
Kernel Interpolation for Scalable Structured
Gaussian Processes (KISS-GP)

Andrew Gordon Wilson

Postdoctoral Research Fellow
www.cs.cmu.edu/~andrewgw

Carnegie Mellon University

Joint work with Hannes Nickisch

ICML
Lille, France
7 July, 2015

1 / 13

www.cs.cmu.edu/~andrewgw

Scalable and Accurate Gaussian Processes

I Gaussian processes (GPs) are exactly the types of models we want to
apply to big data: flexible function approximators, capable of using the
information in large datasets to learn intricate structure through
covariance kernels.

I However, GPs require O(n3) computations and O(n2) storage.
I We present a near-exact, O(n), general purpose Gaussian process

framework.
I This framework i) provides a new unifying perspective of scalable

GP approaches, ii) can be used to make predictions with GPs on
massive datasets, and iii) enables large-scale kernel learning.

I Code is available:
http://www.cs.cmu.edu/~andrewgw/pattern

2 / 13

http://www.cs.cmu.edu/~andrewgw/pattern

Gaussian process review

Definition
A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

Nonparametric Regression Model

I Prior: f (x) ∼ GP(m(x), k(x, x′)), meaning
(f (x1), . . . , f (xN)) ∼ N (µ,K), with µi = m(xi) and
Kij = cov(f (xi), f (xj)) = k(xi, xj).

GP posterior︷ ︸︸ ︷
p(f (x)|D) ∝

Likelihood︷ ︸︸ ︷
p(D|f (x))

GP prior︷ ︸︸ ︷
p(f (x))

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t,

f(
x)

Samples from GP Prior

(a)

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t,

f(
x)

Samples from GP Posterior

(b)
3 / 13

Inference and Learning

1. Learning: Optimize marginal likelihood,

log p(y|θ,X) =

model fit︷ ︸︸ ︷
−1

2
yT(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kθ + σ2I| −N
2

log(2π) ,

with respect to kernel hyperparameters θ. The marginal likelihood
provides a powerful mechanism for kernel learning.

2. Inference: Conditioned on kernel hyperparameters θ, form the
predictive distribution for test inputs X∗:

f∗|X∗,X, y,θ ∼ N (f̄∗, cov(f∗)) ,

f̄∗ = Kθ(X∗,X)[Kθ(X,X) + σ2I]−1y ,

cov(f∗) = Kθ(X∗,X∗)− Kθ(X∗,X)[Kθ(X,X) + σ2I]−1Kθ(X,X∗) .

(Kθ + σ2I)−1y and log |Kθ + σ2I| naively require O(n3) computations,
O(n2) storage.

4 / 13

Scalable Gaussian Processes

Structure Exploiting Approaches
Exploit existing structure in K to efficiently solve linear systems and log
determinants.

I Examples: Kronecker Structure, K = K1 ⊗ K2 ⊗ · · · ⊗ KP. Toeplitz
Structure: Kij = Ki+1,j+1.

I Extremely efficient and accurate, but require severe grid assumptions.

Inducing Point Approaches
Introduce m inducing points, U = {ui}m

i=1, and approximate
KX,X ≈ KX,UK−1

U,UKU,X .
I SoR, DTC, FITC, Big Data GP
I General purpose, but requires m� n for efficiency, which degrades

accuracy and prohibits expressive kernel learning.

Can we create a new framework that combines the benefits of each
approach?

5 / 13

A New Unifying Framework

I Recall

n×n︷ ︸︸ ︷
KSoR(X,X) =

n×m︷︸︸︷
KX,U

m×m︷︸︸︷
K−1

U,U

m×n︷︸︸︷
KU,X (1)

I Complexity is O(m2n + m3).
I It is tempting to place inducing points on a grid to create structure in

KU,U , but this only helps with the m3 term, not the more critical m2n
term coming from KX,U .

I Can we approximate KX,U from KU,U?

6 / 13

Kernel Interpolation

For example, if we want to approximate k(x, u), we could form

k(x, u) ≈ wk(ua, u) + (1− w)k(ub, u) , (2)

where ua ≤ x ≤ ub.

More generally, we form

KX,U ≈ WKU,U , (3)

where W is an n× m sparse matrix of interpolation weights. For local linear
interpolation W has only c = 2 non-zero entries per row. For local cubic
interpolation, c = 4. Substituting KX,U ≈ WKU,U into the inducing point
approximation,

KX,X ≈ KX,UK−1
U,UKU,X ≈ WKU,UK−1

U,UKU,UWT = WKU,UWT = KSKI .

