maps are not properly documented and are intended to work as
black boxes.

However, on Linux systems the camera can directly be operated using
the libdc13946 library and the public domain viewer Coriander 7 which
circumvents many of the issues causing trouble.

Together with libjpeg8 it is possible to control the robot via wireless
network, grab stereo images at 15 frames per second and compress the
stereo images on-line.

5More information about the camera and can be found on the corporate website of
POINT GREY Research http://www.ptgrey.com/products/bumblebee/.

6The library is available at http://sourceforge.net/projects/libdc1394/.
7The software resides at http://sourceforge.net/projects/coriander/.
8From http://www.ijg.org/ one can download the actual version 6b originally

written in 1998.

http://www.ptgrey.com/products/bumblebee/
http://sourceforge.net/projects/libdc1394/
http://sourceforge.net/projects/coriander/
http://www.ijg.org/
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1.2 Image Statistics and Unsupervised Learning

Images as we perceive them in natural and artificial environments show
some underlying structure. Not all possible configurations of gray valued
pixels on a grid have the same chance to be a valid image. One can treat
images, independent from the meaning of the scene, as realizations of ran-
dom processes and characterize properties of these processes. The follow-
ing section collects some material and some thoughts on statistics of natural
images, highlights some relations to current models of visual processing
and finally discusses some general principles derived from or used for the
analysis of images, that proved to be useful in other domains of machine
learning.

1.2.1 Image statistics

In this thesis, the analyzed objects are natural videos. Videos have spatial
structure – here in two dimensions: height h and width w. Furthermore
there is a temporal component t. In principle, even though images have a
finite size in spaceH×W = [1..H]× [1..W ] and in time T = [1 . . . T ], the first
three dimensions can be seen as compact and sampled regions of infinite
and continuous domains. Contrary to the first three dimensions, images
can additionally be composed of channels, e.g. three or four color channels
c (red, green, blue) or two channels s (left, right) for stereo images.

If one fixes the allowable values of images to be discrete X = [0, 255] or
continuous X = [0 . . . 1] one can understand the set of images as a mapping
from an index set I into the set of gray values X :

x : I → X , I = H×W × T × {R,G,B} × {L,R} (1.1)

One single pixel is addressed by a subscript index t = [h,w, t, c, s]:

∀t ∈ I : xt = x[h,w,t,c,s] ∈ X (1.2)

As already mentioned, not all valid configurations of pixels are equally
probable. This can be formalized as a random process. The next three para-
graphs briefly summarize basic definitions from probability theory.

• The triple (Ω,F ,P) is an abstract probability space with Ω the set of
the outcomes, F the set of events (the set of Borel measurable subsets
B(Ω) of Ω) and the probability measure P assigning a probability to
each event. Note that P(Ω) = 1.

• A random variable is a mapping X : Ω → R such that for any x ∈ R
the set X−1 ((−∞, x]) := {ω ∈ Ω|X(ω) ≤ x} is an event. Any ran-
dom variable X induces a probability measure PX(B) := P(X−1(B))
on the Borel σ-algebra of R. The probability distribution of a random
variable is given by FX(x) := P(X ≤ x) = PX ((−∞, x]) and interval
probabilities are expressed as P(a < X ≤ b) = FX(b)− FX(a).



6 CHAPTER 1. INTRODUCTION

• A family of measurable functions xt∈I from (Ω,F)→ (X I ,B(X )⊗I) is
a stochastic process with state space X and index set I.

Given this formal model, one can now collect a corpus ofN images and deal
with statistics φ(x1

[h,w]∈H×W , . . . ,x
N
[h,w]∈H×W) to describe the set of images as

done in Schaaf [1998]. The simplest possible image statistics would treat
each pixel position individually φ[h,w], e.g. the mean gray value. Assuming
translation invariance means φ[h,w] = φ[h′,w′] and reduces the whole image
process to a set of identical pixel processes. However, first order statistics
capture very little structure because intensities at different positions are cor-
related. Therefore, one deals with statistics of pairs of pixels φ[h,w],[h′,w′], e.g.
the gray value covariance.

Some regularities found in natural images f.i. by Ruderman and Bialek
[1994] include scale invariance and self similarity. That means, if images
are scaled up or down, they show similar behavior. In other words, im-
age patches reveal something about the true structure of images. A review
of statistical properties of natural images is provided by Srivastava et al.
[2003], where also the non-Gaussian behavior (heavy tails and large cur-
tosis) is stressed. Different models for images either probabilistic ones or
models relying on an image manifold are discussed.

Finally, one can also classify images in the frequency domain. In [Tor-
ralba and Oliva, 2003], man made environments like city-views or streets
and natural environments like fields or beaches are classified in terms of
their spectral signature. Man made environments usually contain much
more horizontal and vertical structure than natural images.

1.2.2 Relations to visual processing

In primary visual cortex, two main groups of neurons can be discriminated:
simple and complex cells. Both types of neurons detect edges or lines. In a
nutshell, simple cells respond to bars with a specific orientation and posi-
tion, whereas complex cells respond to oriented bars but they are invariant
to the exact position. The classical model for the output y of these cells
given an input image patch (receptive field) x is written as ysimple = w>x

and ycomplex =
(
w>x

)2
+
(
w′>x

)2 where the weights w are Gabor wavelets
of different orientations.

Some scientists wondered, according to what principle or underlying
fundamental law the weights were adapted. In other words, they tried to
establish a link between the observed shapes of receptive fields and statis-
tical properties of images. To state only one example, Hurri [2003] investi-
gates the relations between the statistics of natural stimuli and properties of
visual neurons and postulates that there is a strong relation that emerged
during evolution.

Another line of thought for explaining the computations in primate vi-
sual system is through the notion of invariance or invariant representation
[Wiskott, 2003a]. Small changes of the stimulus, e.g. scale of the image can
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lead to very significant changes of the retina activity pattern. As our mental
representation does not change in response to small shifts or small scalings,
somewhere in the visual pathway these invariances have to be extracted.
Thus, the study of invariance feature networks can reveal some insight into
the computations of the visual system.

1.2.3 Unsupervised learning paradigms

There are four major principles of computation used as candidates to ex-
plain self-organization in the visual cortex on the one hand and to unsuper-
visedly analyze and represent high-dimensional data sets in machine learn-
ing. The following overview is taken from [Berkes, 2005b].

• Compactness: Efficient coding whilst preserving as much structure
i.e. variance as possible can, in the linear case, be accomplished by
PCA. Minimum description length means in this context, that likely
data points can be represented by a small number of components whilst
minimizing reconstruction error. As a consequence, redundancy in the
data is eliminated or at least significantly reduced.

• Independence: According to the principle of independence, a signal
is represented as a linear mixture of sources. In a probabilistic setting,
the sources are selected such that they are statistically as independent
as possible. Redundancy in the data is modeled, not eliminated. The
standard review of ICA was published by Hyvärinen [1999]. Inde-
pendence as detailed in [Hyvärinen and Hoyer, 2000] leads to color
selective simple cells. If one takes videos of TV broadcasts instead of
images as learning corpus as done by Hateren and Ruderman [1998],
spatio-temporal linear filters emerge, selective to orientation and di-
rection of movement. In addition, the filters are spatio-temporarily
localized and responsive to different spatio-temporal scales.

• Sparseness: Due to Olshausen and Field [1996], simple cell properties
also emerge if the data is represented in a sparse way. Sparseness is
equivalent to a scenario where only a few cells respond at the same
time. Sparse codes are known to decrease the signal-to-noise ratio.
Sparseness means non-Gaussianity which implies equivalence of in-
dependence and sparseness up to a certain extent.

• Slowness: The paradigm of temporal coherence consists of finding
transformation showing a smooth temporal behavior. The SFA algo-
rithm introduced by Wiskott and Sejnowski [2002] is a powerful tool to
extract invariant features. A nice application to an object recognition
task is proposed in [Einhäuser et al., 2005] where viewpoint invariant
representations of artificial objects are learned.

It is also possible to combine the mentioned principles even if they repre-
sent contrary objectives. For example, Blaschke [2005] profoundly relates



8 CHAPTER 1. INTRODUCTION

ICA and SFA as special cases of each other and combines the two meth-
ods to a powerful source separation algorithm. An interesting framework
termed Bubbles and proposed by Hyvärinen et al. [2003] unifies sparseness,
temporal coherence and topographic coherence. Temporal activity bubbles
are obtained by integration of sparseness and temporal coherence. Com-
bination of topographic coherence i.e. spatial smoothness and sparseness
leads to spatially limited “blobs” on the topographic grid. Further adding
temporal coherence leads to spatially and temporally located bubbles of ac-
tivity.

1.3 Outline of the thesis

The thesis at hand comprises five chapters and an appendix with some addi-
tional material. At the beginning, the context of the project is sketched and
an overview of the work is given. Subsequently, in the theoretical chapter,
considerations for linear and nonlinear processing are given and the ques-
tion of empirical measurement is discussed. Concrete details of the imple-
mentation can be found in the third chapter - the practical computer science
part of the thesis. The next chapter is dedicated to empirical simulations
conducted to determine optimal parameter settings and to analyze and in-
terpret the obtained results. Finally, in chapter five, a summary is provided,
a conclusion is drawn and some future thoughts are described.



Chapter 2

Slow Feature Analysis

2.1 Temporal coherence as learning principle

(a) Video recorded in lab, frames {2200, 2230, . . . , 2350}
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(b) Sensor variation
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(c) Internal representation

Figure 2.1: The learning principle of temporal coherence is illustrated com-
paring the quick variations of the pixels of an input video to the slow vari-
ation of a more abstract mental representation. According to the principle,
meaningful representations should exhibit a temporally coherent or slowly
varying structure.

In perceptual tasks like vision, the following observations can be made.
If one considers a video like shown in Figure 2.1(a) and if one wants to ex-
tract a meaningful description of the scene based on single pixel values, it is
apparent that the sensory signals (2.1(b)) vary on short time scales whereas
an abstract scene representation (2.1(c)) varies on much longer time scales.

9
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Shifting the whole frame (or the camera) one single pixel would almost
change nothing in the abstract representation of the scene, but the gray val-
ues of the pixels can significantly change. Therefore, the representation of
the scene should be invariant to small local transformations (like translation,
rotation or zoom) which cannot be required for the primary sensor signals.

Thus the intuition behind the unsupervised learning paradigm of tem-
poral coherence can be summarized as follows: In order to unsupervisedly
extract a representation of the scene, find output signals exhibiting a tempo-
ral change which is as smooth as possible given the quickly varying sensory
input.

Practical implementations of the principle of temporal coherence were
firstly presented by Földiák [1991] who introduced a modified Hebbian learn-
ing rule leading to a network that is able to exhibit shift invariance. Sub-
sequently, this work was extended in [Stone and Bray, 1995] and [Stone,
1996]. The iterative minimization of an objective function based on the ra-
tio between a short-term variation measure and a long-term variation mea-
sure lead to a combination of a Hebbian and an Anti-Hebbian learning rule
which is able to extract disparity information from stereo images.

A neural network operating on natural videos recorded by a camera
mounted on a cat’s head was proposed by Kayser et al. [2001]. The objective
function used here is a sum of squared temporal derivatives that was opti-
mized using gradient based methods. Filters showing properties of complex
cells were obtained as result.

Another approach to solve the learning problem written as a constrained
optimization was introduced in [Wiskott and Sejnowski, 2002]. The result-
ing algorithm – termed Slow Feature Analysis – implements a one shoot
learning which is guaranteed to find the global optimum and does not need
any gradient descent but is based on an eigenvalue problem instead.

2.2 Slow Feature Analysis

2.2.1 Definitions

For completeness, some rather common notations are summarized in the
following section. The usual Kronecker indicator function which is zero for
i 6= j and equals one for i = j is given by δij . Furthermore, the expectation
of a time-continuous signal xt ∈ RN over the period [0, T ] is denoted by
〈xt〉 := 1

T

∫ T
0

xtdt. The covariance of two signals of length T along with its
unbiased empirical estimator for the time-discrete case is defined as:

Cx,y = cov(xt,yt) :=
〈
xty

>
t − 〈xt〉 〈yt〉

>
〉

(2.1)

Ĉx,y = ˆcov(xt,yt) :=
1

T − 1
XY> − 1

T 2
(X1)(Y1)> (2.2)

Covariance of a signal xt against a time-shifted version of itself is termed
autocovariance.
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Cx,∆t := cov(xt,xt+∆t) (2.3)

Ĉx,∆t := ˆcov(xt,xt+∆t) (2.4)

Without time-shift, one obtains the symmetric covariance matrix of the
signal xt.

Cx = cov(xt) := cov(xt,xt) (2.5)
Ĉx = ˆcov(xt) := ˆcov(xt,xt) (2.6)

Here, 1 denotes a vector containing T times the element 1, I is the unit
matrix and X ∈ RN×T contains all data points arranged as column vector
and is called the data matrix. A version of the data matrix containing the
same vectors as X but shifted ∆t in time is denoted X∆t.

2.2.2 Original problem statement

The learning task of SFA as originally formulated by Wiskott and Sejnowski
[2002] is the following:

Given an input time series xt ∈ RN , t ∈ [0, T ], find a set of K real-valued
instantaneous functions g1(x), . . . , gK(x) ∈ F that generate the output time
series yt = g(xt) such that

slownessj = s(yj,t) :=
〈
ẏ2
j,t

〉 !
= min. (2.7)

is minimized under the constraints of

∀j 〈yj,t〉 = 0 zero mean, (2.8)
∀j
〈
y2
j,t

〉
= 1 unit variance, (2.9)

∀i < j 〈yi,tyj,t〉 = 0 decorrelation and order. (2.10)

SFA differs fundamentally from simple-low pass filtering in temporal
direction. As the functions gj have only instantaneous scope, that is they
map one single input xt at a certain time t to an output yj,t at the same time.
The primary objective is to reach temporal smoothness but under the strong
limitation of instantaneous processing. The additional constraints to the op-
timization problem make sure that trivial solutions are excluded. The unit
variance prevents constant signals to emerge, the decorrelation constraint
enforces distinctness and the zero mean constraint is introduced for conve-
nience only.

Uniqueness of the solution is guaranteed when the functions are ex-
tracted one after another such that g1 is the slowest function in F and gj
is the slowest function in F that produces an output signal yj,t which is
decorrelated to all signals yi,t for 1 ≤ i < j.
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Temporal variation is measured by the squared first derivative, which
can be approximated by a finite difference.

ẏj,t := lim
∆t→0

yj,t+∆t − yj,t
∆t

∆t=1
≈ yj,t+1 − yj,t (2.11)

In the case of linear functions gj(xt) = wT
j (xt − 〈xt〉) with zero mean

input signals (to respect constraint (2.8)), the following calculation can be
made:

s(yj,t) =
〈
ẏ2
j,t

〉
=
〈
(yj,t+1 − yj,t)2〉 =

〈(
wT
j ẋt
)2〉

= w>j cov(ẋt)wj =: w>j Awj (2.12)

〈yi,t · yj,t〉 =
〈
w>i (xt − 〈xt〉) ·w>j (xt − 〈xt〉)

〉
= w>i cov(xt)wj =: w>i Bwj (2.13)

Solving the generalized eigenvalue problem given by

AW = BWΛ (2.14)

directly yields the optimal weights w1..K as the eigenvectors corresponding
to the smallest eigenvalues λ1..K . Normalization to w>i Bwj = δij fulfills
constraints (2.9) and (2.10). As A and B are second order statistics they are
positive semidefinite and symmetric and thus all eigenvalues are real and
greater than or equal to zero. The slowness for each function gj is given by
s(yj,t) = λj and the slowness of the K components is s(y) =

∑K
j=1 λj .

2.2.3 Optimal free responses

The question of optimal slow signals given a function gj of arbitrary com-
plexity that in the limit does not depend on the input signal xt anymore is
further examined in [Wiskott, 2003b]. Without any constraints on the func-
tion space F and without considering the input (xt)t∈[0,T ], the slowest pos-
sible functions (without boundary conditions) that can be found, take the
following form:

yj,t =
√

2 cos

(
jπ

T
t

)
(2.15)

The slowest signal y1,t is half a cosine in [0, T ], the second signal would be a
full cosine, the third would correspond to one and a half cosine and so on.
These results are obtained by using two different approaches. One is based
on the calculus of variations. Another more algebraic approach is based on
a finite basis for the optimal slowness functions. The optimal slow signals
naturally fulfill the constraints (2.8-2.10).



2.2. SLOW FEATURE ANALYSIS 13

2.2.4 Problem in matrix notation

As the images acquired by the robot camera are multidimensional and the
present thesis is interested in several slow components, the problem can be
written in a more convenient way using matrix notation.

tr
〈
ẏtẏ

>
t

〉
=
〈
ẏ>t ẏt

〉 !
= min. s. t.

