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Scalable and Accurate Gaussian Processes

» Gaussian processes (GPs) are exactly the types of models we want to
apply to big data: flexible function approximators, capable of using the
information in large datasets to learn intricate structure through
covariance kernels.

» However, GPs require O(n*) computations and O(n?) storage.

» We present a near-exact, O(n), general purpose Gaussian process
framework.

» This framework i) provides a new unifying perspective of scalable
GP approaches, ii) can be used to make predictions with GPs on
massive datasets, and iii) enables large-scale kernel learning.

» Code is available:
http://www.cs.cmu.edu/~andrewgw/pattern


http://www.cs.cmu.edu/~andrewgw/pattern

Definition

A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

Nonparametric Regression Model

» Prior: f(x) ~ GP(m(x), k(x,x’)), meaning
(f(xl)v s ’f(xN)) ~ N(Il‘v K)’ with Hi = m(xi) and
Kij = cov(f(xi),f(x})) = k(xi, x;).

GP posterior Likelihood ~ GP prior
—

——
p(f()|P) < p(DIf (x)) p(f(x))
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Inference and Learning

1. Learning: Optimize marginal likelihood,

model fit complexity penalty

1 B 1 N
logp(y|@,X) = —EyT(Ke + o)y - 3 log |Kg + oI -5 log(27),

with respect to kernel hyperparameters 8. The marginal likelihood
provides a powerful mechanism for kernel learning.

2. Inference: Conditioned on kernel hyperparameters 6, form the
predictive distribution for test inputs X,:

f*|X*aX7y70 NN(f*chV(f*))7
fo = Ko(Xa, X)[Ko(X, X) + 0’1y,
cov(f.) = Ko(Xs, X..) — Ko(Xo, X)[Ko (X, X) + 017 'Kp(X, X.,) .

(Ko + 02I)~'y and log | Ky + o*1| naively require O(n*) computations,
O(n?) storage.



Scalable Gaussian Processes

Structure Exploiting Approaches

Exploit existing structure in K to efficiently solve linear systems and log
determinants.

» Examples: Kronecker Structure, K = K} ® K; ® - - - @ Kp. Toeplitz
Structure: Kjj = Kip 1 jt1.

» Extremely efficient and accurate, but require severe grid assumptions.

Inducing Point Approaches
Introduce m inducing points, U = {u;}"" |, and approximate
Kx x ~ KX7UK(771UKU7X'

» SoR, DTC, FITC, Big Data GP

» General purpose, but requires m < n for efficiency, which degrades
accuracy and prohibits expressive kernel learning.

Can we create a new framework that combines the benefits of each
approach?



» Recall
nxn nxm "MXM en
T AT A
Ksor(X,X) = Kx,u Ky y Kv x (1)

» Complexity is O(m*n + m?).

» [t is tempting to place inducing points on a grid to create structure in
Ky v, but this only helps with the m* term, not the more critical m*n
term coming from Ky y.

» Can we approximate Kx y from Ky ¢?
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Kernel Interpolation

For example, if we want to approximate k(x, u), we could form
k(x,u) = wk(ug,u) + (1 — w)k(up, u) 2)
where u, < x < uy.
More generally, we form
Kxuy~ WKy, 3

where W is an n X m sparse matrix of interpolation weights. For local linear
interpolation W has only ¢ = 2 non-zero entries per row. For local cubic
interpolation, ¢ = 4. Substituting Kx y ~ WKy ¢ into the inducing point
approximation,

KX,X ~ KX,UKE,IUKU,X =~ WKU,UK[ZIUKU,UWT = WKU7UWT = KSKI .



Kernel Interpolation

>

>

>

nxXm mxXm

ANt
Ksxsi= W KyygW “)

MVMs with W cost O(n) computations and storage.
Toeplitz Ky ;: MVMs cost O(mlog m).
Kronecker structure in Ky ;2 MVMs cost O(Pm!*1/7) .

Conclusions

>

>

MVMs with Kskg cost O(n) computations and storage!

We can therefore solve KS}lIy using linear conjugate gradients inj < n
iterations, for GP inference.

Even if the inputs X do not have any structure, we can naturally create
structure in the latent variables U which can be exploited for greatly
accelerated inference and learning.

We can use m > n inducing points! (Accuracy and kernel learning)



New Unifying Framework

It turns out that all inducing methods perform global GP interpolation on a
user-specified kernel!

» The predictive mean of a noise-free, zero mean GP (o = 0, pu(x) = 0)
is linear in two ways: on the one hand, as a wy(x,) = K;‘)I(nyx*
weighted sum of the observations y, and on the other hand as an
a =Ky )l(y weighted sum of training-test cross-covariances Ky x, :

]7‘* = yTWX(X*) = aTKX,x* . (5)

» If we are to perform a noise free zero-mean GP regression on the kernel
itself, such that we have data D = (u;, k(u;, X)) |, then we recover the
inducing kernel IQSOR (x,2) = KUJKE"UKU,Z as the predictive mean of
the GP at test point x,, = z!



Local versus Global Kernel Interpolation
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Figure: Global vs. local kernel interpolation. Triangle markers denote the inducing
points used for interpolating k(x, u) from k(U, u). Hereu = 0, U = {0, 1, ..., 10},
and x = 3.4. a) All conventional inducing point methods, such as SoR or FITC,
perform global GP regression on Ky , (a vector of covariances between all inducing
points U and the point i), at test point x. = x, to form an approximate , e.g.,

ksor (x,u) = KY,UK;’IUKU,M, for any desired x and u. b) SKI can perform local kernel
interpolation on Ky, to form the approximation kski(x, u) = wr Ky ..
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Figure: Kernel Learning. A product of two kernels (shown in green) was used to
sample 10, 000 datapoints from a GP. From this data, we performed kernel learning
using SKI (cubic) and FITC, with the results shown in blue and red, respectively. All
kernels are a function of 7 = x — x’ and are scaled by k(0).
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Figure: Natural Sound Modelling
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