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De: Gaussian Processes (GPs)

Gaussian Process (GP) is a stochastic process where for any

inputs t all corresponding outputs y are distributed as
y ~ N(m(t),K(t t|6)). Denoted: f(t) ~ GP(m(t), k(t,t|0))

» Used as a prior over continuous functions in statistical

models
» Properties (e.g. smoothness) are determined by the

covariance function k(t, '|0)
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Temporal Gaussian Processes

» Input data is 1-D, usually time

» Fully probabilistic (Bayesian)
approach

» Conveniently combining structural
components by covariance
operations

Matern + Matern*Periodic

» Applicability for unevenly sampled
data
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Temporal Gaussian Processes

» Input data is 1-D, usually time

» Fully probabilistic (Bayesian)
approach

» Conveniently combining structural
components by covariance
operations

Matern + Matern*Periodic

» Applicability for unevenly sampled
data

Challenges:

» Large datasets

» Non-Gaussian
likelihoods
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GP as a Stochastic Differential Equation (SDE)

Addressing challenge 1

Given a 1-D time series: {y;, t;}V,

» Gaussian Process
model:

f(t) ~ GP(m(t), k(t, t')) GP prior

ylt~ [Pl f(1)) Likelihood
i=1

» Latent Posterior:

Q(f|D) =
N (f ‘ m + Ka, (K™ +W)‘1)
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GP as a Stochastic Differential Equation (SDE)

Addressing challenge 1

Given a 1-D time series: {y;, t;}V,

> Gaussian Process » Equivalent Stochastic Differential

model: Equation (SDE) [3]
, , af(t)
£(t) ~ GP(m(t), k(t, 1)) GP prior 3¢ = Fi(t) +Lw(t); fo ~ N(0,P-)
n n
ylf~ HP(yf |£(t))  Likelihood y|f~ [P |Hi(t))
I= i=1
> Latent Posterior: > f(t) = Hf(t)
0| D) = > w(t) - multidimensional white noise

» F,L,H,P., are determined from the
N (f ‘ m + Ko, (K™ + W)‘1) covariance K [3]
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Inference and Learning with Gaussian likelihood
Gaussian likelihood: P(y; | f(t)) = N (y: | f(t), o21)
» Posterior parameters:
W =02,
a=(K+W')"(y—m)
» Evidence:
log Zapr = —%aT(v —m)

~ 2 log K+ W[ - g log(20?)

» The naive approach has O(N?)
complexity
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Inference and Learning with Gaussian likelihood
Gaussian likelihood: P(y; | f(t)) = N (y: | f(t), o21)

> Solve SDE between time points

> Posterior parameters: (equivalent discrete time model):
2
W=0o"l fi=A_ifi_1+qi—1; a1 ~N(0,Qi_y)
—Ay—1
a=(K+W )" (y-m) Vvi=Hfi+e; en~N(0,02)

» Parameters of the discrete
» Evidence: model:

A; = A[AL] = e*'F,

]
log Zepr = — 5" (y —m)
Q;=P. —AP.AS

2
~ 2 log K+ W[ - g log(2702)
> Inference and learning by
. Kalman Fliter (KF) and
> The naive approach has O(\°) Rauch-Tung-S(triez)eI (RTS)
complexity smoother in O(N) complexity
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Fast computation of A; and Q; by interpolation

Problem:

» When there are many At
parameters computation
can be slow

Solution:

» ¢ : s — e is smooth
mapping, hence
interpolation (similar to
KISS-GP [4])

» Evaluate ¢ on an
equispaced grid
S$1, 82, .., SK, where
Sj = So +j-As

Evaluation time (s)

Use 4-point interpolation:
A~ C1Aj_1 + CgAj +
CgAj+1 + C4A/'+2.
Coefficients {c;}}_, are
efficiently computable

1 I I
5 10 15 20

Number of training inputs, -10°
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Non-Gaussian Likelihoods
Addressing challenge 2

Posterior as a Gaussian approximation:
Q(f D) =N (f|m+ Ko, (K™ +W)™T)
Laplace Approximation

> logP(f| D) ~
log P(f|y) + log P(f | )

Laplace approximation (LA) "

