

$\label{eq:Retrospective blind motion correction of MR images \\ \mbox{Alexander Loktyushin}^1, \mbox{Hannes Nickisch}^2, \mbox{Rolf Pohmann}^3, \mbox{Bernhard Schölkopf}^1$

¹MPI for Intelligent Systems, Tübingen, Germany; ²Philips Research Laboratories, Hamburg, Germany; ³MPI for Biological Cybernetics, Tübingen, Germany

Contribution

- Patient motion in the scanner is an unsolved problem in MRI
- We propose a new retrospective method to motion correction
- Our fully analytic forward model allows efficient gradient-based exploration of space of motion parameters
- No tracking devices or specialized sequences are required
 Our approach was tested on real data (TSE, FLASH, MPRAGE)

Our method

Multiscale optimization

Our objective is a highly non-linear function. We solve the problem of local minima by using a multi-scale coarse-to-fine approach:

Input: Corrupted volume **y** with $n_1 \cdot n_2 \cdot n_3$ complex coefficients in frequency domain, with DC component at $[c_1, c_2, c_3] = \left[\frac{n_1}{2} + 1, \frac{n_2}{2} + 1, \frac{n_3}{2} + 1\right]$. Also, assume $n_3 = n_2$. **Output**: Restored volume **u** in spatial domain

for $s \leftarrow \frac{64}{2}, ..., \frac{n_2}{2}$ do $\hat{\mathbf{y}} \leftarrow \mathbf{y}([c_1, c_2, c_3] - s : [c_1, c_2, c_3] + s);$ Calculate $\hat{\boldsymbol{\theta}} \leftarrow \arg\min_{\boldsymbol{\theta}}(\boldsymbol{\phi}(\mathbf{F}^{\mathsf{H}} \mathbf{A}_{\boldsymbol{\theta}} \hat{\mathbf{y}}));$

Initialize central frequency part of $\hat{\theta}$ on next finer scale with $\hat{\theta} = \hat{\theta}$

Experiments: real data (2D+3D)

• Freely moving human subject

 \bullet 2D image (384x160) acquired with TSE sequence; Siemens 3T Trio scanner

• TR=3500ms.; TE=40ms; FlipAngle=180°; SliceThickness=4mm

Key aspects:
• Retrospective method
• No need for tracking devices
• No specialized sequences are required
• Gradient-based optimization

We assume:
Scanned object is a rigid body
No strong intra-view motion
Object is not leaving the Field of View
Raw k-space data is available

General framework:

Let $\mathbf{F} \in \mathbb{C}^{n \times n}$ be the orthonormal Fourier matrix, $\mathbf{u} \in \mathbb{C}^{n}$ the unknown sharp image of size $n = n_1 \cdot n_2 \cdot n_3$ pixels, $\mathbf{M} = \mathrm{dg}(\mathbf{m}) \in [0, 1]^{n \times n}$ where $\mathbf{m} \in [0, 1]^n$ is a diagonal masking matrix, $\tilde{\mathbf{A}}_{\boldsymbol{\theta}}$ is a general rigid motion transformation matrix, $\mathbf{A}_{\boldsymbol{\theta}} \in \mathbb{C}^{n \times n}$ is a matrix such that $\mathbf{F}\tilde{\mathbf{A}}_{\boldsymbol{\theta}} = \mathbf{A}_{\boldsymbol{\theta}}\mathbf{F}$, $\boldsymbol{\theta}_t \in \mathbb{R}^3 \times [0, 2\pi)^3$ is the vector with translation and rotation motion parameters at time t.

Assuming additive Gaussian noise $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, the acquisition in k-space can be written as a noisy linear process

$$\mathbf{y} = \int_0^T \mathrm{dg}(\mathbf{m}_t) \mathbf{A}_{\boldsymbol{\theta}_t} \mathrm{d}t \ \mathbf{F} \mathbf{u} + \boldsymbol{\varepsilon} \in \mathbb{C}^n, \ \mathbf{1} = \int_0^T \mathbf{m}_t \mathrm{d}t.$$
(1)

with \mathbf{M}_t selecting the segment in k-space being filled by the scanner at time t. In a real setting of Cartesian acquisitions with finite number of views, the measurement integral (1) becomes a sum over the number of excitations and the masking becomes binary instead of continuous $\mathbf{M} = dg(\mathbf{m}) \in \{0, 1\}^{n \times n}$ where $\mathbf{m} \in \{0, 1\}^n$

$$\mathbf{y} = \sum_{t=1}^{T} \operatorname{dg}(\mathbf{m}_{t}) \mathbf{A}_{\boldsymbol{\theta}_{t}} \mathbf{F} \mathbf{u} + \boldsymbol{\varepsilon} \in \mathbb{C}^{n}, \ \mathbf{1} = \sum_{t=1}^{T} \mathbf{m}_{t}.$$
 (2)

