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Gaussian Processes (GPs)
Def:

Gaussian Process (GP) is a stochastic process where for any
inputs t all corresponding outputs y are distributed as
y ∼ N (m(t),K (t , t |θ)). Denoted: f (t) ∼ GP(m(t), k(t , t ′|θ))

I Used as a prior over continuous functions in statistical
models

I Properties (e.g. smoothness) are determined by the
covariance function k(t , t ′|θ)
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Temporal Gaussian Processes
I Input data is 1-D, usually time
I Fully probabilistic (Bayesian)

approach
I Conveniently combining structural

components by covariance
operations

I Applicability for unevenly sampled
data

Challenges:

I Large datasets

I Non-Gaussian
likelihoods
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GP as a Stochastic Differential Equation (SDE)
Addressing challenge 1

Given a 1-D time series: {yi , ti}N
i=1

I Gaussian Process
model:

f (t) ∼ GP(m(t), k(t , t ′)) GP prior

y | f ∼
n∏

i=1

P(yi | f (ti )) Likelihood

I Latent Posterior:

Q(f | D) =

N
(

f
∣∣∣m + Kα, (K−1 + W)−1

)

I Equivalent Stochastic Differential
Equation (SDE) [3]

d f(t)
d t

= Ff(t) + Lw(t); f0 ∼ N (0,P∞)

y | f ∼
n∏

i=1

P(yi |Hf(ti ))

I f (t) = Hf(t)
I w(t) - multidimensional white noise
I F,L,H,P∞ are determined from the

covariance K [3]
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Inference and Learning with Gaussian likelihood
Gaussian likelihood: P(yi | f (ti)) = N (yi | f (ti), σ2

nI)

I Posterior parameters:

W = σ−2In

α = (K + W−1)−1(y−m)

I Evidence:

log ZGPR = −1
2
α>(y−m)

− 1
2

log |K + W−1| − N
2

log(2πσ2
n)

I The naı̈ve approach has O(N3)
complexity

I Solve SDE between time points
(equivalent discrete time model):

fi = Ai−1fi−1 + qi−1; qi−1 ∼ N (0,Qi−1)

yi = Hfi + εi ; εn ∼ N (0, σ2
n)

I Parameters of the discrete
model:

Ai = A[∆ti ] = e∆ti F,

Qi = P∞ − Ai P∞ A>i

I Inference and learning by
Kalman FIlter (KF) and
Rauch-Tung-Striebel (RTS)
smoother in O(N) complexity
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Fast computation of Ai and Qi by interpolation
Problem:

I When there are many ∆ti
parameters computation
can be slow

Solution:
I ψ : s 7→ esX is smooth

mapping, hence
interpolation (similar to
KISS-GP [4])

I Evaluate ψ on an
equispaced grid
s1, s2, .., sK , where
sj = s0 + j ·∆s

I Use 4-point interpolation:
A ≈ c1Aj−1 + c2Aj +
c3Aj+1 + c4Aj+2.
Coefficients {ci}4i=1 are
efficiently computable

Non-Gaussian State Space GPs

likelihood lower bound takes the form

logZ ≥ logZKL =

−1

2

[
α>mvmK(α) + ldK(W)− 2

∑

i

`KL(fi)− 2ρKL

]
,

where the remainder ρKL = tr(W>∂ldK(W)/∂W) can
be computed using computational primitive 4.

2.9. Assumed density filtering (ADF) a.k.a.
single-sweep Expectation propagation (EP)

In expectation propagation (EP) (Minka, 2001), the non-
Gaussian likelihoods P(yi|fi) are replaced by unnormal-
ized Gaussians ti(fi) = exp(bifi − Wiif

2
i /2) and their

parameters (bi,Wii) are iteratively (in multiple passes) up-
dated such that Q¬i(fi)P(yi|fi) and Q¬i(fi)t(fi) have k =
0, . . . , 2 identical moments zki =

∫
fki Q¬i(fi)t(fi) dfi.

Here, Q¬i(fi) =
∫
N (f |m,K)

∏
j 6=i tj(fj) df¬i denotes

the cavity distribution. Unlike full state space EP using for-
ward and backward passes (Heskes & Zoeter, 2002), there
is a single-pass variant doing only one forward sweep that is
know as assumed density filtering (ADF). It is very simple
to implement in the GP setting. In fact, ADF is readily im-
plemented by Algorithm 2 when the flag “ADF” is switched
on. The marginal likelihood approximation takes the form

logZADF =

−1

2

[
α>mvmK(α) + ldK(W)− 2

∑

i

log z0
i − 2ρADF

]
,

where the remainder ρADF collects a number of scalar terms
depending on (b,W,α,m).

