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I   INTRODUCTION

CCTA = Coronary Computed Tomography Angiography

Preferred non-invasive technique for detection of coronary artery disease

Problem: Cardiac Motion Artifacts

• May occur despite ECG-correlated acquisition and gated reconstruction

• Manifest in arc-shaped blurring and intensity undershoots

• Potentially limit or even preclude diagnosis or cause misinterpretations

State of the art: Cardiac Motion Compensation

• Key components: motion vector field (MVF) estimation and subsequent motion

compensated filtered back-projection (MC-FBP) [1,2]

• MVF estimation via 3D/3D registration of multiple heart phases [3,4]

• MVF estimation via iterative minimization of handcrafted artifact measures [5]

Can we perform motion estimation from a single reconstructed CT image based on

the coronary artifact appearance?

• Goal: single-phase, image-based 2D motion vector estimation

• Constraint: constant linear motion in the axial plane

Network Input: (60 x 60) axial cross-sectional image patches

Network Output:  underlying 2D motion vector in cartesian

coordinates 

• Data Separation 

Phantom study: angle partitioning and strength partitioning

Clinical study: case-wise separation (10 Training, 2 Validation)

• Data Augmentation 

Cropping: (80 x 80) to (60 x 60)

Mirroring: horizontal and vertical

• Learning Setup:

Loss: squared error

Network: 20-layer ResNet

III SUPERVISED LEARNING

II   DATA GENERATION

FORWARD
MODEL

Reference Data

• Step-and-shoot cardiac CT data sets with excellent image quality
• Coronary artery tree including centerline and lumen contour
• Corresponding ECG-triggered raw projection data

Phantom case + 12 clinical cases

Main idea: Forward model [6, 7] introduces artificial motion to high quality CT cases to 
generate the required input and label data for supervised learning

Patch sampling

Motion vector
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Motion 
compensated
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usual back-projection MC-FBP

Motion Introduction

Uniformly sampled control parameters:

• 𝑠 ∈ 0,10
determines displacement width

• α ∈ −180°, 180°
determines motion direction
relative to the reconstruction range

Patch Sampling

• axial coronary
cross-sections

• orientation
along mean
reconstruction
direction

• size 80 x 80 
pixels

• resolution
0.4 x 0.4
mm2/pixel

Phantom Study
• 6 000 samples
• vessel radius

0.8-1.6mm

Clinical Study
• 24 000 samples
• max. inclination

of 45o to z-axis
• level 200 HU        

window 700 HU

IV EXPERIMENTS AND RESULTS

Ԧ𝑑 Ԧ𝑐 𝑡𝑐𝑐 , Ԧ𝑣 = 𝑠 ∙ 𝑚 Ԧ𝑐 Ԧ𝑣 ∙ Ԧ𝛿 Ԧ𝑐 𝑡𝑐𝑐 ,α

Constant Linear Motion Model

Qualitative Error Analysis

Quantitative Error Analysis

 reasonable motion vector estimation in six test cases with real motion artifacts
 artifact reduction archived by subsequent MC-FBP in four of six test cases

Conclusion: Convolutional Neural Networks are remarkably successful in solving the
ill-posed problem of image-based motion estimation. Model extension to 3D motion
trajectories will be a part of future research.
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uncorrupted images synthetically corrupted images

 accurate prediction substantially more difficult in clinical cases, due to variations in 
noise level, background intensities, vessel structure and contrast agent density

target prediction