〈
yty

>
t

〉
= I and 〈yt〉 = 0 (2.16)

Again, using linear functions g : RN → RK , xt 7→ yt = W>xt with
W ∈ RN×K and assuming zero mean signals, the constrained minimization
leading to the generalized eigenproblem reads as follows:

tr(W>AW)
!
= min. s. t. W>BW = I (2.17)

The above formulation is only determined up to a rotation of the rows
of W, i.e. one can also use W̃ = WR with orthogonal R ∈ RK×K . If
additionally, the covariance of the derivatives W>AW is required to be di-
agonal which corresponds to decorrelated derivatives, uniqueness can be
guaranteed. Another way of solving the optimization taken from [Wiskott
and Sejnowski, 2002] is based on twofold PCA and can deal with covariance
matrices B that are not strictly positive definite.

The first PCA calculates the eigenvalue decomposition B = UΛU> and
keeps only non-singular dimensions with eigenvalues above a certain thresh-
old τ which is summarized in the coordinate transform P := U[:,λ>τ ]Λ[λ>τ ] =
[λ1u1, . . . , λRuR] where only the R ≥ K columns of the eigenvector ma-
trix U are kept whose eigenvalues are above the threshold. This procedure
whitens the covariance matrix B which implies that the constraints from
(2.16) are fulfilled. Any weight matrix of the form W = PR with R ∈ RR×R

an orthonormal matrix also respects the constraints. The weights are deter-
mined only up to rotation. In order to minimize the objective function, the
following minimization problem has to be solved

tr(R>P>APR)
!
= min. s.t. R>R = I (2.18)

The second PCA calculates the eigenvalue decomposition of P>AP, and
the eigenvectors corresponding to the K smallest eigenvalues yield the re-
quired rotation matrix R.

2.2.5 Relations to other methods

SFA and BSS

The term Blind Source Separation (BSS) refers to the task to recoverN sources
si from M observations xj =

∑
i ajisi of linear combinations of the sources.

The task is equivalent to finding a demixing matrix D such that y = Dx ≈ s.
Many BSS techniques do not take the temporal structure of the signal into
account.
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However, there are approaches for separation using time-delayed co-
variance matrices. The classical idea from Molgedey and Schuster [1994]
searches to jointly diagonalize the covariance matrix Cx and a time-shifted
covariance matrix Cx,∆t where the time-shift ∆t has to be carefully selected.
Proposed in [Ziehe and Müller, 1998], the TDSEP algorithm overcomes the
difficulty in selecting an appropriate ∆t value be jointly diagonalizing sev-
eral time-shifts simultaneously.

Assuming a zero mean signal xt with temporal derivatives approximated
by finite differences, the covariance matrix A of the derivatives can equiva-
lently be written as

B =
〈
xtx

>
t

〉
=: C0 (2.19)

A =
〈
ẋẋ>

〉
=
〈
(xt+1 − xt) (xt+1 − xt)

>
〉

=
〈
xt+1x

>
t+1

〉
+
〈
xtx

>
t

〉
−
〈
xtx

>
t+1

〉
−
〈
xt+1x

>
t

〉
(2.19)
= 2C0 −

(
Cx,1 + C>x,1

)
=: 2C0 −C1 (2.20)

Using that somewhat different notation, the optimization problem (2.17)
now reads:

tr(W̃>C1W̃)
!
= max. s. t. W̃>C0W̃ = I (2.21)

Solving the corresponding generalized eigenproblem C1W̃ = C0W̃Λ̃

by the assignment [W̃,Λ̃]← eig(C1,C0) and using the facts (2.19)+(2.20)
yields AW = BWΛ ⇔ C1W = C0W (2I−Λ). Thus, the two eigenvalue
problems AW = BWΛ and C1W̃ = C0W̃Λ̃ are equivalent by W̃ = W and
Λ̃ = 2I−Λ.

As in BSS a whitening constraint is present in SFA. But instead of min-
imizing off-diagonal elements, diagonal elements are maximized with re-
spect to W. In the case of linear functions SFA is equivalent to joint di-
agonalization of the covariance matrix C0 and the time shifted covariance
matrix C1 and thus becomes a special method of BSS.

SFA and ICA

As pointed out in [Blaschke, 2005] SFA and Independent Component Anal-
ysis (ICA) can be related in the following way.

At first sight, ICA extracts linear features that are as statistically inde-
pendent as possible whereas SFA extracts uncorrelated nonlinear features
that have small temporal variations. The paradigms for the two algorithms
can even be mutually exclusive because slow signals tend to be less inde-
pendent. Notwithstanding, linear SFA and ICA based on second moment
statistics are equivalent.

The algorithms can also be combined to Independent Slow Feature Anal-
ysis as done by Blaschke and Wiskott [2004].
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2.2.6 Probabilistic interpretation for SFA

In a recent article Turner and Sahani [2006] show that maximum likelihood
learning in a linear Gaussian state-space with Markovian prior is equiva-
lent to SFA. Building on that insight they suggest some extensions to SFA
and provide a probabilistic context for SFA. In a nutshell, the model has the
following form:

p(yt|yt−1,Λ,Σ) = N (Λyt−1,Σ)

p(y1|Σ1) = N (0,Σ1) (2.22)

Here Σ1, Σ, and Λ are diagonal matrices containing the initial variance,
the process variance and the correlation strengths respectively.

2.3 Expanded Slow Feature Analysis

SFA can be extended to non-linear functions g1, . . . , gK ∈ F by introducing
an explicit expansion mapping Φ : RN → RM of the data into some high-
dimensional feature space of dimension M � N . The expansion mapping
Φ is composed of basis functions (φ1, . . . , φM)> of the feature space F and
the functions g1, . . . , gK would be linear combinations such that the resulting
slowness function g : RN → RK is given by

g(xt) = W> (Φ(xt)−Φ0) (2.23)

where Φ0 := 〈Φ(xt)〉 is the temporal mean of the data in feature space and
W ∈ R is a matrix containing the weights for the linear combinations. The
mean in feature space has to be subtracted to respect the zero mean con-
straint from (2.8). Solving the optimization (2.16) using A := cov(Φ̇t) and
B := cov(Φt) with Φt := Φ(xt) and Φ̇t := Φt+1 −Φt yields the weights W.

This strategy clearly suffers from the curse of dimensionality as the ma-
trices A, B ∈ RM×M quickly become unfeasible with growing M . Taking
the space of polynomials of degree d = 2 as an example, one has

Φt = (x1, .., xN , x
2
1, .., x1xN , x

2
2, .., x

2
N)>t

and M = N + N(N−1)
2

which yields already for reasonable inputs of size N =
150 matrices A and B of size 11.325×11.325. For a polynomial expansion of
order d the feature space has a dimension M which is exponential in d.

M =
d∑

k=1

(
N + k − 1

k

)
∈ O(ed)

If a higher degree of non-linearity is desired, one can iteratively apply
expanded SFA and use yt := g(xt) from (2.23) as input for another layer
of SFA and obtain functions of the form h(yt) = V> (Φ(yt)−Φ0) with the
same expansion as in the previous layer and new weights V. (see Section
2.6)
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2.4 Applications to Expanded SFA

2.4.1 Receptive fields

Figure 2.2: In [Berkes and Wiskott, 2005] SFA with polynomial expansion
was done by using pairs of temporally neighboring patches of still images
that were artificially transformed to simulate a temporal structure. The re-
sulting filters have many properties of receptive fields.
The figure shows the stimuli that lead to the maximal filter output (upper
line) and minimal filter output (lower line) respectively.

SFA is an unsupervised learning paradigm that is designed to extract
invariances. In the context of vision, complex cells show similar responses
to the same stimulus in different phases, which can be thought as phase
invariance. Clearly, this cannot be accomplished by a linear filter.

Patches sampled from a collection of still images were used in [Berkes
and Wiskott, 2005] to investigate the properties of filters maximizing tem-
poral coherence. It turned out that the learned filters were in many respects
similar to complex cells (see Figure 2.2). Transformations, namely transla-
tion, scaling and rotation, were applied to the patches which generated an
artificial temporal structure. A slight modification was made as the input
sequence itself consisted of data points containing two successive patches
what makes the resulting filter function not instantaneous anymore.

Non-linearities in the filter included polynomials of degree 2, which
lead to filters exhibiting invariances to different transformation like phase
shift, position change, size change, frequency change, orientation change
and change in curvature. A detailed analysis of the invariances is given in
[Berkes and Wiskott, 2006].

2.4.2 Driving forces of time series

In [Wiskott, 2003c] SFA was used to discover slowly varying features in
quickly varying nonstationary time series. On a set of toy examples the
extraction capabilities in terms of accuracy of the analysis are studied.

2.4.3 Digit classification

Figure 2.3: A sample of digits taken from the MNIST database of handwrit-
ten digits.
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Another interesting application to SFA is supervised classification as done
on the famous MNIST digit dataset1 (see figure 2.3) in [Berkes, 2005a]. Train-
ing examples in classification do not necessarily have temporal structure,
thus the covariance of the temporal derivatives is calculated in a slightly
different way. Many time series containing just two patterns of the same
class are used to calculate differences. Feature detectors invariant to the
transformation from one object to another object of the same class would be
the optimal slowest functions. The temporal average is replaced by an av-
erage over different series. The training images have a size of 28×28 pixels;
their dimensionality is reduced by PCA from 282 = 784 to 35. Cubic Poly-
nomials reach an error rate of 1.5% on the test set which is comparable to
other standard algorithms.

2.5 Kernelized Slow Feature Analysis

Another approach for non-linearization makes use of the fact that SFA is
completely based on second order statistics. Thus, SFA can be kernelized in
line with the extension of PCA to Kernel-PCA by Schölkopf et al. [1998].

A kernel-based implementation of the temporal slowness principle was
firstly presented by Bray and Martinez [2002]. However the objective func-
tion used here is the objective function of Stone [1996] which is somewhat
different from SFA.

A central building block is the concept of a decaying temporal average.
This kind of average tends to forget older observations due to the exponen-
tial decay implemented by λ. Only the fraction λ (usually close to 1) of the
average is kept, the rest is updated using a new observation. Note that if λt
increases with time according to λt ← t−1

t
, the final estimate mT will equal

the usual mean 1
T

∑T
t=1 xt.

mλ
1 = x1, mλ

t+1 = λmλ
t + (1− λ)xt, 0 ≤ λ ≤ 1 (2.24)

As a second step, short-term covariances CS are calculated based on
short-term averages and long-term covariances CL based on long-term av-
erages. There is no variable parameter λt that allows for exact correspon-
dence to the usual covariance.

Cλ =
1

T

T∑
t=1

(
xt −mλ

t

) (
xt −mλ

t

)> (2.25)

The only difference between CS and CL is the decay parameter λ which
is adjusted such that the half-life of CS is around 100 times shorter than that
of CL.

Concluding, the eigenvalue problem AW = BWΛ of SFA is based on
the covariance of the data B and on the covariance of the derivatives A

1The MNIST database of handwritten digits contains 60,000 training examples of hand-
written digits and is available at http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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whereas Bray and Martinez consider the problem CSW = CLWΛ with
short-term covariance CS and long-term covariance CL.

2.5.1 The kernel trick

By the use of an appropriate kernel function k : X×X → R the feature space
can be defined implicitly. We limit ourselves toX = RN in the following. If k
is symmetric, continuous and positive definite i.e. for any set {x1, . . . ,xn} ⊆
X the matrix Kij := k(xi,xj) ∈ Rn×n has only strictly positive eigenvalues,
then k is said to be a Mercer kernel and one has the following property:
There exists a Hilbert spaceHk and a feature map Φ : X → Hk such that

k(x, z) = 〈Φ(x),Φ(z)〉k

is an inner product.
Using the feature map Φ(x) := k(x, ·) one obtains the reproducing prop-

erty.
∀f ∈ Hk f(z) = 〈f(·), k(z, ·)〉k

Furthermore, the kernel k can be orthogonally diagonalized

k(x, z) =
∞∑
j=1

λjψj(x)ψj(z)

with 〈ψi(·), ψj(·)〉k = δij and λ1 ≥ λ2 ≥ · · · ≥ 0 yielding the feature map
Ψ(x) :=

∑∞
j=1

√
λjψj(x) which also fulfills 〈Ψ(x),Ψ(z)〉k = k(x, z).

Concluding one can say that a kernel function k implicitly defines a fea-
ture space on the one hand in terms of the sequence of its eigenfunctions√
λjφj(·) and, on the other hand in terms of the sequence of its partial eval-

uations k(z, ·), z ∈ Z⊂ X for a set Z of support vectors. These feature
spaces can have very large or even infinite dimension. That means one has
an appropriate method to calculate inner products in high-dimensional fea-
ture spaces implicitly by means of a kernel function.

2.5.2 Kernelization of SFA

We now meet the challenge to find slow functions g(xt) = U> (Φ(xt)−Φ0)
where the feature space, normally given by the mapping Φ, will implicitly
be defined by a kernel k. Again Φ0 := 1

T

∑T
t=1 Φ(xt) is the empirically esti-

mated temporal mean in feature space, which is subtracted to respect (2.8).
The columns of U live in feature space and can be represented as linear
combinations of a set of support vectors zi mapped into feature space.

uj =
M∑
i=1

wijΦ(zi) (2.26)
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The components of g can be written by using the kernel function as:

gj(xt) = 〈uj,Φ(xt)−Φ0〉
(2.26)
=

〈
M∑
i=1

wijΦ(zi),Φ(xt)−Φ0

〉

=
M∑
i=1

wij 〈Φ(zi),Φ(xt)〉 −
1

T

∑
t

M∑
i=1

wij 〈Φ(zi),Φ(xt)〉

=
M∑
i=1

wij

(
k(zi,xt)−

1

T

∑
t

k(zi,xt)

)
(2.27)

Finally, the resulting slowness function in matrix notation reads:

g(xt) = W> (k(xt)− k0) (2.28)

Numerically, the solution is found as follows. Given a set of support vec-
tors {zi}i=1..M and using the kernel expansion kt = [k(z1,xt), .., k(zM ,xt)]

>,
the problem becomes equivalent to expanded SFA.

The weight matrix W solving the generalized eigenproblem (2.14) with
A := cov(k̇t), B := cov(kt) is calculated in the usual way. The resulting
functions gj with j = 1..K are then determined by W.

The computational complexity of the method is given by the number of
support vectors M and not by the dimension of the feature space anymore.
This is the usual effect of the kernel trick which trades dimension of feature
space against number of data points. As a consequence, in order to reduce
complexity, the number of support vectors M should be kept as small as
possible.

In contrast to support vector machines, it is not obvious how the support
vector set should be chosen (more details are given in Section 4.3.1).

2.6 Multilayer Slow Feature Analysis

It can be useful to apply several SFA processing steps for several reasons. In
the first place the degree of non-linearity can increase, e.g. expanded SFA
with polynomials of degree 2 applied two times leads to polynomials of de-
gree 4 at the output. Secondly, as depicted in Figure 2.4 on page 20, the size
of the receptive field can grow in every layer such that the spatial support of
the function gets larger in every layer. This corresponds to pyramidal data
structures in image processing.

For the notion of receptive fields to be meaningful, the signal xt = x[t,s]

now has temporal and spatial structure indexed by t and s respectively. In
the case of images, one has at least height and width being part of the index
s. The notion of receptive field can be extended to channels such as stereo
or color channels. The output of layer 0 will be the input to layer 1. This is
written as:

y0
[t,s] := x[t,s] = xt
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Figure 2.4: Hierarchical SFA allows not only for increasingly non-linear
mappings but also for growing receptive fields. Here the first layer has a
receptive field of 12×12 pixels, the second layer has a receptive field of 9×10
pixels on top of the first layer which yields together a total receptive field of
20×21 pixels.

In every layer i a filtering function gir with spatial receptive field r is
applied to the output yi−1

[t,s] of layer i − 1. The output signal yi[t,s	r] of the
layer i can only have smaller spatial extent than the input yi−1

[t,s] which is
taken into account by s	 r.

yi[t,s	r] = gir

(
yi−1

[t,s];w
i
)

Taking the example of Figure 2.4 on page 20 where the image y0
[t,(1:29×1:29)]

has a spatial extent s of 29×29 pixels. The slowness function g1
r in the first

layer has a receptive field of r1 = 12 × 12. Thus, the output of the first
layer will have a smaller spatial extent s1 = s0 	 r1 = (1 : 18 × 1 : 18) and
the output of the second layer y2

[t,s	r] will even be of smaller spatial extent
s2 = s1	r2 = (1 : 10×1 : 11). On the other hand, the overall receptive field of
the two-layer architecture is given byR2 = r1⊕r2 = 12×12⊕9×10 = 20×21
pixels.

In each layer, the model becomes more complex and the overall receptive
field does not shrink whereas the spatial extent of the output can only but
decrease. The overall receptive field should clearly be smaller or equal to
the spatial extent of the initial image Ri ≤ s0, ∀i where the special case
of ri = 1 × 1 corresponds to iterated SFA with constant receptive fields
Ri+1 = Ri and spatial extents si+1 = si as suggested in Section 2.3.

As in layer i the slowness function gir is applied to all points of si−1 	 ri
one can think of the architecture as a large neural network with massive
weight sharing in every layer. Although one can think of a backpropagation
like update rule for the network as a whole, one focuses on individual learn-
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ing of every layer depending on the output of previous layers for a simple
reason. Individual SFA in each layer is a one-shot learning algorithm which
is guaranteed to find the global optimum. Convergence problems to local
minima or hyperparameter adjustments do not have to be feared.

