Kernel Interpolation for Scalable Structured
Gaussian Processes (KISS-GP)

Andrew Gordon Wilson

Postdoctoral Research Fellow
www.cs.cmu.edu/~andrewgw
Carnegie Mellon University

Joint work with Hannes Nickisch

ICML
Lille, France
7 July, 2015

www.cs.cmu.edu/~andrewgw

Scalable and Accurate Gaussian Processes

» Gaussian processes (GPs) are exactly the types of models we want to
apply to big data: flexible function approximators, capable of using the
information in large datasets to learn intricate structure through
covariance kernels.

» However, GPs require O(n*) computations and O(n?) storage.

» We present a near-exact, O(n), general purpose Gaussian process
framework.

» This framework i) provides a new unifying perspective of scalable
GP approaches, ii) can be used to make predictions with GPs on
massive datasets, and iii) enables large-scale kernel learning.

» Code is available:
http://www.cs.cmu.edu/~andrewgw/pattern

http://www.cs.cmu.edu/~andrewgw/pattern

Definition

A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

Nonparametric Regression Model

» Prior: f(x) ~ GP(m(x), k(x,x’)), meaning
(f(xl)v s ’f(xN)) ~ N(Il‘v K)’ with Hi = m(xi) and
Kij = cov(f(xi),f(x})) = k(xi, x;).

GP posterior Likelihood ~ GP prior
—

——
p(f()|P) < p(DIf (x)) p(f(x))

Samples from GP Prior Samples from GP Posterior

Output, f(x)
Output, f(x)

o 5
Input, x 3/13

Inference and Learning

1. Learning: Optimize marginal likelihood,

model fit complexity penalty

1 B 1 N
logp(y|@,X) = —EyT(Ke + o)y - 3 log |Kg + oI -5 log(27),

with respect to kernel hyperparameters 8. The marginal likelihood
provides a powerful mechanism for kernel learning.

2. Inference: Conditioned on kernel hyperparameters 6, form the
predictive distribution for test inputs X,:

f*|X*aX7y70 NN(f*chV(f*))7
fo = Ko(Xa, X)[Ko(X, X) + 0’1y,
cov(f.) = Ko(Xs, X..) — Ko(Xo, X)[Ko (X, X) + 017 'Kp(X, X.,) .

(Ko + 02I)~'y and log | Ky + o*1| naively require O(n*) computations,
O(n?) storage.

Scalable Gaussian Processes

Structure Exploiting Approaches

Exploit existing structure in K to efficiently solve linear systems and log
determinants.

» Examples: Kronecker Structure, K = K} ® K; ® - - - @ Kp. Toeplitz
Structure: Kjj = Kip 1 jt1.

» Extremely efficient and accurate, but require severe grid assumptions.

Inducing Point Approaches
Introduce m inducing points, U = {u;}"" |, and approximate
Kx x ~ KX7UK(771UKU7X'

» SoR, DTC, FITC, Big Data GP

» General purpose, but requires m < n for efficiency, which degrades
accuracy and prohibits expressive kernel learning.

Can we create a new framework that combines the benefits of each
approach?

» Recall
nxn nxm "MXM en
T AT A
Ksor(X,X) = Kx,u Ky y Kv x (1)

» Complexity is O(m*n + m?).

» [t is tempting to place inducing points on a grid to create structure in
Ky v, but this only helps with the m* term, not the more critical m*n
term coming from Ky y.

» Can we approximate Kx y from Ky ¢?

6/13

Kernel Interpolation

For example, if we want to approximate k(x, u), we could form
k(x,u) = wk(ug,u) + (1 — w)k(up, u) 2)
where u, < x < uy.
More generally, we form
Kxuy~ WKy, 3

where W is an n X m sparse matrix of interpolation weights. For local linear
interpolation W has only ¢ = 2 non-zero entries per row. For local cubic
interpolation, ¢ = 4. Substituting Kx y ~ WKy ¢ into the inducing point
approximation,

KX,X ~ KX,UKE,IUKU,X =~ WKU,UK[ZIUKU,UWT = WKU7UWT = KSKI .