7 / 13

Kernel Interpolation

KSKI =

n×m︷︸︸︷
W

m×m︷︸︸︷
KU,U WT (4)

I MVMs with W cost O(n) computations and storage.
I Toeplitz KU,U: MVMs cost O(m log m).
I Kronecker structure in KU,U: MVMs cost O(Pm1+1/P) .

Conclusions
I MVMs with KSKI cost O(n) computations and storage!
I We can therefore solve K−1

SKIy using linear conjugate gradients in j� n
iterations, for GP inference.

I Even if the inputs X do not have any structure, we can naturally create
structure in the latent variables U which can be exploited for greatly
accelerated inference and learning.

I We can use m� n inducing points! (Accuracy and kernel learning)

8 / 13

New Unifying Framework

It turns out that all inducing methods perform global GP interpolation on a
user-specified kernel!

I The predictive mean of a noise-free, zero mean GP (σ = 0, µ(x) ≡ 0)
is linear in two ways: on the one hand, as a wX(x∗) = K−1

X,XKX,x∗
weighted sum of the observations y, and on the other hand as an
α = K−1

X,Xy weighted sum of training-test cross-covariances KX,x∗ :

f̄∗ = yTwX(x∗) = αTKX,x∗ . (5)

I If we are to perform a noise free zero-mean GP regression on the kernel
itself, such that we have data D = (ui, k(ui, x))m

i=1, then we recover the
inducing kernel k̃SoR(x, z) = KU,xK−1

U,UKU,z as the predictive mean of
the GP at test point x∗ = z!

9 / 13

Local versus Global Kernel Interpolation

0 2.5 5 7.5 10
0

0.25

0.5

0.75

1
C

ov
ar

ia
nc

e

k
k(U,u)
Global
k

SoR
(x,u)

x

(c) Global Kernel Interpolation

0 2.5 5 7.5 10
0

0.25

0.5

0.75

1

C
ov

ar
ia

nc
e

k
k(U,u)
Local
k

SKI
(x,u)

x

(d) Local Kernel Interpolation

Figure: Global vs. local kernel interpolation. Triangle markers denote the inducing
points used for interpolating k(x, u) from k(U, u). Here u = 0, U = {0, 1, . . . , 10},
and x = 3.4. a) All conventional inducing point methods, such as SoR or FITC,
perform global GP regression on KU,u (a vector of covariances between all inducing
points U and the point u), at test point x∗ = x, to form an approximate k̃, e.g.,
kSoR(x, u) = Kx,UK−1

U,UKU,u, for any desired x and u. b) SKI can perform local kernel
interpolation on KU,u to form the approximation kSKI(x, u) = wT

x KU,u.

10 / 13

Kernel Matrix Reconstruction

200 400 600 800 1000

200

400

600

800

1000

0.2

0.4

0.6

0.8

1

(a) Ktrue

200 400 600 800 1000

200

400

600

800

1000

0.2

0.4

0.6

0.8

1

(b) KSKI (m = 40)

200 400 600 800 1000

200

400

600

800

1000

5

10

15

x 10
−5

(c) |Ktrue − KSKI, 40|

10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

m

E
rr

or

equi−linear
kmeans−linear
equi−GP
equi−cubic

(d) Interpolation
Strategies

200 400 600 800 1000

200

400

600

800

1000

1

2

3

4

x 10
−8

(e) |Ktrue−KSKI, 150|

200 400 600 800 1000

200

400

600

800

1000

2

4

6

8

10

12

14
x 10

−8

(f) |Ktrue−KSoR, 150|

0 0.1 0.2 0.3 0.4
10

−10

10
−8

10
−6

10
−4

Runtime (s)

E
rr

or

SKI (linear)
SoR
FITC
SKI (cubic)

(g) Error vs Runtime

11 / 13

Kernel Learning

0 0.5 1
−0.5

0

0.5

1

τ

C
or

re
la

tio
n

True
FITC
SKI

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

τ

C
or

re
la

tio
n

Figure: Kernel Learning. A product of two kernels (shown in green) was used to
sample 10, 000 datapoints from a GP. From this data, we performed kernel learning
using SKI (cubic) and FITC, with the results shown in blue and red, respectively. All
kernels are a function of τ = x− x′ and are scaled by k(0).

12 / 13

Natural Sound Modelling

0 1 2 3

−0.2

−0.1

0

0.1

0.2

Time (s)

In
te

ns
ity

(a) Natural Sound

2500 3000 3500 4000 4500 5000
10

0

10
1

10
2

10
3

m

R
un

tim
e

(s
)

FITC
SKI (cubic)

(b) Runtime vs m

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Runtime (s)

S
M

A
E

(c) Error vs Runtime

Figure: Natural Sound Modelling
13 / 13