2.7 Measure for empirical slowness

The slowness value (in 2.16) was defined assuming the constraints are pre-
cisely met. Due to non-stationarities or noise in the data, it can turn out that
the output covariance matrix

〈
yty

>
t

〉
has a significant numerical difference

to the unit matrix I. If the constraints are violated, slownesses are no longer
comparable between different experiments. For that reason one has to cor-
rect for the constraints in practice. This can be achieved by the whitening

operation ỹt ← C
− 1

2
y yt leading by construction to cov(ỹt) = I. A corrected

empirical slowness value (2.29) along with an empirical estimator (2.30) can
then be defined as s(yt) := s(ỹt).

s(yt) = tr
(
C
− 1

2
y

〈
ẏtẏ

>
t

〉
C
− 1

2
y

)
= tr

(
C−1

y

〈
ẏtẏ

>
t

〉)
(2.29)

ŝ(yt) = tr

(
Ĉ−1

y

1

T

∑
t

ẏtẏ
>
t

)
(2.30)

By a short calculation one can see that this measure is invariant to non-
singular affine transformations:

cov(Ayt + b) = cov(Ayt) = Acov(yt)A
> (2.31)

s(Ayt + b)
(2.31)
= tr

((
ACyA

>)−1 〈
Aẏtẏ

>
t A>

〉)
= tr

(
A−>C−1

y A−1A
〈
ẏtẏ

>
t

〉
A>
)

= s(yt) (2.32)

Different types of measured slownesses naturally arise in the experi-
ments dealing with sets of videos. The following table lists the nomencla-
ture used for the experiments.

slowness definition
slearn empirical slowness value of the learning sample from the

training set of the video
strain empirical slowness value of another sample from the

training set of the video
stest empirical slowness of a sample from the test set of the video
sval empirical slowness of a sample from another video, the

validation video
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2.7.1 Interpretation of the slowness values

Temporal variation of the decorrelated output signal yt in [0, T ] is measured
in terms of the slowness value defined to be the mean temporal variation:

s(yt) = tr
〈
ẏtẏ

>
t

〉
=
〈
ẏ>t ẏt

〉
=

K∑
j=1

∆(yj,t) =
1

T

K∑
j=1

∫ T

0

ẏ2
j,tdt (2.33)

This real number s(yt) has no intrinsic meaning or scale. It should only be as
small as possible. A way to get an intuitive idea what this number actually
signifies is borrowed from the theory of optimal free responses (see Section
2.2.3).

As a theory’s result the optimal slow features to be obtained are cosine
waves with j

2
periods in [0, T ] that can be written as y∗j,t =

√
2 cos

(
jπ
T
t
)

(2.15).
Elementary analysis yields

〈
y∗j,t
〉

= 0,
〈
y∗i,ty

∗
j,t

〉
= δij and ∆(y∗j,t) =

(
jπ
T

)2
.

With that insight, a more intuitive measure for slowness can be defined by

λ(yj,t) :=
2π√

∆(yj,t)
(2.34)

which has a nice interpretation since λ(y∗j,t) = 2T
j

is the period length of the
cosine wave yj,t. Note that both the slowness value s(yt) and the measure
λ(yt) for an output signal do not depend on the number of time steps or the
length T of the interval. An illustration is given by Figure 2.5.

That means, the smallest slowness value would be equal to

s∗K := s(y∗t ) =
π2

T 2

K∑
k=1

k2 =
π2

6T 2

(
2K3 + 3K2 +K

)
(2.35)

and the smallest corresponding slowness measure would equal

λ∗K := λ(y∗t ) =
2π√
s(y∗t )

=
2T√

K3

3
+ K2

2
+ K

6

≈ 2T
√

3K−
3
2 (2.36)

– an expression serving as a benchmark value for a given number of slow
components K. Even though s(y∗t ) depends explicitly on T , this does not
mean that given a number T of patches sampled from a video, the slowness
s(yt) of the output yt depends on T . This is only true in the sense more
training examples might allow for better slowness functions g or possible
overfitting leads to bigger slowness values. The relation between λ(yt) and
s(yt) is shown in Figure 2.5.

2.7.2 Error bars for the slowness values

Jackknife

Given an estimator θ̂ = θ̂(x1, . . . ,xT ) for an unknown quantity θ, one is
interested in the bias

b = θ −
〈
θ̂
〉
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Figure 2.5: The figure relates the slowness values obtained in the simu-
lations to the period lengths of cosine waves, which are known to be the
slowest possible signal and thus give an intuition on the meaning of the
numbers.
If K = 10 slow components are retained, the smallest slowness value would
be s∗10 = 3800

T ·T . That means for a training sequence of T = 200, 000 data
points s∗10 = 10−7, which is clearly below the given reference slownesses for
linear SFA, quadratic SFA and kernelized SFA using Laplacian kernels. The
corresponding period length λ∗10 is in the order of 22,000 frames.

that is the expected deviation from the true value and in the variance

v =

〈(
θ̂ −

〈
θ̂
〉)2

〉
of the estimator which is the degree of accuracy of the estimate. In our case,
one would estimate the slowness that can be obtained by applying the SFA
algorithm.

Jackknife provides estimates for both bias and variance of an arbitrary
estimator based on leave-one-out statistics. The leave-one-out estimate (2.37)
and the mean leave-one-out estimate (2.38) are defined as follows:

θ̂¬t := θ̂(x1, . . . ,xt−1,xt+1, . . . ,xT ) (2.37)

θ̂(·) :=
1

T

T∑
t=1

θ̂¬t (2.38)

Finally, these quantities are combined to obtain an estimate for the bias b
and the variance v of the estimator θ̂.
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b̂ = (T − 1)
(
θ̂(·) − θ̂

)
(2.39)

v̂ =
T − 1

T

T∑
t=1

(
θ̂¬t − θ̂(·)

)2

(2.40)

Cross-validation

A more heuristic approach to measure the generalization performance of
an algorithm is the widespread method of cross-validation. In the sim-
plest case, the dataset is split into two disjoint subsets, the training set and
the usually smaller test set. The analysis is performed on the training set
whereas the test set is used for validation of the results.

When one would also like to use the test set for model selection as well,
one can split the data set X into K disjoint subsets Xk of same size and iter-
ate the above method so that training is done on the set X¬k := X\Xk and
testing is done on Xk. In so-called K-fold cross-validation one obtains K
different estimates that can serve to calculate mean and standard deviation.
Typical values for K are in the order of 10.

In the limit when K gets equal to the number of data points, cross-
validation becomes equivalent to jackknife.

Efficient implementation using partial statistics

If one wants to run a K-fold cross-validation experiment, one should split
the dataset into K disjoint subsets. As the data points in X have a temporal
structure, it is obvious that the subsets should contain a temporal sequence
rather than a random collection of data points. Otherwise temporal dif-
ferences xt+1 − xt would be meaningless. As the SFA algorithm needs the
statistics A = ˆcov(ẋt) and B = ˆcov(xt) for each run r ∈ [1 . . . R], one has to
calculate Ak, Bk for testing and A¬k, B¬k for training.

From a computational perspective this would mean the whole data set
has to be processed K times. This is a very time consuming issue and one
can think of the following approximation. In the context of SFA on from
video sampled image patches, cross-validation is done in order to see how
good the learned functions deal with non-stationarities present in the data
rather than to provide different kinds of transformations in each run. If
the first raw moments mk and the second raw moments Mk and Ṁk of the
data are calculated individually for each subset Xk one can combine those
in order to obtain the required statistics by running only once through the
data set.
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mk =
1

2T

2T∑
t=1

xk,t (2.41)

Mk =
1

2T − 1

2T∑
t=1

xk,tx
>
k,t (2.42)

Ṁk =
1

T − 1

T∑
t=1

(xk,t+T − xk,t)(xk,t+T − xk,t)
> (2.43)

Then, it is possible to calculate the statistics as:

Ak = Ṁk

Bk = Mk −mkm
>
k (2.44)

A¬k =
1

R− 1

∑
κ 6=k

Ṁκ

B¬k =
1

R− 1

∑
κ 6=k

Mκ −
1

(R− 1)2

(∑
κ 6=k

mκ

)(∑
κ 6=k

m>κ

)
(2.45)

In case of expanded or kernelized SFA, the signals xt have to be replaced
by their expanded Φ(xt) or kernelized k(xt) equivalents.





Chapter 3

Implementation

The next chapter deals with practical considerations and implementation
details. First, a brief discussion of the utilized programming language is
given, followed by a list of implemented functionality. Subsequently, the
data sets along with arising storage issues are introduced. Finally, efficient
learning, optimization and filtering are treated.

3.1 Library Implementation

Code written for this thesis is organized as follows: The directories @preproc/
and @sfa/ contain two objects implementing PCA and SFA, in shared/
auxiliary functions are listed and in experiments/ one finds the scripts
for the various numerical simulations.

The code can be put into five main categories:

• data acquisition and processing
Camera access is assured, storage formats are addressed and data is
randomly sampled according to a given policy.

• learning
Necessary statistics are iteratively updated with expanded and kernel-
ized chunks from the data stream.

• optimization
Projections can be calculated based on the statistics using SFA and
sparse optimization strategies.

• filtering
The learned filters can efficiently be applied to large multidimensional
datasets.

• visualization
Analysis and interpretation can be done with a set of plotting and
drawing functions.

27
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3.1.1 MATLAB and MEX

The choice of the programming language was driven by the nature of the
problem and by the suitability of available solutions. As the video data set
is structured as a large multidimensional array and the algorithms involve a
lot of vector and matrix manipulations a numerical computing environment
seems a favorable choice.

MATLAB1 (a shorthand for MATrix LABoratory) is widely used in proto-
typing, technical computing and digital image and signal processing. It is a
commercial product running on Linux, OS X, Solaris and Windows enabling
simple data acquisition, exploration, manipulation and visualization. Al-
though MATLAB is proprietary, many machine learning applications make
use of its functionality. This might be partly due to public domain substi-
tutes like SCILAB2 and OCTAVE3 offering at least in principle compatibility
to MATLAB code. Other arguments comprise the consistent access to stan-
dard data acquisition and signal processing libraries or the possibility to
include native C-code by the MEX interface.

3.1.2 Objects

Besides its imperative capabilities, MATLAB offers the possibility to build
structured data types following the OOP paradigm. Two objects were im-
plemented for the purpose of better reusability .

The first object implements a demeaning and whitening filter for N -
dimensional data sets. In fact, the object is a linear filter with a convenient
possibility to infer the filter coefficients from the data set.

preproc/method implemented functionality
set, get set and get object properties

preproc, save constructor, load from disk, save to disk
plot, display visualize the object

apply perform filtering
learn add new data to the statistics
pca find principal components

The second object is less trivial and offers lots of capabilities in terms
of SFA. Efficient filtering as described in 3.4 and sparse optimization as de-
tailed in 4.3.4 can be done by the object.

1See the website http://www.mathworks.com/ for details.
2Visit http://www.scilab.org/ for further information.
3Consult http://www.gnu.org/software/octave/ for a specific description.

http://www.mathworks.com/
http://www.scilab.org/
http://www.gnu.org/software/octave/
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sfa/method implemented functionality
set, get set and get object properties
sfa, save constructor, load from disk, save to disk

plot, display visualize the object
apply perform filtering y = g(x)
learn add new data to the statistics A and B

optimize find (sparse) slow components

3.1.3 Auxiliary Scripts

Visualization and evaluation

For visualization purposes, two public domain tools were used; namely the
subsubplot.m4 script allowing for nested subplots in MATLAB and the
laprint.m5 package enabling LATEX-symbols anywhere in MATLAB fig-
ures. The nice receptive field images of Figure 2.2 were calculated using the
routine optimal_stimulus.m6 taken from [Berkes and Wiskott, 2006].

Selfwritten routines include colimg.m – a script producing plots super-
posing a gray value image with a color coded feature image like Figure 4.20.
Efficient linear filtering as described in Section 3.4.1 can be performed with
linfilter.m.

Quantization

The transfer function of the A-law algorithm from Section 3.2.2 is imple-
mented in alaw.m and its inverse is coded in ialaw.m.

Quantization of double arrays of arbitrary size into 8bit arrays is accom-
plished by alaw_quant8.m and its counterpart ialaw_quant8.m.

Optimization

The numerical solution to the linear SFA problem based on two-fold PCA
as proposed in Section 2.2.4 can be found by pdeig.m. Singular data co-
variance matrices do not pose problems to the algorithm as singular dimen-
sions are simply discarded and not taken into account – therefrom the name
pdeig(A,B) in analogy to eig(A,B) where the covariance matrix B is
approximated by a positive definite matrix. Switching between different
eigenvalue decompositions is possible.

Sparse solutions as proposed by Vollgraf and Obermayer [2006] and por-
trayed in Section 4.3.4 involving single slow components can be obtained

4The code is available at http://www.kenschutte.com/subsubplot/.
5Code can be downloaded from http://www.uni-kassel.de/fb16/rat/

matlab/laprint/.
6The site http://www.gatsby.ucl.ac.uk/~berkes/software/qforms-tk/

index.html offers code and further information.

http://www.kenschutte.com/subsubplot/
http://www.uni-kassel.de/fb16/rat/matlab/laprint/
http://www.uni-kassel.de/fb16/rat/matlab/laprint/
http://www.gatsby.ucl.ac.uk/~berkes/software/qforms-tk/index.html
http://www.gatsby.ucl.ac.uk/~berkes/software/qforms-tk/index.html
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by application of ksfmin.m7. The extended version (JHECGD) allowing
for joint sparsification of several slow components is termed ksfmin2.m.
The line search routine can be interchanged by switching between Golden
Section Search [Press et al., 1993, §10.1] goldsect.m and Brent’s Method
[Press et al., 1993, §10.2] brent.m.

A wrapper combining SFA optimization and sparse optimization in one
single interface is provided by sopt.m.

SFA auxiliary functions

A fixed number of patches per frame at random positions can be clipped
from a stack of video frames with clippatches.m. A fixed number of
patches serving as support vectors can be drawn from the whole video us-
ing drawsv.m. Additionally one can impose a certain distance between the
support vectors in feature space as proposed by the FVS Algorithm 1 from
Section 4.3.2.

Explicit expansion into some high dimensional feature space and im-
plicit expansion via kernels are implemented in the function expansion.m;
the small script expdim.m provides the dimension of the expanded vector.
All kernels mentioned in Section 4.1.1 are available.

Finally, timediff.m allows to calculate approximations to the tempo-
ral derivative of a signal such as finite differences or cubic interpolations.
Last but not least, jaccheck.m is a tool comparing the numerical and the
analytical derivative (Jacobian) JX ∈ RM×N of a function F : RN → RM with
N = N1×N2×· · ·×Nn and M = M1×M2×· · ·×Mn of a multidimensional
array X ∈ RN.

3.1.4 MEX-Functions

Some routines are computationally very demanding especially for filtering.
They require many operations or have a structure one cannot easily put into
matrix notation. The three filtering routines deal with data of arbitrary di-
mensionality and can be compiled by executing make_mex.m. Linear filter-
ing can be done with lfiltn.c, filtering based on quadratically expanded
SFA is implemented by qfiltn.c and kfiltn.c can be used to perform
SFA filtering using a variety of kernels.

A second reason for an implementation in plain C is the use of image ac-
quisition libraries and the speedup gained by a more direct implementation.
Two functions building up one another are given by readjpeg.{h,c} and
jpegpatchextract.c. They offer the possibility to directly read image
files or even videos stored as a sequence of single images into memory.

7Code can be obtained from http://ni.cs.tu-berlin.de/software/hecgd/
index.html.

http://ni.cs.tu-berlin.de/software/hecgd/index.html
http://ni.cs.tu-berlin.de/software/hecgd/index.html
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3.2 Data Acquisition and Storage

(a) Lab

(b) Floor, simulated

(c) Lab

(d) Floor

Figure 3.1: The major part of the numerical simulations were carried out on
four different videos. The first two videos contain 26,951 and 22,552 frames
respectively and were recorded in the lab of the robot. From the floor in
front of the lab, two additional videos were used, a shorter one coming from
the simulator with 6,933 frames and a longer one containing 37,406 frames.

Using the blackbox library, Digiclopsr, three stereo videos were recorded
– two of them in the lab of the robot and one in the floor in front of the lab.
Thus, different sets of stimuli were available. In Figure 3.1, typical exam-
ples of video frames are shown. The data set has two spatial dimensions
height h ∈ {1, . . . , 240} and widthw ∈ {1, . . . , 320}, one temporal dimension
t ∈ {1, . . . , T}, consists of two stereo channels s ∈ {L,R} and can contain
three color channels c ∈ {R,G,B}. So it can be put into an array with five
indices (h,w, t, s, c).

(a) Forward movement in the floor (b) Rotation in the lab

Figure 3.2: Two temporal slices through two different video stacks contain-
ing 500 successive frames each are shown. The upper part of the images
corresponds to the middle horizontal scanline and the lower part of the im-
ages corresponds to the centered vertical scanline. Time corresponds to the
horizontal direction. One can clearly see the dominance of movement along
the horizontal direction.

