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Introduction
We introduce a GP model that is capable of automatically learn-
ing expressive covariance functions, including a sophisticated
continuous change surface. We derive scalable inference proce-
dures leveraging Kronecker structure and a lower bound on the
marginal likelihood using the Weyl inequality.

As compared to previous change point models, our approach
allows accurate modeling and prediction for complex changes
often observed in human data that are multidimensional, grad-
ual, and heterogeneous.

Gaussian Processes
A Gaussian process is a nonparametric prior over functions

f (x) ∼ GP(m(x), k(x, x′)) (1)
m(x) = E[f (x)] (2)

k(x, x′) = cov(f (x), f (x′)) (3)

Any finite collection of function values is normally distributed
[f (x1)...f (xn)] ∼ N (m(x), K) where Ki,j = k(xi, xj).

In the case of a Gaussian observation model, y = f (x) + ε,
ε ∼ N (0, σε), we can express the log marginal likelihood as,

log p(y|θ) ∝ − log |K + σεI| − y>(K + σεI)−1y (4)

GP Change Surface Model
A change surface consists of a convex combination of latent
functional regimes, f1, . . . , fr.

y(x) =

r∑
i=1

σ(wi(x))fi(x) + εn (5)

r∑
i=1

σ(wi(x)) = 1 (6)

Warping functions σ(z)

We are particularly interested in latent functions that exhibit
some amount of mutual exclusivity. We induce this partial dis-
cretization with a warping function, σ(z) : R1 → [0, 1], whose
range is concentrated towards 0 and 1.

σ(wi(x)) = softmax(w(x))i =
exp(wi(x))∑r
j=1 exp(wj(x))

. (7)

Weighting functions w(x)

The expressibility of w(x) determines how changes can occur
in the data, and how many can occur. We do not require any
prior knowledge about the functional form of w(x) and instead
assume a Gaussian process prior on w(x). We approximate the
Gaussian process with Random Kitchen Sink features.

w(xi) =

v∑
i=1

ai cos(ω>i x + bi) (8)

Design choices for K
Each latent function is specified by a kernel with unique hyper-
parameters. In order to maintain maximal generality the model
uses spectral mixture kernels where kSM (x̃, x̃′) =

Q∑
q=1

ωqcos(2π(x̃− x̃′)>mq)

P∏
p=1

exp(−2π2(x̃p − x̃′p)2v
(p)
q ) ,

where x̃ ∈ RP and Σq = diag(v
(1)
q , . . . , v

(P )
q ) is a diagonal co-

variance matrix for multidimensional inputs.

Nonstationary additive kernel
If we assume independent GP priors on each latent function we
can define y(x) = f (x) + ε where f (x) has a Gaussian process
prior with covariance function,

k(x, x′) =

r∑
i=1

σ(wi(x))ki(x, x
′)σ(w1ix

′)) (9)

σ(w1(x)) . . . σ(wr(x)) induce nonstationarity since they are de-
pendent on the input x. Thus, even if we use stationary kernels
for all ki, our model results in a additive, nonstationary kernel.
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Scalable inference
Kronecker methods for grid data
Analytic inference requires the log marginal likelihood (Eq. 4).
This involves costly computation of K−1 and log(|K|). Kro-
necker methods decompose the covariance matrix K = K1 ⊗
· · · ⊗KD, where each Kd is nd × nd such that

∏D
1 nd = n, if:

1. inputs lie on a Cartesian grid, x ∈ X = X(1) × ...×X(D)

2. kernel is multiplicative across each dimension

Marginal Likelihood Computation Memory
Naive O(n3) O(n2)

Kronecker O(Dn
D+1
D ) O(Dn

2
D)

But Kronecker methods are not applicable to additive kernels!

Additive Kronecker approximation
Inverse K−1: use finite difference methods to compute linear
conjugate gradients. The key subroutine is MVM so the sum of
Kronecker products can be efficiently multiplied by a vector.

Log determinant log (|K|): Weyl’s inequality states that for
n× n Hermitian matrices, M = A+B, with sorted eigenvalues
µ1, .., µn, α1, ..., αn, and β1, ..., βn, respectively,

µi+j−1 ≤ αi + βj (10)

Thus considering the log determinant,

log(|A + B|) = log(|M |) =

n∑
i=1

log(µi) (11)

≤
n∑

i+j−1=1

log(αi + βj) (12)

We iteratively apply this approximation to pairs of matrices in
order to bound log(|

∑r
`=1K`|)
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Figure 1: Left shows the approximation ratio to the log(|
∑2

i=1Ki|). Right
shows the time to compute each approximation and the truth.
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Figure 2: Left shows the approximation ratio to the log(|
∑3

i=1Ki|). Right
shows the time to compute each approximation and the truth.

Scaled additive kernels
Rewrite Eq. 9 in matrix notation where Si = diag(σ(wi(x))) and
S′i = diag(σ(wi(x

′)))

K = S1K1S
′
1 + · · · + SrKrS

′
r (13)

Employing the bound on eigenvalues of matrix products,

sort(eig(A ∗B)) ≤ sort(eig(A)) ∗ sort(eig(B)) (14)

we can bound log(|K|) in Eq. 13 with a Weyl approximation over
[{si,l ∗ ki,l ∗ s′i,l}

n
l=1]ri=1 where si,l is the lth largest eigenvalue

of Si and ki,l is the lth largest eigenvalue of Ki

Numerical Experiments
Data drawn independently from two functions with different GP
priors. The change surface between the functions defined by
σ(wpoly(x)) where wpoly(x) =

∑3
i=0 β

T
i x

i, βi ∼ N (0, ID).
We create a predictive test by splitting nuemrical data into train-
ing and testing sets. We compare the GP change surface model
to sparse spectrum Gaussian process (SSGP) with 500 basis
functions, SSGP with fixed spectral points with 500 basis func-
tions, and a GP with multiplicative spectral mixture kernels.

Figure 3: Numerical data experiment. The top-left depicts the data; the
bottom-left shows the true change surface, σ(w1(x)), blue=0, red=1. The
right side depicts the predicted output and change surface.

Method NMSE
Smooth change surface 0.00078
SSGP 0.01530
SSGP fixed 0.02820
Spectral mixture 0.00200

United States Measles Data
We analyze monthly measles incidence data from 1935 to 2003
in the continental United States. We fit the model to ≈ 33, 000
data points where x ∈ R3 with two spatial dimensions repre-
senting centroids of each state and one temporal dimension.
Results for three states are shown in Figure 4 along with
the predicted change surface. The red line marks the vac-
cine year of 1963, while the dotted line marks the points
where σ(w(xstate)) = 0.5. In Figure 5 we depict the mid-
point, σ(w(xstate)) = 0.5, for each state. In Figure 6 we
depict the change surface slope from σ(w(xstate)) = 0.25 to
σ(w(xstate)) = 0.75 for each state to estimate the rate of change.
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Figure 4: Measles incidence levels from 3 states, 1935 - 2003. The green
line plots σ(w(xstate)), the vertical red line indicates the vaccine in 1963, and
the magenta line indicates σ(w(xstate)) = 0.5.
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Figure 5: US states colored by the date where σ(w(xstate)) = 0.5. Red in-
dicates earlier dates, with California being the earliest. Blue indicates later
dates, with North Dakota being the latest. Grayed out states were missing in
the dataset.
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Figure 6: US states colored by the slope of σ(w(xstate)) from 0.25 to 0.75.
Red indicates flatter slopes, with Arizona being the lowest. Blue indicates
steeper slopes, with Maine being the highest. Grayed out states were missing
in the dataset.