Kernel Interpolation

>

>

>

nxXm mxXm

ANt
Ksxsi= W KyygW “)

MVMs with W cost O(n) computations and storage.
Toeplitz Ky ;: MVMs cost O(mlog m).
Kronecker structure in Ky ;2 MVMs cost O(Pm!*1/7) .

Conclusions

>

>

MVMs with Kskg cost O(n) computations and storage!

We can therefore solve KS}lIy using linear conjugate gradients inj < n
iterations, for GP inference.

Even if the inputs X do not have any structure, we can naturally create
structure in the latent variables U which can be exploited for greatly
accelerated inference and learning.

We can use m > n inducing points! (Accuracy and kernel learning)

New Unifying Framework

It turns out that all inducing methods perform global GP interpolation on a
user-specified kernel!

» The predictive mean of a noise-free, zero mean GP (o = 0, pu(x) = 0)
is linear in two ways: on the one hand, as a wy(x,) = K;‘)I(nyx*
weighted sum of the observations y, and on the other hand as an
a =Ky)l(y weighted sum of training-test cross-covariances Ky x, :

]7‘* = yTWX(X*) = aTKX,x* . (5)

» If we are to perform a noise free zero-mean GP regression on the kernel
itself, such that we have data D = (u;, k(u;, X)) |, then we recover the
inducing kernel IQSOR (x,2) = KUJKE"UKU,Z as the predictive mean of
the GP at test point x,, = z!

Local versus Global Kernel Interpolation

1 1
—k —k
® k(U,u) ® k(U,u)
@ 0.75 A Global o 0.75 A Local
CC) ° kSDR(x,u) 8 . kSKI(x,u)
@ .©
E 0.5 8 0.5
> >
o o
O o025 Oo2s
0 . A 0 .
0 25 x 5 75 10 0 25 x 5 7.5 10
(c) Global Kernel Interpolation (d) Local Kernel Interpolation

Figure: Global vs. local kernel interpolation. Triangle markers denote the inducing
points used for interpolating k(x, u) from k(U, u). Hereu = 0, U = {0, 1, ..., 10},
and x = 3.4. a) All conventional inducing point methods, such as SoR or FITC,
perform global GP regression on Ky , (a vector of covariances between all inducing
points U and the point i), at test point x. = x, to form an approximate , e.g.,

ksor (x,u) = KY,UK;’IUKU,M, for any desired x and u. b) SKI can perform local kernel
interpolation on Ky, to form the approximation kski(x, u) = wr Ky ..

10/13

- [—equi-linear
: . |—equi-GP
. |—equi-cubic
= 25

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 m
(@) Kirue (b) Kski (m =40) (¢) |Kwue — Kski, 40 (d) Interpolation
Strategies
[<+-SKI (linear)
‘.._ |—Sor
< FITC
|==SKI (cubic)
\\---_.._*_,
: 01 02 03 04
200 400 600 800 1000 200 400 600 800 1000 Runtime (s)

(©) |Kiue —Kski, 150| () |Kirue —Ksor, 150] () Error vs Runtime

11713

—True
—FITC
0.5/ —SKI

Correlation

Correlation

0.8
0.6]
0.4]
0.2]

Figure: Kernel Learning. A product of two kernels (shown in green) was used to
sample 10, 000 datapoints from a GP. From this data, we performed kernel learning
using SKI (cubic) and FITC, with the results shown in blue and red, respectively. All
kernels are a function of 7 = x — x’ and are scaled by k(0).

12713

%o

10
02 o
'p..c
01 » e
2 ~10° o0 @"?
@ Qg
= £ --FITC
£ €. +SKI (cubi
£ -1 S0 (cubic)
@
-0.2
A - - e g
1 2 9500 3000 3500 4000 4500 5000
Time (s) m
(a) Natural Sound (b) Runtime vs m
08 3
0.7 B
8
g:J 0.6 \
Sos !
) 0.4 o.,
°
03
02
10 10t | 10 10°
Runtime (s)

(c¢) Error vs Runtime

Figure: Natural Sound Modelling

13713