Single frames reflect only spatial structure (h,w) and reveal nothing about
the temporal dynamics of the data sets. Therefore one can plot slices through
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the video stack as shown in Figure 3.2 and thus visualize the pairs (h, t) and
(w, t) as done in the upper and lower part of the plots respectively. By vi-
sual inspection one can see that the rate of change in horizontal direction
(∼ 6 pixels/frame) of the image plane is much larger than the change in
vertical direction (∼ 1.5 pixels/frame) for both rotation and forward trans-
lation of the robot.

Finally, in Figure 3.3 one can compare images grabbed by the camera and
images generated by the simulator based on the open source game engine,
Crystal Space 3D8.

(a) Floor from simulator (b) True floor

Figure 3.3: The floor was reproduced as good as possible with the simu-
lator. Differences include light sources from the ceiling, reflection on the
ground, darkness of distant points and camera distortion clearly visible at
the corners.

3.2.1 Image compression

A rough calculation shows that colored images of size 2 · 320 × 240 would
require 460kB of memory each if stored in raw format. Video compression
cannot be done in realtime by the robot’s processor. Therefore, frame-wise
storage is the only feasible solution facilitating also the access of a special
frame. The use of libjpeg9, a standard image compression library based
on the discrete cosine transform, can reduce the image size to 30kB on aver-
age. Thus, a video containing 25,000 frames needs 750MB instead of 11.5GB.
Very good lossless compression is achieved with libpng10. However, these
compression methods are limited to images with a previously known range
([0..255] or [0..1]) or a previously adapted range.

3.2.2 Quantization

If confronted with the situation of having to store the first K slow com-
ponents Y1, . . . ,YK (given in double precision) of a given image X where
the range of Yk is not known a priori, different methods have to be em-
ployed. Storing filtered images in double precision clearly consumes too

8Code can be obtained from http://www.crystalspace3d.org/.
9From http://www.ijg.org/ one can download the actual version 6b originally

written in 1998.
10Code is available at http://www.libpng.org/pub/png/libpng.html.

http://www.crystalspace3d.org/
http://www.ijg.org/
http://www.libpng.org/pub/png/libpng.html
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Figure 3.4: For larger values of A the transfer function for A-law com-
pression becomes steeper, the linear part (shown as straight line) becomes
smaller and more bits are reserved for small values. The function has a
unique inverse and is continuous and differentiable.

much memory. One searches a quantization scheme minimizing the error.
Values occurring frequently should be quantized more precisely whereas
rare values can be quantized less accurately. From the zero mean and the
unit variance constraint for the filter outputs, one can deduce that there will
be positive and negative values. Furthermore from experience one knows
values to be strongly peaked at zero. Optimal quantization would be ob-
tained for a kept accuracy depending on the log of the relative frequency
of occurrence of the value. A good approximation assumes a peaked his-
togram.

A compression scheme which is used in telecommunication is called A-
law encoding and is based on the idea that differences in higher frequencies
are less good to distinguish than lower frequencies. One should spend more
bits for the low frequencies.

That means, before rounding to the next integer, a transfer function as
shown in 3.4 is applied:

f(x) = sign(x)

1+ln(A)

{
A |x| 0 ≤ |x| < 1

A

1 + ln (A |x|) 1
A
≤ |x| ≤ 1

(3.1)

f−1(y) = sign(y)

A

{
|y|+ |y| ln(A) 0 ≤ |y| < 1

1+ln(A)

exp (|y|+ |y| ln(A)− 1) 1
1+ln(A)

≤ |y| ≤ 1
(3.2)

The value A interpolates between the linear map (A = 1), a logarithmic
map (A larger) and the sign function (A = ∞). At x = {− 1

A
, 0, 1

A
} the func-

tions f and f−1 are continuous and differentiable. The steeper the function
is, the denser are the quantization steps and thus the more accurate is the
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Figure 3.5: Input data is considered to be a stream of patches clipped
from successive frames of a video. Following the sequential structure of
the video, statistics needed for optimization are iteratively updated based
on their old values and on the newly arriving data chunks X∗. Due to this
strategy, memory requirements are low because only the statistics and one
single data chunk have to be kept in memory simultaneously.

procedure. If compared to equidistantly quantized images, one can measure
significant differences in terms of quantization errors.

3.3 Learning and Optimization

3.3.1 Learning

Given a data matrix X, one can, based on the raw moments of first and
second order M1(X) := 1

T
X1 and M2(X) := 1

T
XX>, write the estimator for

the covariance as:

ˆcov(xt)
(2.2)
= M2(X)−M1(X)M1(X)> (3.3)

One can update the raw moments Mi, i ∈ {1, 2} with a recently arrived
data chunk X∗ comprising T ∗ data points by:

Mi(X,X
∗) =

T

T + T ∗
Mi(X) +

T ∗

T + T ∗
Mi(X

∗) (3.4)

An illustration of the iterative update rule of the raw moments can be
found in Figure 3.5, where the data stream of image patches and a newly
arriving data chunk X∗ are depicted.

3.3.2 Optimization

Statistics are not calculated for the data xt itself. Except for the linear case,
statistics are calculated from the expanded Φt or kernel expanded data kt.
That means, support vectors and kernels have to be known in advance. Pa-
rameter exploration requires recalculation of the statistics for each expan-
sion.

Optimization means in the context of this thesis, calculation of the weight
matrices W for the linear projections in the expanded space. There are two
possibilities. Either one applies the SFA algorithm directly or one does some
selection of support vectors via sparse regularization or Greedy methods to
exclude some dimensions in the expanded space.
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3.4 Efficient Filtering

One single image patch x of size (h,w) will be filtered by

y = g(x) = W> (Φ(x)−Φ0)

in the case of linear and expanded SFA and by

y = g(x) = W> (k(Z,x)− k0)

in the case of kernelized SFA. If one wants to filter a whole image X of size
(H,W ), the functions g = (g1, . . . , gK) have to be applied at all locations
(i, j) of the image.

One single slow component Yk of size (H−h+1,W −w+1) is obtained
as follows:

Yk
i,j = w>k

(
Φ(X[i:i+h−1,j:j+w−1])−Φ0

)
Yk
i,j = w>k

(
k(Z,X[i:i+h−1,j:j+w−1])− k0

)
(3.5)

As shorthands, one can write:

Yk = w>k h(X)−Yk
0 with h ∈ {Φ,k(Z, ·)} (3.6)

Let M be the dimension of the expansion either explicit or in terms of
support vectors. Then, the computational complexity of the filtering of one
image based on (3.5) for all K slow components jointly can be written as
follows:

O ({H − h+ 1} {W − w + 1} · hw ·M +K ·M) (3.7)

Here, the size of the output images is taken into account as well as
the receptive field size of a single patch and the number of components
in expanded space. The second summand reflects the projections in ex-
panded space. Note that the second slow component is computationally
much cheaper then the first one because the full expansion can be reused.

A video with 25, 000 frames of size 240 × 320 contains 1.92 billion pix-
els. Filtering based on M = 300 support vectors of size 10 × 10 requires in
the order of 60Tflop. Real-Time processing would require 70 Gflops (like a
Cray-1 from 1976) which is clearly too much for the robot’s CPU.

Considering the video as a fixed quantity, one has only two obvious pos-
sibilities to increase processing speed: Keep the dimension of the expanded
space as small as possible (potentially using sparse optimization techniques
from Section (4.3.4)) and have small receptive field sizes.

But when does one really need to filter a whole image? On the one hand
one may wish to visualize the outputs. On the other hand one may want
to learn several layers. In order to learn a higher layer one needs patches
clipped from the output of the previous layer. One can switch between fil-
tering the whole image and clipping patches from the filtered video (offline
filtering) and clipping larger patches from the first layer and applying the
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Figure 3.6: A filter mask z of size 10 × 10 pixels is applied to the image X.
The output image Y is 9× 9 pixels smaller in both height and width.

previous layer to them (online filtering). Offline filtering is very demanding
in terms of memory. Online filtering is computationally more expensive.

The linear projection of the filtering requires a matrix multiplication with
a weight matrix W. By using fast matrix multiplication algorithms such as
the Strassen’s algorithm one can reduce complexity of matrix multiplication
from O(N3) to O(N log2(7)) = O(N2.807) at least for square matrices of size N .

Finally, all calculations necessary for filtering work pixel by pixel and
can consequently carried out in parallel. For example, modern graphics
cards with 48 pixel pipelines and advanced programmability are promising
candidates for fast parallel processing.

In the following sections, fast linear filtering is reviewed and quadrat-
ically expanded SFA as well as kernelized SFA based on dot product and
RBF kernels are put down to linear filtering.

3.4.1 Fast linear filtering

Discrete real linear filtering as shown in Figure (3.6) is done by sliding the
filter z of size (h× w) over all locations of the image X of size (H ×W ) and
calculating a weighted sum corresponding to the dot product between the
filter and the image patch x at the special location:

(z ?X)H,Wi=1,j=1 =
h∑
k=1

w∑
l=1

zk,lXi+k−1,j+l−1 = z>x[i:i+h−1,j:j+w−1] (3.8)

The complexity for linear filtering is O((H − h+ 1) · (W −w+ 1) · h ·w).
From the convolution theorem it is known that a convolution in the time
domain becomes a simple multiplication in the frequency domain:

z ∗X = F−1 {F [z] · F [X]} (3.9)

In our case, F would be the two dimensional discrete Fourier transform
(fft2 in MATLAB) which can be efficiently calculated in O(H ·W · log(H ·
W )). One has to pad F(z) with zeros to carry out the multiplication with



3.4. EFFICIENT FILTERING 37

(a) Linear filter (b) MATLAB conv2 (c) MATLAB fft2

Figure 3.7: The three subplots show the calculating time (coded as color)
necessary for performing linear filtering depending on the size of the image
and the filter. MATLAB conv2.m is cache-optimized and works best for
small filters compared to large images. The function lfiltn.c is fastest for
filters large compared to the image because only the valid part is calculated.
The intermediate region is fastest calculated in the frequency domain.
The framed regions correspond to the strategy chosen by the linfilter.m
routine.

F(X) which is usually of bigger size. Furthermore, convolution is related to
filtering (cross correlation) by

z ?X = F (z) ∗X (3.10)

where the operator F flips the filter z in both horizontal and vertical
direction. Putting all this together, filtering in the frequency domain is done
as follows:

z ?X = F−1 {F [F (z)] · F [X]} (3.11)

The three ways of calculating the output of a linear filter, direct sum (3.8),
via convolution (3.10) and in the frequency domain (3.11) yield different
running times as shown in Figure 3.7. Thus, one can think of a strategy
switching between the three methods as depicted in the figure.

As a rule of thumb, one should filter in the frequency domain when the
filter mask is larger than 25× 25 pixels.

3.4.2 Quadratically expanded SFA

As the dimension of the expanded space containing all polynomials up to
degree two has a huge dimension, one usually applies a dimensionality re-
duction step to the data x before the expansion. After subtracting the mean
x0, the data is projected onto the first principal components corresponding
to the directions retaining most of the variance contained in the original data
set.

x̃ = S>(x− x0) (3.12)
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The linear transformation S performs a sphering, which means that x̃ is
decorrelated and has unit variance. This is a helpful property preventing
too large values due to the squaring. Filtering is done as expansion and
linear projection in the expanded space y = W>Φ(x̃) whose components yk
can be written as a quadratic function in x̃ and as quadratic function in x:

yk = w>k Φ(x̃) = x̃>Hkx̃ + f>k x̃ = x>Akx + b>k x + ck (3.13)

Dropping the index k and arranging the variables, one finds Hk = H>k
and fk as a function of wk in the following way:

y =



w1
...
wN
wN+1

wN+2

wN+3
...

w(N2+N)/2



>

x̃1
...
x̃N
x̃2

1

x̃2x̃1

x̃2
2
...
x̃2
N


= w>Φ(x̃) = x̃>Hx̃ + f>x̃ (3.14)

= x̃>


wN+1 · · · 1

2
w1+(N2+N)/2

1
2
wN+2

... . . . ...
1
2
w1+(N2+N)/2 · · · w(N2+N)/2

 x̃ +

 w1
...
wN


>

x̃

One can plug the sphering step (3.12) into (3.14) to obtain the expressions
Ak = SHkS

>, bk = Sfk − 2Akx0 and ck = −b>k x0 − x>0 Akx0.
If the firstN principal components are retained in the preprocessing step

the symmetric matrix Ak will be of rank N . With the help of the eigenvalue
decomposition Ak =

∑N
n=1 λnvnv

>
n the filter can be written as:

yk =
N∑
n=1

λk,n
(
v>k,nx

)2
+ b>k x + ck (3.15)

The computational complexity of this expression is much smaller, be-
cause the eigenvectors vk,n can be precomputed and only N + 1 linear fil-
tering operations are necessary unlike the (N2 +N)/2 operations needed in
the case of explicit expansion.

Yk =
J∑
j=1

λk,j (vk,j ?X)2 + bk ?X + ck (3.16)

One should mention a drawback of the proposed eigenbasis filtering
method, that the linear filtering operations cannot be reused for several slow
components because the eigenvectors vk,j depend on k.
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3.4.3 Kernelized SFA using dot product kernels

Kernels depending on a general dot product 〈z,x〉 induced by a symmetric
and positive definite matrix C have the form

k(z,x) = f(〈z,x〉) = f(z>C−1x) (3.17)

and can be rewritten using the substitution z̃ = C−1z.

k(z̃,x) = f(z̃>x) (3.18)

Once again, the final filtering routine can be written in terms of linear
filtering operations, one can efficiently perform in the frequency domain.

Yk =
M∑
i=1

wk,ik(zi,X)−Yk
0 =

M∑
i=1

wk,if(z̃i ?X)−Yk
0 (3.19)

The number of linear filtering operations is equal to the number M of
support vectors zi. Nicely, one can reuse the filtered images z̃i ? X for all
slow components.

3.4.4 Kernelized SFA using RBF kernels

Finally, one can, following Vollgraf et al. [2004], also rewrite the filtering
with an RBF kernel based on the Euclidean distance by utilizing linear op-
erations.

k(z,x) = f(‖z− x‖2) = f(z>z− 2z>x + x>x) (3.20)
k(z,X) = f(z>z− 2z ?X + 1 ?X2) (3.21)

Here, 1 denotes a filter of the same size as the support vectors containing
ones as entries.

Yk =
M∑
i=1

wk,if(‖zi‖2 − 2zi ?X + 1 ?X2)−Yk
0 (3.22)

The involved computations are only slightly more expensive than one
single linear filtering of X with zi. One can precompute 1 ?X2 by squaring
every pixel of the image and filtering the resulting image X2 with 1. Then,
one would add the scalar value ‖zi‖2 to every pixel and subtract the double
of the filtered image zi ?X.





Chapter 4

Simulation results

4.1 Outline

The following chapter presents numerical results obtained by systematical
exploration of expanded SFA and kernelized SFA. The measure of empirical
slowness served as main guideline. Another focus was the characterization
of the learned filters and the associated features. Most of the experiments re-
port results for kernelized SFA and establish empirical evidence for families
of kernels, their parameters and selection of suitable support vectors.

Many figures are presented in the following chapter. This detailed de-
scription is made to enable the reader to fully follow the parameter explo-
ration made in this thesis and to serve as a reference containing many little
technical hints for further work in the NeuRoBot project.

Plugging the definitions of the statistics A and B for the kernelized case
into the SFA objective function (2.16) yields the extended version of the ker-
nelized optimization problem

(W∗,Z∗, k∗) =
argmin

W,kt = k(Z,xt)
= tr

(
W>

T−1∑
t=1

(kt+1 − kt) (kt+1 − kt)
>W

)

s.t. I = W∗>

(
T∑
t=1

k∗tk
∗>
t −

T∑
t=1

k∗t

T∑
t=1

k∗>t

)
W∗ (4.1)

by using k(Z,xt) := [k(z1,xt), . . . , k(zM ,xt)]
> with Z denoting the set of

support vectors.
Inspection of (4.1) shows that only the input data xt is given, the weights

W, the kernel mapping k(·, ·) and the set of support vectors Z are subject to
optimization. Provided that k∗(·, ·) defines a reasonable similarity measure
and that the support vectors Z∗ are sufficiently distinct, the covariance ma-
trices A and B will be well conditioned and thus the weights W∗ can easily
be obtained by SFA.

Hence, there is the choice of kernel function and the choice of support
vector set to be made.

There is a tradeoff between incorporating knowledge into the kernel
function and applying a preprocessing to the support vectors. Take for ex-

41
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ample a dot product kernel k(zi,xt) := f(z>i xt). In that case, transforma-
tion of the support vectors z̃i := Mzi (M = M>) is equivalent to kernel
modification k̃(zi,xt) := f(z>i Mxt). In the remainder, one considers these
transformations to be part of the kernel.

As there are two quantities to be optimized, one can adopt the strategy
of keeping one quantity fixed whilst optimizing the other quantity. No joint
optimization will be considered in this thesis.

