Paper 10574-21 Session 4: Machine Learning, 3:30 PM - 5:30 PM, Salon B

Nearest Neighbor 3D Segmentation with Context Features

Evelin Hristova, Heinrich Schulz, <u>Tom Brosch</u>, Mattias P. Heinrich, Hannes Nickisch Philips Research Hamburg, Digital Imaging February 11, 2018

Intro / Objectives

- Automated 3D segmentation
- Supervised machine learning
- Binary context features
- Nearest neighbors classification
 - Vantage point trees
- Benchmark variations
 - Speed up

Neaerest Neighbor Segmentation Pipeline

Binary Context Features

Random selection of coordinates around central pixel

Pairwise **intensity** comparisons $\tau(p; x, y) := \begin{cases} 1 & \text{if } p(x) > p(y) \\ 0 & \text{otherwise} \end{cases}$ p(x) is the **intensity** of p at a point x

Repeat n_d times (e.g. n_d = 1280) , form a **vector f**:

$$f_{n_d}(p) := \sum_{i=1}^{n_d} 2^{i-1} \tau(p; x_i, y_i)$$

p(x_i) > ? p(y_i) BRIEF Binary Robust Independent Elementary Features Local Binary Pattern

Capture contextual and structural information Computational efficiency (Hamming distance) Robustness to monotonic gray-level changes

Nearest Neighbor Search Vantage Point Trees (Construction)

Nearest Neighbor Search Vantage Point Tree (Query)

Experiments

<u>70 abdominal CT images</u> Liver, spleen, left kidney, right kidney	<u>42 pelvic MR images</u> Bladder, bones, prostate, rectum
512 x 512 x 394 (1.36 x 1.36 x 1.35 mm)	528 x 528 x 120 (1.04 x 1.04 x 2.5 mm)
5-fold cross validation (Train 56 / Test 14)	7-fold cross validation (Train 36 / Test 6)

Results, Dice Score

Results, Confusion Matrix

Mainly correct predictions

✓ Few inter-organ confusions

X Often confusion with background (imbalanced training data)

Algorithm vs. Ground Truth (CT)

Algorithm vs. Ground Truth (MR)

Bladder: 0.91

Rectum: 0.77

In a nutshell..

Data efficiency

Training phase

Test phase

Index	0	1	2	3	4	5	6	
n=0	0	1	1	1	0	0	0	
n=1	0	1	0	1	0	1	0	
:	:	÷	÷	÷	÷	÷	÷	
n=1280	1	0	0	0	1	0	0	

Index	0	1	2	3	4	5	6	
NN = 1	0	2	1	33	34	18	3	
NN = 2	8	63	9	13	27	29	55	
NN = 3	12	99	26	77	33	0	56	
NN = 4	5	14	8	9	13	1	57	
Labels								

BRIEF & LBP features extraction Storing test features

VPF NNs query, retrieve labels

Grid labels assignment

Label interpolation

Regularization