Assume for now that the k-space lines of an image of size n_1 by n_2 pixels are measured from top to bottom, hence $T = n_1$ steps are needed. Then, in every repetition, a noisy version of dg $(\mathbf{m}_t)\mathbf{A}_{\boldsymbol{\theta}_t}\mathbf{F}\mathbf{u} \in \mathbb{C}^n$ is measured. But since \mathbf{m}_t is binary this is equivalent to say that we acquire a noisy version of n_2 components instead of $n = n_1n_2$, which we denote by $[\mathbf{A}_{\boldsymbol{\theta}_t}]_{\mathbf{m}_t}\mathbf{F}\mathbf{u} \in \mathbb{C}^{n_2}$ with the shortcut $[\mathbf{A}_{\boldsymbol{\theta}_t}]_{\mathbf{m}_t} \in \mathbb{C}^{n_2 \times n}$

$\hat{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta}([c_2, c_3] - s : [c_2, c_3] + s);$ end

Finally, obtain the sharp image: $\mathbf{u} := \mathbf{F}^{\mathsf{H}} \mathbf{A}_{\hat{\boldsymbol{\theta}}} \mathbf{y};$

We regularize the recovered motion parameters by putting L2 penalty on the difference of consecutive motion parameters, which helps to avoid strong spikes in the recovered trajectory, which are often the artifact of the algorithm:

$$\phi(\boldsymbol{\theta}) := \phi(\mathbf{A}_{\boldsymbol{\theta}} \mathbf{F}^{\mathsf{H}} \mathbf{y}) + \lambda \rho(\mathbf{D}\boldsymbol{\theta})$$

(8)

Implementation of A_{θ} and run-time

Translation:

• The matrix is diagonal with entries of the form $e^{-2\pi i \theta_t \xi_j}$, where θ_t is the spatial displacement, ξ_j is phase ramp, and j is the frequency index **Rotation:**

• The matrix contains interpolation weights

Given the rotation angles the coordinates of the knots on rotated lines are found
Interpolation is done over 4^d knot neighbours, where d is the number of dimensions
Cubic kernel is used as an interpolating function

Monkey's brain in fixation gel; controlled motion
3D volume (384x192x16) acquired with FLASH sequence
TR=100ms.; TE=6.42ms; FlipAngle=35°; SliceThickness=1.5mm

$$\mathbf{y} = \mathbf{A}_{\boldsymbol{ heta}} \mathbf{F} \mathbf{u} + \boldsymbol{\varepsilon} \in \mathbb{C}^n, \ \mathbf{A}_{\boldsymbol{ heta}} := \begin{bmatrix} [\mathbf{A}_{\boldsymbol{ heta}_1}] \mathbf{m}_1 \\ [\mathbf{A}_{\boldsymbol{ heta}_2}] \mathbf{m}_2 \\ \vdots \\ [\mathbf{A}_{\boldsymbol{ heta}_T}] \mathbf{m}_T \end{bmatrix} \in \mathbb{C}^{n imes n}.$$
 (3)

with $\boldsymbol{\theta} \in \mathbb{R}^{3T} \times [0, 2\pi)^{3T}$ being the vector with all the motion parameters of the trajectory, and $T = n_2 \cdot n_3$. The bottom line is that a matrix vector multiplication (MVM) with $\mathbf{A}_{\boldsymbol{\theta}}$ can be done in $\mathcal{O}(n)$ time since $\mathbf{A}_{\boldsymbol{\theta}}$ can be decomposed into blocks whose MVMs can be performed efficiently.

Objective function and derivatives

As an estimator of the image quality we use the entropy of the gradients of the image metric ϕ , that according to McGee et al. (2000) is the best metric for medical images:

 $\phi(\mathbf{u}) = H(\mathbf{D}_x \mathbf{u}) + H(\mathbf{D}_y \mathbf{u})$

where \mathbf{D}_x and \mathbf{D}_y are horizontal and vertical finite difference matrices, and $H(\cdot)$ is the entropy estimator defined as:

$$H(\mathbf{u}) = \mathbf{v}^{\top} \ln \mathbf{v}, \mathbf{v} = \frac{|\mathbf{u}|}{\|\mathbf{u}\|} \in \mathbb{R}^n_+, |\mathbf{u}| = \sqrt{\Im^2(\mathbf{u}) + \Re^2(\mathbf{u})} \in \mathbb{R}^n_+, \|\mathbf{u}\| = \sqrt{\mathbf{u}^{\mathsf{H}}\mathbf{u}} \in \mathbb{R}_+.$$