4.1.1 Optimal kernel for a given set of support vectors

An exhaustive search in the space of kernels is computationally not tractable,
therefore one focuses on some known parametrized families of kernels, whose
parameters can efficiently be optimized by using cross-validation techniques.

That means, one deals with the problem of finding an optimal parameter
θ in the context of a given family of kernel mappings K = {θ ∈ Θ | kθ(z,x)}
and a given set of support vectors Z. The following five families of kernels
are taken into account:

1. Kexp =

{
(σ, d) ∈ R+ × (0, 2] | k(σ,d)(z,x) = exp

(
−
(
‖z−x‖√

2σ

)d)}
Special cases include the Gaussian kernel (d = 2) and the Laplacian
kernel (d = 1). For results see Figure 4.11 and Section 4.4.3. For some
ideas on coverage see Appendix A.2.2.

2. Kplum =
{

(σ, d) ∈ R+ × R+ | k(σ,d)(z,x) = σd

‖x−z‖d+σd

}
The Plummer kernel is the second class of Radial Basis Function (RBF)
kernels and has the advantage of not requiring the evaluation of a tran-
scendent function which can mean a gain in simulation time. For re-
sults see Figure 4.11 and Section 4.4.3.

3. Kpoly =
{

(a, b, c) ∈ R+ × R× N+ | k(a,b,c)(z,x) =
(

z>x
a

+ b
)c}

Widely used in image processing and in some respects equivalent to
polynomial expansion (see Appendix A.2.1), the polynomial kernel is
one of the studied dot product kernels. For results see Figure 4.11 and
Section 4.4.1.

4. KNN =
{
(κ, θ) ∈ R+ × R | k(κ,θ)(z,x) = tanh

(
κz>x + θ

)}
In some performance aspects similar to Gaussian kernels, the neural
net (or sigmoid) kernel is one of the often used dot product kernels.
For results see Section 4.4.2.

5. Ksin =
{

(a, φ) ∈ R+ × [0, 2π) | k(a,φ)(z,x) = sin
(

z>x
a

+ φ
)}

The theory of optimal free responses (see Section 2.2.3) motivates the
use of the sine kernel which is also one of the commonly used dot
product kernels, even if it is not positive definite. For results see Sec-
tion 4.4.2.
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4.1.2 Optimal set of support vectors for a kernel

A somewhat converse approach consists of keeping the kernel k fixed and
searching for optimal support vectors. From the representer theorem one
knows that the optimal slowness function can be obtained as linear combi-
nation of the functions k(xt, ·) for all training points xt. Choosing an optimal
subset {zi} ⊂ {xt} with a fixed number M = |{zi}| of elements turns out
to be a combinatorical optimization problem. On the other hand, one can
completely detach from the training set and search for heuristics selecting
good support vectors zi ∈ RN .

Here one makes the distinction between support vector selection prior
to learning (see Section 4.3.2) and after learning (see Section 4.3.4) i.e. apply
an algorithm or heuristic for support vector selection before calculating any
image patch statistics and choosing good support vectors based on SFA,
respectively.

4.2 Results for Expanded SFA

As detailed in Section 2.2.4, SFA can be solved by applying a whitening
operation P in order to respect the constraints and in a second step to search
for a rotation R that minimizes the objective function.

(a) PCA: 10x20

(b) PCA: 20x10

(c) linear SFA: 10x20

(d) linear SFA: 20x10

Figure 4.1: The figure shows the first 20 principal components and the
corresponding 20 slowest linear feature detectors for horizontally and ver-
tically elongated patches. In both cases, horizontal filters with increasing
spatial frequencies constitute the slowest filters. Interestingly, the first slow
filters are linear combinations of only a few principal components.

For visual comparison, the principal components of image patches as
well as the slowest varying linear filters are shown in 4.1. Principal com-
ponents of images are known to correspond to low-pass filters in different
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orientations with increasing spatial frequencies. Analysis of the rotational
part R reveals that the slowest varying linear features are linear combina-
tions of very few principal components with large eigenvalues. That means
the slowest linear features live in the subspace induced by a few low-pass
filters, that capture most of the variance of the image patch. As a result, the
slowest linear filters are spatial low-pass filters as well. Concluding one can
say, that temporal low-pass filtering using instantaneous functions can be
achieved by linear combination of spatial low-pass filters. The special form,
i.e. filters constant in horizontal direction and periodic in vertical direction
can be explained by the structure of the video where far more horizontal
movement is present due to the structure of the rooms and the two dimen-
sional trajectory of the robot.

(a) maximal stimulus: 10x20

(b) maximal stimulus: 20x10

(c) minimal stimulus: 10x20

(d) minimal stimulus: 20x10

Figure 4.2: The figure visualizes the first 30 quadratic slow features by the
stimuli that generate minimal and maximal responses respectively. Again,
horizontal structure dominates the stimuli.

Following Section 2.4.1, quadratically expanded SFA was applied to im-
age patches. On the one hand, it is interesting to know if real world image
transformations lead to filters that exhibit similar receptive field properties
as those obtained from artificial transformation sequences on still images.
Quadratic filters cannot be visualized as easy as linear filters. A common
but very coarse way consists of showing the image patches leading to min-
imal or maximal output as done in Figure 4.2. Some filters look like Gabor
wavelets with large spatial extent in one direction. Analysis of the invari-
ances implemented by the filters uncovers that translation invariance can
mainly be found in horizontal direction. This matches the intuition of the
robot in the lab doing many rotational movements resulting in horizontal
translation in the image plane.

An interesting difference between linear and quadratically expanded
SFA is shown in Figure 4.3 where slowness is plotted as a function of re-
ceptive field size. Intuitively, larger receptive fields allow for more com-
plex functions and therefore for slower responding output functions. On
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Figure 4.3: A number of 400, 000 patches of sizes 10 × 10, 10 × 20, 20 × 10,
15×15, 10×30 and 30×10 was sampled from a video of the robot lab. Linear
SFA and quadratic SFA based on the fully expanded 40 dominant principal
components was performed and the first K = 10 slow features were ex-
tracted by using 10-fold cross-validation. Note the different behavior for
horizontal and vertical patches with the same number of pixels.

the other hand, adopting the spatial low-pass filter perspective, it is clear
that larger receptive fields permit smoother spatial filters potentially being
also temporal low-pass filters. However, there is a difference between hor-
izontally elongated patches and vertically elongated patches. Linear SFA
achieves slower outputs for vertically elongated patches which is probably
due to the fact that these patches show less initial temporal variance and
that the strategy of doing a spatial averaging in horizontal direction pro-
duces worse results. Quadratical filters can implement much more complex
invariances such as phase invariance along the horizontal direction. Indeed,
this is the case, and certainly explains the horizontal vertical flip in the fig-
ure, relating linear and quadratic SFA. A trivial result to state is the slower
response of quadratic SFA compared to linear SFA. The test slowness stest
for 10 × 10 patches of stest = 0.82 will serve as a reference value below.
Quadratic expansion is not directly applied to the input data set because the
dimensionality of the expanded space would be numerically less tractable
than the quadratic expansion of the most dominant principal components.
On the other hand, the whitening in input space improves the condition of
the optimization problem. The horizontal-vertical flip is not an effect of the
PCA preprocessing.

From the beginning, it is not clear, how many data points are neces-
sary for a reliable estimation of a slow filter. This question is examined
for quadratically expanded SFA in Figure 4.4. More data points produce
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Figure 4.4: An increasing number of training samples leads to slower re-
sponses. Here patches of size 10 × 10 were used to perform quadratic SFA
to extract the K = 10 slowest feature in 5-fold cross-validation.
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Figure 4.5: The figure displays slowness values obtained by training on one
video and validating on another video. The simulator video has a behavior
different from the camera videos. 1,000,000 patches of sizes 10× 10, 15× 15,
20× 20 and 25× 25 were used as input to quadratic SFA keeping the K = 10
slowest components.
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slower filters. As a rule of thumb, depending on the patch size, one should
at least have 500,000 data points; more points do no harm. More data points
also cause the variance of the estimator to shrink and decrease the distance
between test value and the training value.

The question arises, up to what extent filters learned on a special video
produce slow outputs for another video. Motivated by the availability of
a simulator, one has to examine the possible difference between artificially
generated image sequences and recorded videos. As depicted in Figure 4.5
there is a remarkable difference between these two categories of images.
Training videos are depicted in Figure 3.1. If training is done on camera
recorded videos, the filters always perform bad on the simulator video. If
one trains on the artificial video, the slowness on the camera grabbed videos
is in the same range as on the artificial video which is less slow than if
trained on the real world video. This gives rise to the conclusion that the
transformations occurring in the simulator video are a superset of the trans-
formations in the real world dataset. Additional transformations such as
texture mapping effects can influence the performance of the filters. Admit-
tedly, the gap between the slownesses of the two classes of videos becomes
smaller for larger patches.

4.3 Selection of Support Vectors

As the number of support vectors M is a multiplicative factor in the com-
plexity of the filtering of large data-setsO(M ·Rest) it is desirable to keep the
number of support vectors as small as possible i.e. to select the best support
vectors beforehand (Section 4.3.2) or to perform the expanded analysis with
many support vectors and find a good subset afterwards (Section 4.3.4).

4.3.1 Support vectors from data set or not

In SV classification or regression, e.g. SVMs, the support vectors i.e. the set
of data points that constitute the solution naturally stem from the training
set. The representer theorem guarantees that the optimal weight vectors uj
in feature space lie in the span L{Φ(xt)} of the data points in feature space.

That means one could choose {zi} = {xt} as support vector set. In the
case of SFA one typically deals with samples of 500, 000 data points or more
which is not a computationally tractable set of support vectors. Driven by
the hope that the data points {xt} do not have linearly independent images
in feature space, one can sample a random subset of the data {zi} ⊆ {xt} to
serve as support vectors. In the case of RBF kernels, that depend on local
distances between data points, this intuitively seems to be a good idea. Nu-
merical simulations revealed that slowest responses are obtained for sup-
port vectors originating from the data set. Distances in RBF kernels are usu-
ally measured as Euclidean distances:

d(x,y) = ‖z− x‖ =
√

(z− x)>(z− x) (4.2)
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Intuitively that means, distances are dominated by deviations along the
principal components of the data. One can suspect that a metric taking the
shape of the data cloud into account would make a difference. Distances in
whitened space are measured by:

dCx(z,x) =
√

(z− x)>C−1
x (z− x) (4.3)

However, experiments conducted with that PCA preprocessing produced
less slow results than in the usual Euclidean case.

0 10 20 30 40 50 60 70 80 90 100
10

1
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Figure 4.6: The double square roots of the eigenvalues λi of the covariance
matrix of image patches of size 10 × 10 are semi-logarithmically plotted in
order to illustrate the shape of the data manifold. As the patches have values
in the range of [0, 255], the units of the figure are gray value differences. The
longest axis of the corresponding hyperellipsoid has the length 2

√
λ1 = 815,

the second longest 2
√
λ2 = 220 and the shortest axis has a length of around

2
√
λ100 = 30.

Nevertheless, dot product kernels k(z,x) = f(z>x) allow for support
vectors zi that are scaled versions of training points and thus do not origi-
nate from the data distribution. One can suppose that both the support vec-
tor z and the data point x originate from the data distribution approximated
by a hyperellipsoid with axes of lengths 2

√
λi where λi is the ith eigenvalue

of the covariance matrix. From Figure 4.6 one sees that the spectrum of the
covariance matrix rapidly decays, which means that there are a few dom-
inant eigenvalues and many very small eigenvalues. In other words, two
vectors stemming from such an elongated hyperellipsoid (one can think of
it as in shape of a high-dimensional cigar) are almost collinear and point ei-
ther in the same or the opposite direction. Thus, the dot product has a large
absolute value and can be considered as constant plus a little noise which
induces very badly conditioned covariance matrices. PCA as preprocess-
ing can solve this problem and provide more meaningful dot products in
terms of similarity measurement. Nevertheless, by empirical simulations it
turned out that drawing support vectors from a standard normal distribu-
tion z ∼ N (0, I) produces significantly slower response functions. An intu-
itive explanation is given by the following reasoning: The dot product is a
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projection operation of the data point x onto the the support vector z. That
means the kernel is most sensitive to deviations of x in direction of z. Func-
tional complexity with respect to shattering of point sets is consequently
present only in direction of z. Directions orthogonal to z do not change
the dot product. Finally, the slowness function, being a linear combination
of kernel mappings evaluated at the support vectors, will have complexity
in direction of the support vectors. From the empirical observation, that
random support vectors produce slower responses, one can deduce that it
seems to be a good strategy to select support vectors pointing into as many
different directions as possible. In other words complexity should best be
distributed in an isotropic way.

4.3.2 Selection of support vectors prior to learning

Clustering in feature space

A rule of thumb builds on the intuition that support vectors should be dis-
tinct to a certain degree. Otherwise kernel matrices and covariance matrices
would not be of full rank which could give rise to numerical problems. If
support vectors originate from the training set, one can also tend to favor
support vector sets which – mapped into feature space – cover the feature
space in an optimal way. A feature vector selection algorithm equivalent to
clustering in feature space is proposed by Bray and Martinez [2002].

The basic idea is the following:
Given T training points xt, the kernel matrix K = [k(xτ ,xt)] has often a

rank much smaller than T . This means that the manifold in the (potentially
very high-dimensional) feature space has a low dimension and can therefore
be approximated by a subset {Φ̃s} of the support vectors Φt ≈

∑S
s=1 αt,sΦ̃s

forming an approximate basis of the relevant feature subspace.
The relative reconstruction error

∥∥∥Φt −
∑S

s=1 αt,sΦ̃s

∥∥∥ / ‖Φt‖ is minimized
which yields the feature vector selection algorithm detailed in [Baudat and
Anouar, 2001] and rewritten as Algorithm 1. In a nutshell, feature or sup-
port vectors are selected having a minimum distance in feature space to each
other.

Algorithm 1 Feature Vector Selection (FVS)
init FV← ∅, τact ← τ0, λ < 1
for ∀x ∈ X and while |FV| < NSV

if ∀z ∈ FV |k(z,x)| < τact

• FV← FV ∪ {x} (add new vector)
• τact ← λτact (annealing)

end if

end for

In the case of RBF kernels k(z,x) = f(‖z− x‖), depending directly on a
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distance measure in input space, the FVS algorithm corresponds to cluster-
ing in input space as k(z,x) < τ ⇔ f−1(τ) = τ̃ < ‖z− x‖ assuming strictly
decreasing f and dropping the absolute value.

(a) NSV = 1000, 10 ≤ d(z1, z2) (b) NSV = 1000, 200 ≤ d(z1, z2)

Figure 4.7: Clustering by using the selection rule from Algorithm 1 with
RBF kernels is equivalent to clustering using a threshold τ̃ on the pairwise
distance between two data points e.g. τ̃ = −

√
2σ ln τ < d(z,x) in the case of

Laplacian kernels.
The threshold for the left example is low, which means the support vectors
are distributed like the data. Whereas the threshold for the right example is
quite large which means the support vectors are much broader distributed
than the data and show thus a larger variety.

The sampling of support vectors also reveals something about the struc-
ture of the data points. In Figure 4.7 two different thresholds τ̃ were used
for support vector selection prior to learning. The left image contains many
quasi-constant image patches occurring frequently in the video. Higher
thresholds τ̃ require the support vectors to be more distinctive what is ob-
viously reflected by the left image.

Support vector selection is not interesting as such in this thesis; it serves
only as a heuristic to improve the results of kernelized SFA. In Figure 4.8
the slight improvement of slowness is depicted. Different thresholds τ on
the kernel function were used to select support vectors beforehand. Then
kernelized SFA employing a Gaussian kernel was applied in order to study
the slowness behavior. Summarizing, one can say that a slight distinctness
of support vectors improves slownesses. However, with growing numbers
of support vectors, this effect becomes less prominent. For further results
see Section 4.3.4 and Figure 4.10.

4.3.3 Selection of support vectors during learning

In this section, two results are briefly mentioned for reasons of complete-
ness, although no further investigation of the proposed methods was done
in the context of kernelized SFA.
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Figure 4.8: A 5-fold cross-validation experiment using a Gaussian kernel
with σ = 500 based on T = 600, 000 training samples and NSV = 200 sup-
port vectors was conducted in order to show that clustering in feature space
slightly influences the resulting slowness values for the K = 10 slowest
components.

Modification of the constraints

Among the approaches for obtaining sparse solutions for unsupervised ker-
nel algorithms, Smola et al. [1999] replace the constraints in feature space by
constraints in coefficient space. As a result, the admissible expansion coef-
ficients are bounded by a polyhedron, which leads to vertex solutions that
are naturally sparse.

Approximation of the covariance in feature space

Sparse kernelized PCA as proposed by Tipping [2000] is achieved by an
approximation of the covariance matrix of the data centered in feature space
with a subset of weighted data points.

ˆcov(Φ(xt)) =
1

T − 1

T∑
t=1

ΦtΦ
>
t ≈ σ2I +

NSV∑
i=1

wiΦ(zi)Φ(zi)
> (4.4)

Therefore, only NSV support vectors are involved in the solution instead
of the whole dataset containing T points.