Variational Bayes (VB) » Find the mode f of this function
Direct Kullback-Liebler by Newton method
minimization (KL) » Hessian at the mogle fis
Assumed Density Filtering (ADF) precision W = —9”log P(t )

a.k.a. single sweep Expectation
Propagation (EP)

> logZia=—13 [avamK(a) +

ldk (W) — 23", log P(‘Viﬁi)}
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Computational Primitives

The following computational primitives allow to cast the
covariance approximation in more generic terms:
» Linear system solving: solvegx(W,r) := (K+W~1)~"r
» Matrix-vector multiplications: mvmg(r) := Kr
» Log-determinants: ldx(W) := log |B| with well-conditioned
B=I1+WzKW:2
» Predictions need latent mean E[f.] and
variance V|[f,]
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Tackling computational primitives

Using state space from of temporal GPs

SpInGP:

> The first two computational primitives are calculated using Sp/nGP [5]
approach:

> |dea is: using state space form compose the inverse of the covariance
matrix, which turns out to be block-tridiagonal

KF and RTS Smoothing:

> The last two primitives are solved by Kalman filtering and RTS
smoothing

» Predictions are computed by primitive 4 and then by propagation
through likelihood

Comments:
» Derivatives of computational primitives, required for learning, are
computed in a similar way
» SpInGP involves computations with block-tridiagonal matrices. These
computations are similar to KF and RTS smoothing (see [1] Appendix)
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Experiments 2-3

Experiments are designed to emphasize the paper findings and
statements

1. A robust regression (Student’s t likelihood) study example
with n = 34,154 observations

2. Numerical effects in non-Gaussian likelihoods

Table 1. A representative subset of supported likelihoods and inference schemes (for a full list, see Rasmussen & Nickisch, 2010). Results
for simulated data with n = 1000 (around the break-even point of computational benefits). Results compared to respective naive solution

in mean absolute error (MAE). ' The results for EP are compared against ADF ining the deviation and speed-up.

Likelinood Inference MAEina MAEinW  MAEinpu;.  —logZ  —logZs t/ts Description
Gaussian Exact <107t <107 <1071 —1252.29  —1252.30 2.0  Regression
Student’st  Laplace <1077 <107° <107* 2114.45 2114.45 1.4 Regression,
Student’s VB <10°° <10°° <10’ 2114.72 2114.72 2.7 robust
Student'st KL <107 <107 <107° 2114.86 2114.86 4.6

Poisson Laplace <107° <1074 <107° 1200.11 1200.11 1.2 Poisson regression,
Poisson EP/ADF' < 107! < 10° <1072 1200.11 39.5 count data
Logistic Laplace <1078 <1077 <1077 191.58 491.58 1.3 Classification,
Logistic VB <107° <107° <107° 492.36 2.3 logit regression
Logistic KL <1077 <10°° <1077 491.57 4.0

Logistic EP/ADF' < 107! < 10° <107! 48.1

Erf Laplace <107° <107° <107" 1.2 Classification,

Erf EP/ADFT < 10° < 10° <10 ! 392.01 37.1 probit regression
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Experiment 4

» A new interesting data set with commercial airline
accidents dates scraped from Wikipedia [6]

» Accidents over the time-span of ~100 years, n = 35,959
days

» We model the accident intensity as a Log Gaussian Cox
process (Poisson likelihood)

» The GP prior is set up as:

k(ta t/) = kMat.(t7 t/) + kper.(tv t/) kMat.(t7 tl)

Month
JFMAMIJ JASOND

5 195010052010 921 1965 1980 1995 2010
Year

Time (years)

Figure 2: (a) Intensity of aircraft incidents modeled by a log Gaussian Cox process with the mean and approxi-
mate 90% confidence regions visualized (N = 35.959). (b) The time course of the seasonal effect in the airline
accident intensity, plotted in a year vs. month plot (with wrap-around continuity between edges).
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Conclusions

v

This paper brings together research done in state space
GPs and non-Gaussian approximate inference

We improve stability and provide additional speed-up by
fast computations of the state space model parameters

We provide unifying code for all approches in GPML
toolbox v. 4.2 [7]

Visit our poster: #151
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