Using our objective function (5), we seek the motion parameters θ , that invert the motion in observed image **y** in such a way, that the focus criterion ϕ for the corrected image in spatial domain is optimized:

Optimization:

(4)

(5)

(6)

(7)

 \bullet We use the LBFGS non-linear optimizer (50 function evaluations per scale)

• The computational bottleneck are the Fast Fourier transforms costing $\mathcal{O}(n \log n)$, both $\mathbf{A}_{\boldsymbol{\theta}}$ and its derivatives are of $\mathcal{O}(n)$ complexity

• CPU: Intel(R) Core(TM) 2 Duo CPU 2.66Ghz; GPU: GeForce GTX 285

Experiments: simulation (2D)

100 trials were made to test the stability of our reconstruction algorithm
On each trial the algorithm started from randomly initialized motion parameters
Dashed blue: ground truth sinusoidal trajectory
Dashed red: empirical mean over trajectories recovered by the algorithm

• Shaded grey: 95% of the probability mass ($\pm 2\sigma$ for Gaussian)

Freely moving human subject
3D volume (384x192x96) acquired with FLASH sequence
TR=16ms.; TE=5.38ms; FlipAngle=20°; SliceThickness=1.2mm

 $\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}}(\boldsymbol{\phi}(\mathbf{F}^{\mathsf{H}}\mathbf{A}_{\boldsymbol{\theta}}\mathbf{y})), \mathbf{u} := \mathbf{F}^{\mathsf{H}}\mathbf{A}_{\hat{\boldsymbol{\theta}}}\mathbf{y}$

The derivatives are of the form

 $\frac{\partial \phi(\mathbf{A}_{\boldsymbol{\theta}}\mathbf{u})}{\partial \boldsymbol{\theta}} \in \mathbb{R}^n$

where $\mathbf{A}_{\boldsymbol{\theta}} \in \mathbb{C}^{n \times n}$ is a matrix with parameter $\boldsymbol{\theta} \in \mathbb{R}^{n}$ such that every row *i* depends on θ_{i} only, $\mathbf{u} \in \mathbb{C}^{n}$ a vector and $\phi : \mathbb{C}^{n} \to \mathbb{R}$ is a continuously differentiable function. We denote by $\mathbf{A}_{\boldsymbol{\theta}}'$ the matrix such that $[\frac{\partial}{\partial \theta_{i}}\mathbf{A}_{\boldsymbol{\theta}}\mathbf{u}]_{i} = [\mathbf{A}_{\boldsymbol{\theta}}'\mathbf{u}]_{i}$ i.e. $\mathbf{A}_{\boldsymbol{\theta}}'$ contains all the information needed for the Jacobian

$$\frac{\partial \mathbf{A}_{\boldsymbol{\theta}} \mathbf{u}}{\partial \boldsymbol{\theta}^{\top}} = \mathrm{dg}(\mathbf{A}_{\boldsymbol{\theta}}' \mathbf{u}),$$

which is diagonal because every row *i* depends on θ_i only. Now, let $\frac{\partial \phi(\mathbf{v})}{\partial \mathbf{v}}$ denote the gradient of the objective function $\phi : \mathbb{C}^n \to \mathbb{R}$. Then, the desired derivative $\partial \phi(\mathbf{A}_{\theta} \mathbf{u}) / \partial \theta$ can be obtained via the chain rule

$$\frac{\partial \phi(\mathbf{A}_{\boldsymbol{\theta}} \mathbf{u})}{\partial \boldsymbol{\theta}} = \frac{\partial (\mathbf{A}_{\boldsymbol{\theta}} \mathbf{u})^{\top}}{\partial \boldsymbol{\theta}} \frac{\partial \phi(\mathbf{v})}{\partial \mathbf{v}} = \left(\mathbf{A}_{\boldsymbol{\theta}}' \mathbf{u}\right) \odot \left(\frac{\partial \phi(\mathbf{v})}{\partial \mathbf{v}}\right).$$

References

Atkinson, D., Hill, D., Stoyle, P., Summers, P., and Keevil, S. (1997). Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. *Medical Imaging, IEEE Transactions on*, 16(6):903–910.

McGee, K., Manduca, A., Felmlee, J., Riederer, S., and Ehman, R. (2000). Image metric-based correction (autocorrection) of motion effects: Analysis of image metrics. *Journal of Magnetic Resonance Imaging*, 11(2):174–181.

Wood, M. and Henkelman, R. (1985). Mr image artifacts from periodic motion. *Medical physics*, 12:143.