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Genome-wide association studies

e Genome-wide association studies (GWA) aim at mapping the phenotypes of samples to polymor-
phic genetic loci that explain the phenotypic variation.

International

e Thousands of genotypes are available on the web. HapMap .
The human HapMap [The International HapMap Consortium, 2007] €

e Hundreds of full genomes are being sequenced.
1000 human genomes project [1000 Genomes Project]

1001 A. thaliana genomes project (1001 Genomes]
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= How to optimally select the set of genotypes that should be phenotyped?

GWA via the Bayesian LASSO

e The Bayesian LASSO is a sparse linear regression model.
e Weights @ determine the strength and direction ot regulatory effects.

e In this model multiple loci can have an additive effect on a phenotype.
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The corresponding (aussian likelihood, defined by the conditional distribution of observed
phenotypes y given genotypes X and model weights 8, follows as

P(y|6,X;0%) = N(y|X8,07T). (1)

The Bayesian framework characterises the uncertainty in the weights @ by defining a posterior prob-
ability given the data. Only a small subset of the measured loci influence the phenotype, motivating
a sparse weight vector 8. Sparsity is encouraged by employing a Laplace prior on 6,
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For the specified model, the posterior distribution over the weights 0 is given by Bayes’ rule as
P(Bly,X;0%,7) x P(y|X, 8;0°)P(8]o, 7). (3)

Posterior weight distribution
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Approximate Bayesian learning

We follow the ideas developed in [Nickisch and Seeger, 2009] and approximate the intractable exact
posterior, P(@|y, X; 02, 7), by a Gaussian approximation of the form

d

Q~(0:0%,7) = N(y|X0,571) | | 1:(6:, 7). (4)
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with variational parameters v € Ri. ti(6;,7;) o< N(0,~;) are Gaussian site functions
that lower bound the exact Laplace sites. The product of the likelihood term and
the approximate sites in Equation 4 is tractable and can be written as

Q’)’(H;UQvT) :N(g‘p’evze)v (5>

with mean pg and covariance matrix g,

pg = A X1y, Y =0c’A! A= (XTX + diag('y)_1> . (6)

Under this approximation, the prediction at an unseen test input x, again has a Gaussian distribution,

Yx N(/J’*a 0)%)7 Hx — X5k H@, O-v% — XIZHX*‘ (7)

The variational parameters v are determined such that Q~ approximates the exact posterior well.
We developed an algorithm that minimises the convex relaxation of the KL-divergence between the

exact and approximate posterior from [Nickisch and Seeger, 2009] in runtime that is linear in the
number of SNPs, O(dn?).

Experimental design

We perform greedy blockwise experimental design using alternative selection criteria.
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ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
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The reduction in mean marginal en-
tropy AHm of a fully trained model,
defined by the approximate posterior
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ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
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ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
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Population posterior variance

Another experimental design criterion is the expected posterior variance evaluated on a target pop-
ulation P.

1
P Y xpZgxp. (10)
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Note that P usually is either the set of all genotypes or in a transductive setting an independent test
set.

In both criteria the posterior covariance matrix Eg including a number of candidate instances
X is approximated by

—1
»C = o2 (XEXC + A) . (11)
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BIOLOGISCHE KYBERNETIK

Study of flowering-time in A. thaliana [Atwell et al., 2010]

e 1606 accessions

e 216,509 confident SNP measurements from a 250k SNP chip
e 10 random splits in 133 candidates and 33 test individuals

e Hyperparameters o and 7 estimated via cross-validation

e Likelihood-ratio tests on each SNP j, comparing N (y|Xpg, Xg) and N (y|X_; po_,%g_)
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Mean marginal entropy (ALC 1428.80 + 17.60)
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Discussion and Outlook

Discussion

e Sequential experimental design significantly improves GWA results compared to random selection.

e By doing greedy blockwise experimental design it is feasable to include multiple individuals
per 1teration.

Outlook ~

e Experimental design on 1200 recently genotyped A.
thaliana accessions to extend the study by [Atwell
et al., 2010].

e Optimal solution of blockwise selection

Error
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e How to determine the optimal block size?

e Fxtend to multiple phenotypes

e Correct for population structure
Non-i.1.d. data

Remove spurious associations
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