4.3.4 Selection of support vectors after learning

Results reported in [Vollgraf and Obermayer, 2006] suggest that, in line
with kernel PCA, given the kernel covariance matrix for a large set of sup-
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port vector candidates, one can apply a retroactive selection to these can-
didates by using a regularization term that punishes solutions containing
many support vectors. The initial objective function (variance conserved or
reconstruction error) is augmented with a regularization term ρ(v) which
favors sparse weight vectors v and provides a means of candidate elimina-
tion. The optimization is done with an iterative algorithm called HECGD,
which is basically a minimization routine operating on the admissible set of
weight vectors in shape of a hyperellipsoid. An implementation is provided
in the file ksfmin.m (for details see Section 3.1.3)

Column sparseness

Figure 4.9: For the case of dimension M = 2 the sparseness regularizer
ρ(v) = ‖v‖21 / ‖v‖

2
2 has the above shape. It can be seen that regions close to

the coordinate axes have small values which corresponds to the intuition of
as many zero coordinates in v as possible.

Normally, in SFA one minimizes (2.17) to obtain the first K slow com-
ponents. If additional prior knowledge shall be incorporated in the solu-
tion, one can replace the objective term s(W) by an augmented objective
term s(W) + λρ(W). Here, ρ(W) is a regularization term that is low if W
matches the prior knowledge. Solutions not compatible with prior knowl-
edge are punished by large values of ρ(W). The scalar value λ interpolates
between the primal objective and the regularization term. Regularization
can often improve the conditioning of ill-posed problems. A known regu-
larizer enforcing sparseness is the ratio between the L1- and the L2-norm:

ρ(v) =
‖v‖21
‖v‖22

=

(∑N
i=1 |vi|

)2

v>v
=

(
1T |v|

)2
v>v

v 6= 0 (4.5)

The function is scale invariant i.e. ρ(αv) = ρ(v) and special function
values comprise the coordinate axes ei = (0, . . . , 1, . . . 0)> with ρ(ei) = 1 and
the hyperdiagonals dh ∈ {−1, 1}M with ρ(dh) = M . The limit of ρ(v) for
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v→ 0 does not exist.

∂ρ

∂v
= 2

‖v‖1
‖v‖42

[
‖v‖22 sign(v)− ‖v‖1 v

]
(4.6)

The gradient equals 0 for v 6= 0 only if ‖v‖22 sign(v) − ‖v‖1 v. Conse-
quently, vectors satisfying

∑
i v

2
i =

∑
i |vivj| for all j are of special interest.

This is the case for the coordinate axes and the hyperdiagonals as ∂ρ
∂v

(ej) = 0

and ∂ρ
∂v

(dh) = 0.
In Figure 4.9 one can see the regularizer ρ(v) for the case of dimension

M = 2. The function has local saddle point minima along the coordinate
axes, signifying a zero entry for a special support vector. Furthermore, the
function has saddle point maxima along the diagonals. Non-zero elements
of v are punished, so an optimal v contains as many zeros as possible.

Sparse solutions with the help of ρ(v) can iteratively be obtained in the
following way: Assuming, one already has a partial solution consisting of
L < K vectors W = [w1, . . . ,wL]. The next vector wL+1 =: v ∈ RM is
found by minimizing v>Av + λρ(v) under the constraints v>Bv = 1 and
W>Bv = 0. An efficient way to do so is HECGD, as the algorithm im-
plements a gradient descent which by construction respects the quadratic
constraints on v. If the method is iteratively applied for L = 0, 1, . . . ,M − 1,
an optimal weight matrix W can be constructed. Sparse weight vectors wi

are not of special value as long as they do not have zeros in the same row for
all columns. If one thinks of applying the filters gi(X) =

∑
j wjik(zj,X) to

an image X, speed improvement is only obtained when coefficients wij are
zero for a special row j and all columns i implying that the quantity k(zj,X)
does not need to be computed.

Joint sparseness

Generalization of the sparseness regularizer (4.5) to matrix arguments can
be done in the following way:

ρ(W) =
squared sum of Euclidean row-norms

Frobenius matrix norm
=

(∑
i

∥∥w[i,:]

∥∥
2

)2
‖W‖22

=

(∑
i

∥∥w[i,:]

∥∥
2

)2∑
i

∥∥w[i,:]

∥∥2

2

=

(∑
i

√∑n
j=1w

2
ij

)2

∑
i

∑n
j=1w

2
ij

=

(
tr
√

WW>
)2

tr(WW>)
(4.7)

The vector valued regularizer (4.5) emerges as a special case of (4.7) if
W contains only one single column and the ith row w[i,:] reduces to a scalar
value wi. Note that the regularization term ρ(W) = ρ(αW) is invariant to
the scale of W which guarantees that the solution is not biased to small or
large values. The gradient of ρ(W) is given by:

∂ρ

∂W
= 2ξ

(
dg−

1
2
(
WW>)− ξI)W with ξ =

tr
√

WW>

tr(WW>)
(4.8)
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For a derivation see Appendix (A.5). Geometrically, the gradient ∂ρ
∂W

= DW
is obtained by rescaling the rows of W with a diagonal matrix D with entries
dii = 2ξ

∥∥w[i,:]

∥∥−1

2
− 2ξ2 such that ∂ρ

∂wij
= diiwij . Considering formally the

length l of the partial derivative of a column, one finds

l =

∥∥∥∥ ∂ρ

∂w[i,:]

∥∥∥∥
2

=
∥∥diiw[i,:]

∥∥
2

= 2ξ
∣∣1− ξ ∥∥w[i,:]

∥∥
2

∣∣
The length l vanishes for

∥∥w[i,:]

∥∥
2

= ξ−1. For example, the M -dimensional
unit matrix W = I yields a local maximum of ρ(I) = M . The gradient also
vanishes for matrices α1 with constant entries α. In numerical simulations,
the convention

∂ρ

∂w[i,:]

∣∣∣∣
0

:= 0

is used because the limit

lim
w[i,:]→0

∂ρ

∂w[i,:]

does not exist.
The modified minimization problem now reads as follows

min. s(W) + λρ(W) s. t. W>BW = I (4.9)

with regularization parameter λ. Obviously, the eigenproblem structure is
lost. A mathematically correct treatment would involve an optimization of
s(W) + λρ(W) on the manifold

SB :=
{
W ∈ RM×K |W>BW = I

}
(4.10)

of matrices diagonalizing B. By a substituting W̃ ← B−
1
2W the problem

can be transformed into an optimization of an objective function restricted
to the Stiefel manifold:

S :=
{
W̃ ∈ RM×K | W̃>W̃ = I

}
(4.11)

Methods for dealing with that optimization by means of a proper gradient
defined on that manifold are extensively discussed by Edelman et al. [1999].
Even conjugate gradients are provided. In the context of ICA, orthogonal
matrix gradient methods have already been studied by Plumbley [2004] and
Fiori [2002].

While experimenting with gradient descent on Stiefel manifolds it turned
out that an extension of the HECGD optimization scheme from Vollgraf
and Obermayer [2006] as detailed in Algorithm (2) works faster and pro-
duces better results. The method was originally defined for vector-valued
objective functions, but can easily be extended to matrix-valued functions if
HECGD is iterated over the columns of the matrix W.
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Algorithm 2 Joint Hyper-Elliptical Conjugate Gradient Descent
init W← N (0, ε2), W←W

�
W>BW

� 1
2

repeat

for ∀wi ∈W do

• wnew
i ← HECGD(wi,W¬i,A,B)(column optimization)

if



w[i,:]




 < τrow

• w[i,:] ← 0> (set row to zero)

until



wi −wnew

i




 < τ∆w ∀i

As partial derivatives of the columns of W serve the columns of the gra-
dient in Euclidean space given by:

∂s+ λρ

∂W
= 2

(
A + λξdg−

1
2
(
WW>)− λξ2I

)
W, ξ =

tr
√

WW>

tr(WW>)

For the derivation of the gradient see Appendix A.1.1. An implementa-
tions is provided in the file ksfmin2.m (for details see Section 3.1.3)

Greedy approaches

There is a less fancy but very effective method to select a set of support
vectors {zi} ⊂ Z after the statistics A and B have been computed. Let I
denote the index set of the vectors chosen from Z such that {zi} = ZI . Then
the “reduced” matrices AI and BI are obtained by discarding the rows and
columns from A and B whose indices are not in I. By applying SFA to the
reduced matrices AI and BI and extracting the firstK slowest components,
one obtains a slowness s(I) depending on the support vectors chosen and
producing a measure for comparing different index sets I.

That means, a Greedy strategy of adding and deleting candidate support
vector indices from I can be adopted.

In Figure 4.10 the JHECGD regularization algorithm is compared to the
Greedy selection approach. It turns out that both procedures perform better
than randomly selected support vectors and that Greedy selection signifi-
cantly outperforms the JHECGD algorithm. Furthermore, one can see that
the FVS algorithm in combination with support vector selection afterwards
produces worse results.

The final conclusion to draw is the following: In order to obtain sparse
solutions, select via FVS with a small threshold τ a corpus of candidate sup-
port vectors prior to learning. Then, calculate the statistics A and B and
apply Greedy support vector selection afterwards.

4.4 Results for Kernelized SFA

4.4.1 Polynomial kernels

Results with expanded SFA reported in the literature were obtained by ap-
plying an explicit expansion into the space of polynomials of degree two or
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(b) Laplacian kernel τ = 200

Figure 4.10: Initially, NSV = 1000 support vectors (patches of size 10 × 10)
were chosen according to Algorithm 1 with two different thresholds τ for
the minimum distance between two support vectors.
Laplacian kernels of width σ = 1200 were used for the analysis. The figure
shows results for three sparsification methods: Simple random removal of
support vectors, regularization based support vector selection and Greedy
support vector selection.

higher. Therefore, polynomial kernels are the most natural starting point for
a comparative analysis. For equivalence considerations between explicitly
expanded SFA and kernelized SFA see Appendix A.2.1.

There are two versions of widely used polynomial kernels, the homoge-
neous kernel

k(z,x) =

(
z>x

a

)c
(4.12)

containing monomials of order c and the inhomogeneous kernel

k(z,x) =

(
z>x

a
+ b

)c
(4.13)

containing monomials of order up to c. Geometrically, the polynomial ker-
nel computes a projection and than applies a polynomial function along z
as shown in Figure 4.11(a).

To get an intuition for the parameters a, b and c, some general consider-
ations are made in the following. The offset b and the scale a have a similar
effect, because the kernel can be equivalently rewritten as:

k(z,x) ∝
(

z>x

ab
+ 1

)c
∝
(
z>x + ab

)c (4.14)

In general, large values ab compared to the dot product z>x lead in the limit
to the constant value k(z,x) → bc and small valued ab result in the homo-
geneous kernel. That means, the scale of ab determines in a certain sense
how nonlinear the mapping is. The power c defines the maximum degree
of the polynomials. If c is set too small, functions of low complexity with
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(a) k(z,x) = f(z>x) = f(d)
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(b) k(z,x) = f(‖z− x‖) = f(r)

Figure 4.11: Among the kernel functions k(z,x) there are two widely used
families of special kernels: Dot product kernels depend only on a projection
of x onto the support vector z whereas RBF kernels depend only on the
distance of x to the support vector z.
RBF kernels differ in the size of their support. Gaussian kernels are very
local, Laplacian kernels have “heavier tails” and the Plummer kernel has
the largest range of influence. All three kernels plotted here have a length
scale parameter σ = 500.

tendency towards underfitting emerge and when c is too large, overfitting
might occur. Furthermore, c takes as values only natural numbers to keep
the kernel values real.

Figure 4.13 illustrates the influence of the kernel parameters and the
number of support vectors on the slowness of the learned filters. Starting
from a baseline experiment with (a, b, c) = (500, 1, 3) and 100 support vec-
tors, these four parameters were altered. Larger scale a and bigger offset
b lead to slower responses. For only a few support vectors, quadratic ker-
nels perform best and more support vectors lead to smaller slowness values.
Slowness will increase again for larger values of ab.

As depicted in Figure 4.12(a), in the case of patches of size 10× 10 pixels
lying in the 8bit gray value range of [0, 255], suitable kernel parameters are
(a, b, c) = (500, 5, 3). Around NSV = 500 support drawn fromN (0, I) lead to
slowness performance as good as quadratically expanded SFA.

Different heuristics for the choice of support vectors were considered.
For details see Section 4.3.1.

4.4.2 Other dot product kernels

One can think of many pointwise nonlinearities f(·) applied to a dot prod-
uct and yielding a reasonable kernel k(z,x) = f(z>x). In the following two
short sections, numerical results for two more dot product kernels are pre-
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Figure 4.12: 10-fold cross-validation on 10 × 10 patches using polynomial
and RBF kernels is used to compare slowness performance of the different
kernels in the case of a growing number of support vectors. For reference,
the slowness value of quadratically expanded SFA is given in both cases.
Kernel parameters for polynomial kernels were (a, b) = (500, 5) and c ∈
{2, 3, 4}. Kernelized SFA with quadratic kernels reaches the quadratical ex-
pansion bound for around NSV = 700 support vectors. Cubical and fourth-
order kernelized SFA show similar asymptotic behavior.
RBF kernels worked with σ = 1200 for d ∈ {1

2
, 1} and σ = 500 for d = 2.

Both sub-Gaussian kernels show equivalent asymptotic behavior.

sented, even though both of them are not positive definite.

Sine kernel

Besides algebraic polynomials serving as approximations for arbitrary func-
tions, trigonometric polynomials can be used to approximate periodic func-
tions. A more heuristic motivation comes from the theory of optimal free
responses (see Section 2.2.3) where trigonometric functions are found to be
the slowest possible functions. The sine kernel

k(z,x) = sin(
z>x

a
+ φ) (4.15)

implements periodic waves along the direction of z characterized by a wave-
length λ = 2π |a| / ‖z‖ and an offset from the origin υ = |a|φ/ ‖z‖. Fixing
the length of the support vectors to ‖z‖ = 1 allows for convenient modeling
of λ with the help of the parameter a and for adjustment of ν by means of
choosing the parameter φ ∈ [0, 2π).

As shown in Figure 4.14, the results are a bit slower than in the polyno-
mial case but do not reach RBF performance. One can clearly see a sym-
metry in the shift parameter φ. The support vectors were randomly chosen
from x ∼ N (0, I) and the same shift φ was used for all support vectors.

A drawback of trigonometric functions could be their non-locality. It
might happen that beating or interference effects occur when many waves
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Figure 4.13: Starting from a baseline experiment (a = 500, b = 1, c = 3,
NSV = 100) the changes in the slowness function are explored for these
four kernel parameters. Concluding from this 10-fold cross-validation ex-
periment using 10× 10 patches, one can say that more support vectors and
higher values for both a and b produce slower results. In the case of only a
few support vectors, quadratic kernels lead to the slowest outputs. Support
vectors were sampled from a standardized Gaussian distribution.

are linearly combined which makes a slowness function unstable in the
sense that removal of one single support vector contribution would signifi-
cantly change the resulting function.

Neural net or sigmoid kernel

For reasons of curiosity and motivated by an equivalence of a special neural
network with sigmoid activation function, the neural net kernel

k(z,x) = tanh(
z>x

a
+ b) = tanh(κz>x + θ) (4.16)

is also considered. Here, a is the scaling parameter, also known as gain κ
and b is the offset, sometimes referred to as threshold θ. The superposition
of two sigmoid functions in one dimension yields a localized function as
shown in Appendix A.1.2. There are also results in the literature reporting
similar performance of neural net kernels and RBF kernels in the context
of support vector machines. To make it short, Figure 4.15 visualizes the
slowness for two different scaling parameters.

4.4.3 RBF kernels

The second large class of kernel functions considered are so called radial
basis function (RBF) kernels. In a nutshell, kernels only depend on the dis-
tance between d(z,x) the two data points. In the following, Euclidean dis-
tances (4.2) and distances respecting the covariance structure of the data
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Figure 4.14: The plot shows the resulting slowness values of sine kernels
for two different scaling parameters a obtained in a 10-fold cross-validation
experiment with 10×10 patches. Larger scaling produces slower responses,
support vectors were randomly sampled from a Gaussian standard normal
distribution.

based on general inner products (4.3) are used. The kernel has the general
form k(z, x) = f(‖x− z‖) where f is usually a rapidly decaying continuous
function. Some typical examples also used for kernelized SFA are shown in
Figure 4.11(b).

The most prominent representatives among the RBF kernels are the Gaus-
sian (d = 2) and the Laplacian (d = 1) kernels given by:

k(z,x) = exp

(
−
(
‖x− z‖√

2σ

)d)
(4.17)

A visually similar kernel is a close relative to the Plummer kernel:

k(z,x) =
σd

‖x− z‖d + σd
(4.18)

The main advantage of the Plummer kernel is the fact that it can efficiently
be calculated as the evaluation of the exponential is replaced by a simple
division.