3. Experiments
The experiments focus on showing that the state space for-
mulation delivers the exactness of the full naı̈ve solution,
but with appealing computational benefits, and wide appli-
cability over GP regression and classification tasks. Sec. 3.1
assesses the effects of the fast approximations of Ai and
Qi. Sec. 3.2 demonstrates the unprecedented computational
speed, and Sec. 3.3 presents a comparison study including
12 likelihood/inference combinations. Finally, two large-
scale real-data examples are presented and solved on a stan-
dard laptop in a matter of minutes.

3.1. Effects in fast computation of Ai and Qi

In the first experiment we study the validity of the inter-
polation to approximate matrix exponential computation
(Sec. 2.4). The input time points of observations ti were
randomly selected from the interval [0, 12] and outputs yi
were generated from the sum of two sinusoids plus Gaussian
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Figure 1. Relative differences in logZ with different approxima-
tion grid sizes for Ai and Qi, K, of solving a GP regression
problem. Results calculated over 20 independent repetitions,
mean±min/max errors visualized.
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Figure 2. Empirical computational times of GP prediction using
the GPML toolbox implementation as a function of number of
training inputs, n, and degree of approximation, K. For all four
methods the maximum absolute error in predicted means was 10−9.
Results calculated over ten independent runs.

noise: yi = 0.2 sin(2π ti + 2) + 0.5 sin(0.6π ti + 0.13) +
0.1N (0, 1). The ∆tis were exponentially distributed since
the time points followed a Poisson point process generation
scheme. All results were calculated over 20 independent
realizations.

For each generated dataset we considered GP regression (in
the form of Sec. 2.5) with a Gaussian likelihood and Matérn
(ν = 5/2) covariance function. Initially, all the matrices Ai

and Qi were computed exactly. The results were compared
to the approximate results of those matrices with various
number of interpolation grid pointsK. The absolute relative
difference between the approximated and not approximated
marginal likelihood and its derivatives were computed. The
results are given in Figure 1. The figure shows that the
relative difference is decreasing with the number of grid
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Non-Gaussian Likelihoods
Addressing challenge 2

Posterior as a Gaussian approximation:

Q(f | D) = N
(
f
∣∣m + Kα, (K−1 + W)−1)

I Laplace approximation (LA)
I Variational Bayes (VB)
I Direct Kullback-Liebler

minimization (KL)
I Assumed Density Filtering (ADF)

a.k.a. single sweep Expectation
Propagation (EP)

Laplace Approximation
I logP(f | D) ∼

logP(f | y) + logP(f | t)
I Find the mode f̂ of this function

by Newton method
I Hessian at the mode f̂ is

precision W = −∂2 logP(̂f | t)

I log ZLA = − 1
2

[
α>mvmK(α) +

ldK(W)− 2
∑

i logP(yi |̂fi )
]
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Computational Primitives

The following computational primitives allow to cast the
covariance approximation in more generic terms:

I Linear system solving: solveK(W, r) := (K + W−1)−1r
I Matrix-vector multiplications: mvmK(r) := Kr
I Log-determinants: ldK(W) := log |B| with well-conditioned

B = I + W
1
2 K W

1
2

I Predictions need latent mean E[f∗] and
variance V[f∗]
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Tackling computational primitives
Using state space from of temporal GPs

SpInGP:
I The first two computational primitives are calculated using SpInGP [5]

approach:
I Idea is: using state space form compose the inverse of the covariance

matrix, which turns out to be block-tridiagonal
KF and RTS Smoothing:

I The last two primitives are solved by Kalman filtering and RTS
smoothing

I Predictions are computed by primitive 4 and then by propagation
through likelihood

Comments:
I Derivatives of computational primitives, required for learning, are

computed in a similar way
I SpInGP involves computations with block-tridiagonal matrices. These

computations are similar to KF and RTS smoothing (see [1] Appendix)
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Experiments 2-3

Experiments are designed to emphasize the paper findings and
statements

1. A robust regression (Student’s t likelihood) study example
with n = 34,154 observations

2. Numerical effects in non-Gaussian likelihoods
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Experiment 4
I A new interesting data set with commercial airline

accidents dates scraped from Wikipedia [6]
I Accidents over the time-span of ∼100 years, n = 35,959

days
I We model the accident intensity as a Log Gaussian Cox

process (Poisson likelihood)
I The GP prior is set up as:

k(t , t ′) = kMat.(t , t ′) + kper.(t , t ′) kMat.(t , t ′)
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Conclusions

I This paper brings together research done in state space
GPs and non-Gaussian approximate inference

I We improve stability and provide additional speed-up by
fast computations of the state space model parameters

I We provide unifying code for all approches in GPML
toolbox v. 4.2 [7]

I Visit our poster: #151
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