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�Contribution

•Patient motion in the scanner is an unsolved problem in MRI

•We propose a new retrospective method to motion correction

•Our fully analytic forward model allows efficient gradient-based

exploration of space of motion parameters

•No tracking devices or specialized sequences are required

•Our approach was tested on real data (TSE, FLASH, MPRAGE)
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�Our method

Key aspects: We assume:
• Retrospective method • Scanned object is a rigid body
• No need for tracking devices • No strong intra-view motion
• No specialized sequences are required • Object is not leaving the Field of View
• Gradient-based optimization • Raw k-space data is available

General framework:
Let F ∈ Cn×n be the orthonormal Fourier matrix,
u ∈ Cn the unknown sharp image of size n = n1 · n2 · n3 pixels,
M = dg(m) ∈ [0, 1]n×n where m ∈ [0, 1]n is a diagonal masking matrix,
Ãθ is a general rigid motion transformation matrix,
Aθ ∈ Cn×n is a matrix such that FÃθ = AθF,
θt ∈ R3 × [0, 2π)3 is the vector with translation and rotation motion parameters at
time t.
Assuming additive Gaussian noise ε ∼ N (0, σ2I), the acquisition in k-space can be
written as a noisy linear process

y =

∫ T

0
dg(mt)Aθtdt Fu + ε ∈ Cn, 1 =

∫ T

0
mtdt. (1)

with Mt selecting the segment in k-space being filled by the scanner at time t.
In a real setting of Cartesian acquisitions with finite number of views, the measurement
integral (1) becomes a sum over the number of excitations and the masking becomes
binary instead of continuous M = dg(m) ∈ {0, 1}n×n where m ∈ {0, 1}n

y =

T∑
t=1

dg(mt)AθtFu + ε ∈ Cn, 1 =

T∑
t=1

mt. (2)

Assume for now that the k-space lines of an image of size n1 by n2 pixels are measured
from top to bottom, hence T = n1 steps are needed. Then, in every repetition, a noisy
version of dg(mt)AθtFu ∈ Cn is measured. But since mt is binary this is equivalent
to say that we acquire a noisy version of n2 components instead of n = n1n2, which
we denote by [Aθt]mtFu ∈ Cn2 with the shortcut [Aθt]mt ∈ Cn2×n

y = AθFu + ε ∈ Cn, Aθ :=


[Aθ1]m1

[Aθ2]m2
...

[AθT ]mT

 ∈ Cn×n. (3)

with θ ∈ R3T × [0, 2π)3T being the vector with all the motion parameters of the
trajectory, and T = n2 · n3. The bottom line is that a matrix vector multiplication
(MVM) with Aθ can be done in O(n) time since Aθ can be decomposed into blocks
whose MVMs can be performed efficiently.
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Objective function and derivatives

As an estimator of the image quality we use the entropy of the gradients of the image
metric φ, that according to McGee et al. (2000) is the best metric for medical images:

φ(u) = H(Dxu) + H(Dyu) (4)

where Dx and Dy are horizontal and vertical finite difference matrices, and H(·) is
the entropy estimator defined as:

H(u) = v> lnv,v =
|u|
‖u‖
∈ Rn+, |u| =

√
=2(u) + <2(u) ∈ Rn+, ‖u‖ =

√
uHu ∈ R+.

Using our objective function (5), we seek the motion parameters θ, that invert the
motion in observed image y in such a way, that the focus criterion φ for the corrected
image in spatial domain is optimized:

θ̂ = arg min
θ

(φ(FHAθy)),u := FHA
θ̂
y (5)

The derivatives are of the form

∂φ(Aθu)

∂θ
∈ Rn

where Aθ ∈ Cn×n is a matrix with parameter θ ∈ Rn such that every row i depends
on θi only, u ∈ Cn a vector and φ : Cn→ R is a continuously differentiable function.
We denote by A′θ the matrix such that [ ∂∂θi

Aθu]i = [A′θu]i i.e. A′θ contains all the
information needed for the Jacobian

∂Aθu

∂θ>
= dg(A′θu), (6)

which is diagonal because every row i depends on θi only. Now, let
∂φ(v)
∂v denote

the gradient of the objective function φ : Cn → R. Then, the desired derivative
∂φ(Aθu)/∂θ can be obtained via the chain rule

∂φ(Aθu)

∂θ
=
∂(Aθu)>

∂θ

∂φ(v)

∂v
=
(
A′θu

)
�
(
∂φ(v)

∂v

)
. (7)
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Multiscale optimization

Our objective is a highly non-linear function. We solve the problem of local minima
by using a multi-scale coarse-to-fine approach:

Input: Corrupted volume y with n1 · n2 · n3 complex coefficients in frequency

domain, with DC component at [c1, c2, c3] =
[n1

2
+ 1,

n2

2
+ 1,

n3

2
+ 1
]
.

Also, assume n3 = n2.
Output: Restored volume u in spatial domain

for s ← 64

2
, ...,

n2

2
do

ŷ← y([c1, c2, c3]− s : [c1, c2, c3] + s);

Calculate θ̂ ← arg min
θ

(φ(FHAθŷ));

Initialize central frequency part of θ̂ on next finer scale with

θ̂ ← θ([c2, c3]− s : [c2, c3] + s);
end

Finally, obtain the sharp image: u := FHA
θ̂
y;

We regularize the recovered motion parameters by putting L2 penalty on the difference
of consecutive motion parameters, which helps to avoid strong spikes in the recovered
trajectory, which are often the artifact of the algorithm:

ϕ(θ) := φ(AθF
Hy) + λρ(Dθ) (8)
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Implementation of Aθ and run-time

Translation:

• The matrix is diagonal with entries of the form e−2πiθtξj, where θt is the spatial
displacement, ξj is phase ramp, and j is the frequency index

Rotation:

• The matrix contains interpolation weights

•Given the rotation angles the coordinates of the knots on rotated lines are found

• Interpolation is done over 4d knot neighbours, where d is the number of dimensions

• Cubic kernel is used as an interpolating function

Optimization:

•We use the LBFGS non-linear optimizer (50 function evaluations per scale)

• The computational bottleneck are the Fast Fourier transforms costing O(n log n),
both Aθ and its derivatives are of O(n) complexity

• CPU: Intel(R) Core(TM) 2 Duo CPU 2.66Ghz; GPU: GeForce GTX 285
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Experiments: simulation (2D)

• 100 trials were made to test the stability of our reconstruction algorithm

•On each trial the algorithm started from randomly initialized motion parameters

•Dashed blue: ground truth sinusoidal trajectory

•Dashed red: empirical mean over trajectories recovered by the algorithm

• Shaded grey: 95% of the probability mass (±2σ for Gaussian)
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Experiments: real data (2D+3D)

• Freely moving human subject

• 2D image (384x160) acquired with TSE sequence; Siemens 3T Trio scanner

• TR=3500ms.; TE=40ms; FlipAngle=180◦; SliceThickness=4mm

•Monkey’s brain in fixation gel; controlled motion

• 3D volume (384x192x16) acquired with FLASH sequence

• TR=100ms.; TE=6.42ms; FlipAngle=35◦; SliceThickness=1.5mm

• Freely moving human subject

• 3D volume (384x192x96) acquired with FLASH sequence

• TR=16ms.; TE=5.38ms; FlipAngle=20◦; SliceThickness=1.2mm
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