All three kernels of Figure 4.11(b) have the same range parameter σ - the
major difference is the speed of decay and the differentiability at ‖·‖ = 0.

The considered RBF kernels have only one parameter (if only some dis-
crete values are assumed for d) signifying the length scale of the kernel. In
Figure 4.16 the influence of the kernel width σ on the shape of the arising
slowness function is investigated. Empirically successive widths for Gaus-
sian and Laplacian kernels are examined in order to provide a feeling for the
complexity of the slowness function in different directions of the data space.
Subsets of only ten pixels allow for very smooth mappings only; along the
hyperdiagonal more complex functions are possible f.i. double humps. The
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(b) 1/κ = 1600, NSV = 200

Figure 4.15: The plot shows the resulting slowness values of neural network
kernels with hyperbolic tangent transfer function for two different scaling
parameters (gain) κ obtained in a 10-fold cross-validation experiment with
10 × 10 patches. Larger gain produces slower responses, support vectors
were randomly sampled from a Gaussian standard normal distribution.

sum of Gaussians is smooth, yet the sum of Laplacians visually looks like a
locally linear interpolation.

Another important adjusting screw for model complexity is the number
of support vectors. Patches of size 10×10 pixels live in a space of dimension
d = 100. If one puts kernels of widths σ into that space, the number of
kernels M – necessary for an entire covering – behaves like M ∝ (1/σ)d.
For details, see Appendix A.2.2. This exponential scaling clearly shows that
even relatively large numbers of kernels (say 10, 000) provide a very coarse
covering of the data space ( 100

√
10, 000 ≈ 1.1 kernels per dimension).

In order to derive an optimal set of parameters (σ, d) different simula-
tions were carried out. The main results largely corresponding to intuition
are summarized in Figures 4.12(b) and 4.17. One can clearly see that the de-
gree d affects the resulting slowness; namely sub-Gaussian kernels yield the
slowest responses and show similar behavior for the case of many support
vectors. On the other hand, the kernel width has to be adjusted properly at
least for the Gaussian case. Here one clearly gets an optimal width (in the
range of σ = 500 for 10 × 10 patches). If kernels with a smaller width are
used, very complex functions will be possible and overfitting problems will
occur. The other way round, if kernels get too large, only very smooth func-
tions are possible and underfitting will be the major problem. For heavy-
tailed kernels such as the Laplacian kernel, the slowness performance is less
sensitive to the exact value of the kernel width parameter. A broad range
of values above a threshold of σ = 800 lead to good results. One also can
see from Figure 4.12(b) that slownesses (stest ∼ 0.6) much smaller than in
quadratically expanded SFA (stest ∼ 0.8) are possible. Note that, even if not
plotted here, the Plummer kernel will produce equally slow output func-
tions at smaller computational costs.

Finally, the question of finding the smallest slowness value for a single
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Figure 4.16: To answer the question, what a typical RBF-kernel function in
the space [0, 255]10×10 of image patches of size 10 × 10 looks like, Gaussian
kernels with σ = 500 (a-c) and Laplacian kernels with σ = 800 (d-f) were
linearly combined and plotted.
The space of patches [0, 255]10×10 is thus a 100-dimensional hypercube. The
difference between the three plots is the number of directions (correspond-
ing to single pixels) of the hypercube included. It can be seen, that along the
longest possible line (the hyperdiagonal of length

√
100 · 255) the function

can show more complex behavior than in only 10 dimensions (
√

10 · 255),
where the kernel width is too large to allow arbitrarily complex behavior.
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(a) Gaussian kernel s(σ), NSV = 500
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(b) Laplacian kernel s(σ), NSV = 200

Figure 4.17: RBF kernels have a characteristic length scale which is given
by the kernel width σ. The choice of the width determines the shape of
possible functions. The figure shows 10-fold cross-validation experiments
for Gaussian and Laplacian kernels using 10 × 10 patches. For Gaussian
kernels there is a kind of optimal width, but in the case of Laplacian kernel
the choice of length scale is not critical of above a certain value.
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layer architecture was addressed. Taking larger patches clearly means a
more complex model which translates as possibly slower output functions.
In Figure 4.18 a Laplacian kernel is applied to patches of size 28 × 28. Op-
timization of the kernel width yields a value of about σ = 2500. For many
support vectors, the slowness on the test set stest does not decrease below
a certain threshold even if more support vectors are selected. In contrast,
the slowness of the training set strain decreases further which corresponds
to overfitting as the gap between stest and strain becomes larger. Optimal
values are smaller than 0.2.

4.5 Understanding the filters

Using the results from 4.4 yielding the optimal kernel k and the correspond-
ing support vectors Z one now possesses a nonlinear filter function g(xt) =
W>k(Z,xt) being optimal in terms of achieved temporal slowness. Up to
now, this filter g is a black box. In order to shed some light on the prop-
erties of the nonlinear mapping g : RN → RK , the following analysis is
carried out: Filtered images are studied and visually characterized, patches
producing maximal and minimal responses are determined, interesting pro-
jections in the space of filtered images are found via ICA and trajectories of
artificially generated patches are explored.

4.5.1 Filter output

Two selected gray scale images (240 × 320 pixels) from the robot lab were
filtered by patchwise (10× 10 pixels) application of the filters found by ker-
nelized SFA. The ten slowest filtered images (231× 311 pixels) are shown in
Figure 4.19. They do not share the same color coded scale of intensity but
the color for zero is equal. First of all, there are two classes of filters. Three
filters produce responses all over the image and seven filters respond only
locally to horizontal structures. For further interpretation, one may also re-
mark that five filters exhibit unipolar responses even though the responses
have zero mean and unit variance and are mutually decorrelated. Further
analysis of the first three filters k = 1..3 reveals that they act like a simple
low-pass filter f on the image I (written as Ifilt = I ? f ) combined with a gray
value transfer function φk operating in a pixelwise way: Islow

ij = φk(I
filt
ij )

The last seven filters extract horizontal edges in different phases which
guarantees decorrelatedness of the responses. The fact that horizontal edges
are the most prominent features detected can be further confirmed and re-
fined by plotting the length of the feature vectors in the slowness space as
done in Figure 4.20. The overlay of the color coded length of the first ten
responses and the initial gray value image confirms the striking dominance
of horizontal structures like the sharp edge of the table or the almost black-
white transition near the seat of the chair.

Having a closer look at the video data obtained by navigating the robot
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in the lab and in the floor in front of the lab reveals an idea why horizon-
tal structure is so dominant. The robot has two degrees of freedom – it
can move forward and it can rotate. In the image plane, a rotation of the
robot induces mainly horizontal movement (see Figure 3.2(b)) and also a
step forward causes movement in horizontal direction (see Figure 3.2(a)).
Finally, one can intuitively summarize the strategy implemented by the fil-
ters as follows: To respect the unit variance constraint, the filter has to have
a nonzero output somewhere. On the other hand, it is clear that horizontal
structure changes very little under horizontal translation which means that
those structures are a priori very likely to change only a little bit in the fu-
ture. The filter is able to correct for the “little bit” by invariant response to
slight changes.

4.5.2 Scatter plot analysis and ICA

The pairwise scatter plots of Figure 4.21 show in the upper right triangular
part the positions of image patches (taken from the images of Figure 4.20)
in slowness space. Each of the six slow components is centered while the
six components are mutually decorrelated and scaled to have unit variance.
But instead of showing a spherical structure, the plots show prominent di-
rections reaching away from the origin which means large overall response.
These prominent directions are considered to be interesting.

Let X ∈ RN×T denote the data matrix with containing T data points
xt ∈ RN with zero mean 〈xt〉 = 0 and covariance C =

〈
xx>

〉
and let f be a

contrast function. The task of findingM projections W ∈ RN×M maximizing
f is efficiently solved by the FastICA1 fixed point algorithm.

The case of f(t) = t2 corresponds to skewness or asymmetry maximiza-
tion and f(t) = t3 matches curtosis maximization. Postprocessing the data
with ICA does not change the slowness of the output (2.32) because the
transform is non-singular and it acts only on the subspace spanned by the
slow components.

Algorithm 3 FastICA fixed point algorithm
init W← N (0, ε2)
iterate

• Wnew ← C−1Xf(X>W) (optimization)

• Wnew ←Wnew
(
W>

newCWnew
)− 1

2 (orthogonalization)

until ‖Wnew −W‖2 < γ

The new axes obtained by curtosis maximization with FastICA show
quite a good alignment as depicted in the lower left triangular part of Fig-
ure 4.21. A qualitative difference can also be observed in the filtered im-

1The FastICA package for Matlabr implementing the fast fixed-point algorithm for ICA
can be downloaded from http://www.cis.hut.fi/projects/ica/fastica/.

http://www.cis.hut.fi/projects/ica/fastica/
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ages shown in Figure 4.22. The border of the table leads to a double re-
sponse which is clearly separated by ICA. It seems easier to assign a special
meaning to the learned filters. For example, the first component responds
to white regions, the second one extracts double edges (bright-dark-bright
or dark-bright-dark) and the third component implements a segmentation
based on the mean color into regions of extreme color and regions of inter-
mediate color.

4.5.3 Scatter plot analysis and clustering

Coming back to the scatter plots, in order to extract the branches of interest
one can apply a thresholding operation. Due to the unit variance constraint
the axes have the same scale, thus a simple spherical threshold on the dis-
tance to the origin is a reasonable criterion.

In Figure 4.23(a), the initial scatter plot of patches projected into slow-
ness space and a threshold including 99 per cent of the data is shown. Fig-
ure 4.23(b) shows the same data after thresholding and projected onto the
unit sphere. Visual inspection shows a clear cluster structure at least in the
two dimensional projections and motivates the use of standard clustering
algorithms like k-means under the constraints of unit length.

The unit sphere ‖x‖ = 1 embedded into RN has a local dimension of
N − 1 and inner product, angle and induced metric can be related via:

‖x− y‖2 = 2− 2 〈x,y〉 = 2− 2 cos(α)

That means, the usual K-means algorithm can be rewritten using dot
products and rescaling operations leading to Algorithm 4.

Algorithm 4 K-means Clustering on a Hypersphere
init β ← β0, η > 1, wold

q ← N (0, ε2)
while β < βend do

• P (t→ q)← expβ


xt,wold

q

�
/
P

p expβ


xt,wold

p

�
(classes)

• wnew
q ←

P
t xtP (t→ q)/

P
t P (t→ q) (new centers)

• wnew
q ← wnew

q /



wnew

q




 (normalization)

• β ← ηβ (annealing)

until



wnew

q −wold
q




 < γ

For our data set, k-means detects two major clusters of two subclusters
each. The upper cluster consists of sharp horizontal edges with a dark lower
part and the lower one contains horizontal edges where the light comes
from below. All in all, the analysis reveals not only which patches give rise
to large responses but also how these patches are structured.

4.5.4 Trajectories in slowness space

The last experiment, depicted in Figure 4.24, goes further into the question
how transformations of patches in the input space translate into slowness
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space. Invariance with respect to a certain transformation means that all
transformed patches are mapped to the same point in slowness space. Four
sets of artificially generated patches are considered

4.6 Multi-layer results

Computation times, already quite large in the single-layer case, become re-
ally huge for multi-layer architectures because the filters of previous layers
have to be applied to generate the inputs to the last layer. In this thesis, three
multi-layer architectures were compared to each other and to a single-layer
approach – all have an overall receptive field of 28× 28 pixels:

• 28× 28 receptive field in the first layer

• 10× 10 receptive field in the first layer and
19× 19 receptive field in the second layer

• 19× 19 receptive field in the first layer and
10× 10 receptive field in the second layer

• 10× 10 receptive field in the first, second and third layer

Simulation results for multi-layer SFA with Gaussian and Laplacian RBF
kernels are summarized in Figure 4.25. Comparing the absolute values to
single-layer slownesses of Figure 4.18, one can draw the following conclu-
sions. Gaussian kernels are more suitable in higher layers. Slownesses ob-
tained are not significantly different and the differences between test and
training values have the same size. That means slowness performance and
generalization abilities are very similar but computation times in terms of
learning and filtering are significantly larger.

By means of Figure 4.26 and Figure 4.19(b) one can visually compare the
filter outputs for different architectures. The first four slow components are
visually equivalent. One can hypothesize from Figure 4.26 that the size of
the overall receptive field is more important than the sizes of the receptive
fields of the several layers.

In the first layer, basically horizontal structure is extracted. Higher lay-
ers will consequently only be able to combine features of the previous lay-
ers nonlinearly. Thus, it is a good idea to include more than only ten slow
components. However, vertical edges are prominent in slow components
of indices around 100. Hence, very many slow components have to be kept
in order to conserve information about vertical structure. This clearly lim-
its the possible receptive field sizes in higher layers. Future experiments
should increase the size of the receptive field very slowly and rather pre-
serve many slow components.
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Figure 4.18: In order to find out the slowest possible architecture for the first
layer, a Laplacian kernel of width σ = 2500 was used. The patch size was
increased to 28 × 28 and more and more support vectors were used. The
lowest possible test slowness value lies around 0.18. One can see that the
test slowness stest saturates whereas the training slowness strain gets smaller
and smaller. This can be interpreted as overfitting.

(a) (b)

Figure 4.19: Two images from the robot lab were filtered using a Laplacian
kernel of width σ = 800 and NSV = 200 support vectors. The first three
slowest components smoothen the image and assign other color values,
the other seven components extract horizontal edges in different phases.
Among the slow components there are five components that show unipolar
responses only. All ten images have the same color for zero activity but a
different scale for absolute values.



Figure 4.20: The images show the norm ‖y‖ = ‖g(x)‖ of the first K =
10 slow components yi from Figure 4.19. Colors encode the value of the
norm but the gray values of the original image retained. The most striking
features are horizontal structures like the edge of the table and the seat of
the chair.

Figure 4.21: The scatter plots of the first six slow components (upper right
triangle) of Figure 4.19 do not have spherical structure, even though they
are decorrelated. In order to extract the prominent directions, one can ap-
ply ICA (lower left triangle). Note that this non-singular transformation
does not change the slowness value because it acts in the subspace of the
extracted slow features only.



Figure 4.22: The two images from the robot lab were filtered by using a
Laplacian kernel of width σ = 800 and NSV = 200 support vectors. On
top of that, ICA was applied. As a result one obtains three unipolar and
two bipolar filters extracting horizontal edges. One filter simply responds
to white regions in the input and the remaining four filters act on the im-
age histogram. All ten images have the same color for zero activity but a
different scale for absolute values.



(a) Scatter plot before thresholding (b) Scatter plot after thresholding

(c) Corresponding remaining patches

Figure 4.23: To capture the “branches” (i.e. the patches with the most strik-
ing response) of the data cloud (top left) reaching far away from the origin, a
thresholding operation is applied. All data points outside some radius τare
kept, the rest is discarded. The threshold τ is chosen so that only 1 per cent
of the data is kept. For convenience, the remaining data points are projected
onto the unit sphere (top right).
Clustering (according to Algorithm 4) of the remaining data points reveals
that there are two respectively four centers of mass. The corresponding
patches are shown in the plot at the bottom. The two main clusters are
horizontal edges with a lower bright part and a lower dark part. These clus-
ters can be split in sub-clusters characterized by the dominance of either the
lower or the upper part in terms of width.



(a) Vertically shifted horizontal edges (b) Patches of constant gray value

(c) Edges in different orientations (d) Horizontal edge with sharpness

Figure 4.24: Artificially generated edge images do have characteristic tra-
jectories in the space of the filter outputs. Here, edges of variable width,
edges in different orientations, edges with varying sharpness and constant
image patches are considered.
The yellow line connects successive image patches of the artificial sequence,
and the red line illustrates patches whose filter response is larger than that
of 95 percent of the corpus.
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(b) 19× 19→ 10× 10× (10)

Figure 4.25: A second layer is learned based on the 10 slowest output sig-
nals of the first layer (Laplacian kernel, 200 support vectors, optimal σ).
Figure (a) shows results for a smaller receptive field in the first layer and
Figure (b) shows results for a larger receptive field in the first layer. Gaus-
sian and Laplacian kernels with 200 support vectors each were used in the
second layer; Gaussian kernels produce slower outputs.

(a) 10× 10→ 19× 19× (10) (b) 19× 19→ 10× 10× (10)

Figure 4.26: The ten slowest output signals of the first layer (Laplacian ker-
nel, 200 support vectors, optimal σ) are used to learn a second layer with 200
support vectors and Gaussian kernels of width σ = 80. Interestingly, the fil-
tered images look very similar to each other. (The sign of some components
was flipped for visualization.)



Chapter 5

Conclusion

5.1 Summary

SFA is able to extract interpretable features from natural videos. Temporal
smoothness and decorrelation is achieved either by mappings into another
color-space after a low-pass filtering step or by the extraction of horizon-
tal edges in different phases. Nonlinear networks obtained by kerneliza-
tion achieve much slower outputs than explicit expansion into a feature
space, e.g. polynomial while having less computational complexity. Un-
fortunately, kernelized networks are far more difficult to interpret or to an-
alytically predict than general quadratic functions.

