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Motivation

CCTA:

Problem:

Goal:

Purpose:
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= Coronary computed tomography angiography
• Used for detection of coronary artery disease

• Cardiac motion artifacts may limit evaluation
• Potentially lead to misinterpretations

• Motion artifact recognition at the coronary 
arteries by a deep-learning-based measure 

• Assess diagnostic reliability of CCTA images
• Steering and assessment of algorithms for

motion compensation (MC)
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Reference data
collection

Forward
model
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Network
Evaluation

Main idea: generate required data for
supervised learning by introducing
artificial motion to high quality CT cases

Method

Forward
model
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Reference data
collection

Forward
model

Supervised
learning

Input of the forward model:

• Cardiac CT data sets with
excellent image quality
(no motion reference)

• Coronary artery tree including
centerline and lumen contour

• Corresponding ECG-triggered
projection data

 9 step-and-shoot
cases included

Method

Network
Evaluation

Tanja Elss       13th February 2018       Deep-learning-based motion artifact recognition in CCTA images



Usual back projection Motion compensated
back projection
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Reference data
collection

Forward
model

Supervised
learning

Application of the MC-FBP1 algorithm

• blurred image +  true MVF  =  sharp image

• takes estimated motion 𝑚𝑡 Ԧ𝑥 of each voxel
Ԧ𝑥 into account during reconstruction

Method

1 U. van Stevendaal et al., “A motion-compensated scheme for helical 
cone-beam reconstruction in cardiac CT angiography”, 2008.

Network
Evaluation
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Usual back projection Motion compensated
back projection
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Reference data
collection

Forward
model

Supervised
learning

Application of the MC-FBP1 algorithm

• sharp image + artificial MVF = blurred image

• takes estimated motion 𝑚𝑡 Ԧ𝑥 of each voxel
Ԧ𝑥 into account during reconstruction

Method

1 U. van Stevendaal et al., “A motion-compensated scheme for helical 
cone-beam reconstruction in cardiac CT angiography”, 2008.

Network
Evaluation
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Reference data
collection
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Generation of the MVF

Method

displacement sample vectors:
define 5 motion states

weight mask w Ԧ𝑥 𝜖 0,1 :
limits motion area
forces smoothness

displacement direction:       
random ( Ԧ𝜌𝑖∈ 𝑈 −1,1 3)

𝑚𝑡𝑖 Ԧ𝑥 = w Ԧ𝑥 ∙ 𝜌𝑖
𝜌

∙ 𝑠 , 𝑖 ∈ {1,…,5}

target motion strength 𝑠 ∈ ℝ+:
scales displacement lengths
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Evaluation

Task: Separate cross-sectional image patches
into classes no artifact and artifact

Method

• Database:  ca. 18k samples of size 96x96 pixels
 balanced classes, case-wise separation
 augmentation: rotation, mirroring, cropping (60x60)

• Setup:  20-layer ResNet1, Adam optimizer2

𝑠 = 0 𝑠 = 2 𝑠 = 4 𝑠 = 6 𝑠 = 8 𝑠 = 10

1 K. He et al., “Deep residual learning for image recognition”, 2016.
2 D. Kingma et al., “Adam: A method for stochastic optimization”, 2014.
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Reference data
collection

Forward
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Evaluation

4-fold cross-validation (60x60)
mean classification accuracy:  94.4% ± 2.9%

Results – 2D

1 C. Rohkohl et al., “Improving best-phase image quality in cardiac CT by 
motio correction with MAM optimization”, 2013.
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4-fold cross-validation (60x60x11)
mean classification accuracy:  95.6% ± 2.7%
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1 C. Rohkohl et al., “Improving best-phase image quality in cardiac CT by 
motio correction with MAM optimization”, 2013.
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artificial MVF

sampled cross-sectional patches

no artifact or artifact

Step 1:    Preprocessing Step 2: Forward model Step 3: Supervised Learning

MC-FBP

Reference data collection

ECG data

projection
data

3D cardiac
CT volume

coronary
artery tree

Summary

Conclusions

CNN

+

• Demonstrated feasibility of accurate motion artifact recognition in 
CCTA images using deep learning

• Future work:
– Increase robustness
– Artifact level regression
– Testing on real artifacts

Artificial motion introduction
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