Extensive parameter explorations show how multi-layer networks should
be constructed to have slowly varying outputs. In kernelized networks it
turned out that RBF kernels, especially Laplacian kernels, yield best perfor-
mance when the range of influence σ is adjusted as suggested. In general,
a larger receptive field, i.e. larger image patches, increases the complexity
and leads to slower results. The same holds true for more support vectors,
even though additional support vectors have a smaller effect when many
support vectors are already present.

Efficient filtering methods in the frequency domain suitable for large
data sets are composed and implemented by rewriting the filters as lin-
ear operations. A major source for computational complexity is, besides
the receptive field size of the filter, the number of support vectors being
used. Therefore, methods of support vector selection prior to learning and
by sparse optimization are studied and enhanced, in a way that the user
is able to achieve optimally slow outputs for a given number of support
vectors.

Finally, slow functions in the true video do not necessarily have to be
slow in the simulator videos. Slow functions of simulator videos are usu-
ally slow in true videos but less slow than functions directly learned from
natural videos. This clearly suggests that the simulator suits only in a very
limited way for off-line learning.

73
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5.2 Discussion

It is clear that SFA can only become invariant to transformations present in
the input data. Hence, extracted horizontal structure signifies invariance to
horizontal translations in the image plane. Unfortunately, vertical move-
ments are less prominent in the robot’s videos and the decorrelation con-
straint in SFA does not lead to simultaneous emergence of feature detectors
invariant to both horizontal and vertical translations in the first few slow
components.

Networks composed of RBF kernels of width σ are universal function
approximators of resolution σ as long as the whole space is adequately cov-
ered. One can object that a hundred dimensional space is only very coarsely
covered by only thousand kernels, even when they originate from the true
data distribution. Consequently, not enough support vectors might be com-
putationally tractable to work in the really interesting regimes. More sup-
port vectors will lead to slower output functions even if they are randomly
selected. There are two possible explanations: On the one hand, one can
hypothesize more “good” vectors to lie in a larger set of candidates. On the
other hand, the sheer number of support vectors can indeed lead to slower
results, no matter what their exact value is. In general, RBF functions are
local approximators, but Laplacian kernels have heavy tails allowing for a
small influence in larger distances which is obviously an advantage in the
first layer. The locality property implies features coded in advance by the
choice of the support vectors.

Another criticism might aim at the biological plausibility of the learned
functions. At least, they are hierarchically organized in layers. No recur-
rency is present and learning only happens layer by layer. Processing speed
is also far away from real time capability. But this is an effect of the von
Neumann bottleneck. Parallel hardware, more adapted to the inherently
parallel structure of the filtering, as the pixel pipelines of modern graphics
cards, can account for that.

During learning, patches are randomly clipped from the video, regard-
less of their importance and structure. As a result, most of the patches might
be uninteresting because objects or important structure are likely to occur
very seldom in the video.

5.3 Outlook

The major remaining task is to construct an application taking advantage
of the preprocessing step learned by the principle of temporal coherence.
Another direction of further research is the analysis of the invariances im-
plemented by the slow features. This could be done by starting at the image
patch leading to the strongest response and following the direction of small-
est change in the filter function.

Some multi-layer architectures were simulated, but only shallow settings
with at most three layers were studied. It would be interesting to investigate
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which patterns remain stable in higher layers and how deeper networks in-
fluence the features extracted and the generalization behavior. A possible
way to overcome computational limitations consists of slowly growing re-
ceptive fields while keeping many slow components for higher layers.

One can also try to preprocess the video by standard edge extraction
filters or complex cell filters to explicitly code the first layer and focus on
high-level combinations of these features. Additionally one can extend the
input data to additional channels like colors or stereo information.





Appendix A

Additional material

A.1 Gradients

A.1.1 Joint sparseness

In the following, the gradient of the regularized objective function s(W) +
λρ(W) is derived by using the matrix valued functions
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√

WW> =
∂

∂wkl

∑
i

√∑
j

w2
ij =

1

2

∑
i

(∑
j

w2
ij

)− 1
2

∂

∂wkl

∑
j

w2
ij

=
∑
i

(∑
j

w2
ij

)− 1
2 ∑

j

δikwil =

(∑
j

w2
kj

)− 1
2

wkl (A.1)

∂

∂W
tr
√

WW> (A.1)
= dg−

1
2
(
WW>)W (A.2)

The gradients of the numerator and the denominator are calculated sep-
arately and then combined by using the quotient rule.

I
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∂f

∂W

(A.2)
= 2tr

√
WW>dg−

1
2
(
WW>)W (A.3)

∂g

∂W
= 2W

∂ρ

∂W
=

∂

∂W

f

g
=

1

g2

(
g
∂f

∂W
− f ∂g

∂W

)
=

1

g

∂f

∂W
− f

g2

∂g

∂W
(A.4)

(A.3+A.4)
= 2

tr
√

WW>

tr(WW>)
dg−

1
2
(
WWT

)
W − 2

(
tr
√

WW>

tr(WW>)

)2

W

∂s

∂W
= (A + A>)W

sym.
= 2AW

Finally, the gradient takes the following form:

∂s+ λτ

∂W
= 2

A + λ
tr
√

WW>

tr(WW>)
dg−

1
2
(
WW>)− λ( tr

√
WW>

tr(WW>)

)2

I

W

(A.5)

A.1.2 Superposition of two sigmoid functions

−4 −2 0 2 4
−1

0

1

2
g(x)=tanh(x−ψ)

h(x)=tanh(θ−x)
f(x)=g(x)+h(x)

f(x) = tanh(x− ψ)− tanh(x− θ) =
ex−ψ − eψ−x

ex−ψ + eψ−x
− ex−θ − eθ−x

ex−θ + eθ−x

=

(
ex−ψ − eψ−x

) (
ex−θ + eθ−x

)
−
(
ex−ψ + eψ−x

) (
ex−θ − eθ−x

)
(ex−ψ + eψ−x) (ex−θ + eθ−x)

=

[
e2x−ψ−θ + eθ−ψ − eψ−θ − eψ+θ−2x

]
−
[
e2x−ψ−θ − eθ−ψ + eψ−θ − eψ+θ−2x

]
e2x−ψ−θ + eψ−θ + eθ−ψ + eψ+θ−2x

=
2eθ−ψ − 2eψ−θ

e2x−ψ−θ + eψ−θ + eθ−ψ + eψ+θ−2x
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By setting θ = −ψ = λ
2
> 0 one obtains

f(x) =
2eλ − 2e−λ

e2x + eλ + e−λ + e−2x
= f(−x)

and one can deduce the limit

lim
x→∞

f(x) = 0,

the derivative

f ′(x) = 2
2eλ − 2e−λ

(e2x + eλ + e−λ + e−2x)2

(
e−2x − e2x

) !
= 0

and the maximum value xmax = 0.

A.2 Kernel considerations

A.2.1 Equivalence of eSFA and kSFA for polynomials

The set of polynomials up to degree D of x ∈ RN is given as

PDx = L

 ∏
PN

i=1 di≤D

xdi
i


where polynomials p(x) ∈ PD are functions p : RN → R and L{·} is the
convex hull. As a result, one knows that dim PDx =

∑D
d=1

(
N+d−1

d

)
. The space

of polynomials is equipped with an addition and a multiplication with a
scalar.

On the other hand, the set of all polynomial kernel functions can be writ-
ten as

FDx = L{k(z,x)} = L

{(
z>x

a
+ b

)D}
= L

{
bD
(

z

ab

>
x + 1

)D}
= L

{
(z̃>x + 1)D

}
It is sufficient to consider the parameter D only, because b is consumed

by the convex hull and scaling by a can be achieved by scaling the support
vectors. One can rewrite the simplified polynomial kernel using the multi-
nomial theorem as

(
z>x + 1

)D
=

D∑
d=0

(
D

d

)( N∑
i=1

zixi

)d

=
D∑
d=0

(
D

d

) ∑
PN

i=1 di=d

d!∏N
i=1 di!

N∏
i=1

zdi
i x

di
i (A.6)

=
D∑

PN
i=1 di=d=1

αd1...dN

N∏
i=1

xdi
i ∈ PDx
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which shows that FDx ⊆ PDx . The equivalence of the two sets for D = 2
is shown later in the text by construction of a set of support vectors of size
M = 1

2
N2 + 3

2
N + 1 equal to the dimension of P2

x. One can suspect that
similar constructions are possible for D > 2.

Additionally, one can see the feature map of
(
z>x + 1

)D by inspection of
A.6 to equal

ΦD
N(x) =

(√(
D

d

)
d!∏N
i=1 di!

N∏
i=1

xdi
i

)
PN

i=1 di=d≤D

in general for polynomial kernels of degree D in N dimensions and es-
pecially:

Φ2
2(x) =

(
1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2

)
Φ2

3(x) =
(
1,
√

2 {x1, x2, x3} ,
√

2 {x1x2, x1x3, x2x3} ,
{
x2

1, x
2
2, x

2
3

})
Φ3

2(x) =
(
1,
√

3 {x1, x2} ,
√

6x1x2,
√

3
{
x2

1, x
2
2

}
,
√

3
{
x2

1x2, x
1
1x

2
2

}
,
{
x3

1, x
3
2

})
How to choose a small subset of support vectors, such that the space of

polynomials is covered in an optimal way, remains an open question. Ex-
perimental evidence suggests that the choice might not be critical. A good
idea, however would be to choose support vectors zi ∈ RN that approxi-
mately span at least the space RN .

Quadratically expanded SFA

In SFA with quadratic expansion and additional linear and constant part,
every possible output signal yj,t takes the following form:

yj,t = gj(xt) = x>t Hjxt + f>j xt + cj (A.7)

where Hj is a symmetric matrix summarizing the coefficients for the mixed
(quadratic) terms xixl, fj is a vector containing the coefficients for the linear
terms xi and cj is just a constant offset. Alternatively, the expression can be
written as a single quadratic form:

g(xt) =
[
x>t 1

] [ H f
0> c

] [
xt
1

]
= x̃>t Ax̃t (A.8)

The matrix A ∈ RN+1×N+1 has N(N+1)
2

+N + 1 = 1
2
N2 + 3

2
N + 1 degrees

of freedom from H, f and c.

Polynomial SFA with kernel of degree 2

When using a polynomial kernel of degree 2 and support vectors {zi}i=1..M

the output is written as
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g(xt) =
M∑
i=1

wik(zi,xt) =
M∑
i=1

wi
{
z>i xt + 1

}2

=
M∑
i=1

wi
{
x>t
(
ziz
>
i

)
xt + (2zi)xt + 1

}
=

M∑
i=1

wi

{
x̃>t

[
ziz
>
i 2zi

0> 1

]
x̃t

}
= x̃>t

{
M∑
i=1

wi

[
ziz
>
i 2zi

0T 1

]}
x̃t

= x̃>t

{
M∑
i=1

wiAi

}
x̃t (A.9)

Now, in order to show equivalence between the two approaches, it is
sufficient to construct a set of support vectors which can generate any matrix
A respecting the constraints from A.8, namely as a linear combination of the
support vector induced elementary matrices Ai with weights wi.

Construction of the basis set

The (sparse) support vectors used for the construction are defined to have
the form zabuv = (0, . . . , a, . . . , b, . . . , 0)>which means that component u of the
support vector has the entry a and component number v has a value of b,
whereas the remaining entries equal zero. The notation is ambiguous as
zabuv = zbavu. Therefore, the constraint u < v is imposed. Furthermore, za0uv, z0a

uv

and z00
uv are simply written as zau, zbv and z0.

With z0 := 0 and z1
u := (0, . . . , 1, . . . , 0)> one has 1 + N support vectors

yielding the following matrices:

A0 =



. . . ...
0 0 0 0
0 0 0 0
0 0 0 0

. . . ...
0> 1


A1
u =



. . . ...
0 0 0 0
0 1 0 2
0 0 0 0

. . . ...
0> 1


Furthermore, z11

uv := (0, .., 1, .., 1, .., 0)> yields N(N−1)
2

additional support
vectors and z13

1v = (0, .., 1, .., 3, .., 0)> (together with z31
u1 to take into account

the first column) contributes N additional support vectors and induce ma-
trices:

A11
uv =



. . . 0
...

1 · · · 1 2

0
... . . . ... 0

...
1 · · · 1 2

0
. . . ...

0> 1


A13

1v =



1 0 · · · 3 2

0
. . . ...

...
... 0 0 0
3 · · · 0 9 6

. . . ...
0> 1


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Here, {· · · , . . . ,
...} and empty parts are placeholders for zeros. From that

definition can be seen that with

Aconst := A0 Asym
uv := A11

uv −A1
u −A1

v + A0

Adiag
v := 1

6
A13

1v − 1
2
A11

1v + 1
3
A1

1 Alin
v := A1

v −Adiag
v −A0

we get a basis the space of matrices A.

Aconst =



. . . ...
0 0 0 0
0 0 0 0
0 0 0 0

. . . ...
0> 1


Asym
uv =



. . . 0
...

0 · · · 1 0

0
... . . . ... 0

...
1 · · · 0 0

0
. . . ...

0> 0



Adiag
v =



. . . ...
0 0 0 0
0 1 0 0
0 0 0 0

. . . ...
0> 0


Alin
v =



. . . ...
0 0 0 0
0 0 0 1
0 0 0 0

. . . ...
0> 0


A.2.2 Estimation of covering numbers for RBF kernels

The aim is to cover the data manifold by balls of radius σ where the number
M of balls needed for a covering is of special interest.

The volume of the data manifold can be approximated by the eigen-
values of its covariance matrix, that define the length of the axis of a d-
dimensional ellipsoid Ve ≈ vd,1

∏d
i=1

√
λi where vd,1 denotes the volume of

a d-dimensional unit sphere and Vs = vd,1σ
d is the volume of a ball with

radius σ in d dimensions.
The number M of balls with radius σ that is needed to entirely cover the

ellipsoid can be bounded as follows. At least the volume of the ellipsoid
is required in terms of balls. Therefore, a lower bound on M would be
Ve/Vs =

∏d
i=1

√
λi

σ
≤M .

On the other hand, one can construct a special covering in order to give
an upper bound. The ellipsoid is completely covered by a parallelepiped
of side lengths 2

√
λi. If the parallelepiped is covered then the ellipsoid will

be covered as well. A covering of the parallelepiped will be achieved if
one assumes a grid of width δgrid and a ball at each grid point. The dis-
tance between centers of neighboring balls on the grid is also given by δgrid.
Each hypercube defined by the grid has a longest diagonal of length δgrid

√
d.

When coverage is achieved along each direction of the rectangular grid and
along the longest diagonal than the whole grid is covered. In other words



when the centers of the hypercubes forming the grid are covered than the
whole grid is covered. That is the case if one chooses δgrid ≤ σ√

d
. In di-

rection of the principal axis i of the ellipsoid one needs with this covering
Mi ≤

⌈
2
√
λid/σ

⌉
balls. Overall, along all axes one finds a total number of

M ≤
∏d

i=1

⌈
2
√
λid/σ

⌉
.

Mlow =
d∏
i=1

√
λi
σ
≤M ≤

d∏
i=1

⌈
2

σ

√
λid

⌉
= Mupp (A.10)

Clearly, the number of balls M scale exponential with the dimension M ∝
σ−d. Taking as example a patch of size 10× 10 which means d = 100 of gray
value pixels from [0, 255].

The scatter plot of Figure 4.6 gives an idea of the value’s order of mag-
nitude. The 100-dimensional parallelepiped has edges of length 255 and a
hyperdiagonal of length 255

√
100 = 2, 550. The longest axis has the length

2
√
λ1 = 815 and the shortest axis has a length of around 2

√
λ100 = 30.

Mlow =
d∏
i=1

√
λi
σ
≤M ≤

d∏
i=1

⌈
20

σ

√
λi

⌉
= Mupp

A (for a computational implementation) convenient lower bound for the
number of balls is reached for different radii σ.

σ 21 22 23 24 σ 700 800 900 1000 1200 2000
Mlow 1.8M 17k 206 3 Mupp 7.1M 101k 12k 5184 224 20

VII



Abbreviations

BSS Blind Source Separation, page 13

CCD Charge-Coupled Device, page 4

CPU Central Processing Unit, page 35

DFG Deutsche Forschungsgemeinschaft
(German Research Foundation), page 2

eSFA Expanded Slow Feature Analysis, page III

flop Floating Point Operation, page 35

flops Floating Point Operations per Second, page 35

FVS Feature Vector Selection, page 30

GPS Global Positioning System, page 3

HECGD Hyper-Elliptical Conjugate Gradient Descent, page 52

ICA Independent Component Analysis, page 7

IEEE Institute of Electrical and Electronics Engineers, page 4

JHECGD Joint Hyper-Elliptical Conjugate Gradient Descent, page 55

kSFA Kernelized Slow Feature Analysis, page III

MNIST National Institute of Standards and Technology (dataset), page 17

OOP Object Oriented Programming, page 28

PC Personal Computer, page 3

PCA Principal Component Analysis, page 7

SFA Slow Feature Analysis, page 7

SVM Support Vector Machine, page 47

TDSEP Time-Delayed Separation, page 14
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