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| INTRODUCTION

CCTA Coronary Computed Tomography Angiography
Preferred non-invasive technique for detection of coronary artery disease

Problem: Cardiac Motion Artifacts

 May occur despite ECG-correlated acquisition and gated reconstruction
 Manifest in arc-shaped blurring and intensity undershoots

* Potentially limit or even preclude diaghosis or cause misinterpretations

State of the art: Cardiac Motion Compensation

« Key components: motion vector field (MVF) estimation and subsequent motion
compensated filtered back-projection (MC-FBP) [1,2]

 MVF estimation via 3D/3D registration of multiple heart phases [3,4]

* MVF estimation via iterative minimization of handcrafted artifact measures [5]

Can we perform motion estimation from a single reconstructed CT image based on
the coronary artifact appearance?

* Goal: single-phase, image-based 2D motion vector estimation

* Constraint: constant linear motion in the axial plane
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Main idea: Forward model [6, 7] introduces artificial motion to high quality CT cases to
generate the required input and label data for supervised learning

Reference Data

* Step-and-shoot cardiac CT data sets with excellent image quality
* Coronary artery tree including centerline and lumen contour
* Corresponding ECG-triggered raw projection data

> Phantom case + 12 clinical cases

Constant Linear Motion Model
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Patch Sampling

e axial coronary
cross-sections

* orientation |
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direction
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Phantom Study
e 6000 samples

e vessel radius
0.8-1.6mm

Clinical Study

24000 samples

* max. inclination
of 45° to z-axis

e |level 200 HU «a=
window 700 HU

[Il SUPERVISED LEARNING

Network Input: (60 x 60) axial cross-sectional image patches SRR
Network Output: underlying 2D motion vector in cartesian < o
coordinates x = scos(a), y = ssin(w) \', 60
* Data Separation %Q’ -
Phantom study: angle partitioning and strength partitioning
Clinical study: case-wise separation (10 Training, 2 Validation)  suength partitioning

: 0 5710
* Data Augmentation S

Cropping:
Mirroring:

(80 x 80) to (60 x 60)
horizontal and vertical

* Learning Setup:
Loss: squared error | = (z — )% + (y — §)?
Network: 20-layer ResNet

[__1 Training
[ Validation

IV EXPERIMENTS AND RESULTS

[able 1: Quantitative comparison of the validation results in the phantom and the clinical study.
Data (x,y) error: €5, | «error: g, S eITor: £,

Phantom (angle partitioning) 0.088 £ 0.078 1.084° + 3.861° 0.062 £ 0.062
Phantom (strength partitioning) || 0.086 4 0.051 0.559° + 0.450° 0.053 4 0.042
Clinical 1.497 £+ 1.200 20.659° 4 30.985° | 0.942 4+ 0.924
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» accurate prediction substantially more difficult in clinical cases, due to variations in
noise level, background intensities, vessel structure and contrast agent density

Qualitative Error Analysis
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» prediction less accurate in case of non-visible coronary blurrings at the heart wall (a-c)

and low level artifacts (g)

Quantitative Error Analysis
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Bar plot of mean and median angle error €. Polar contour plot of the predicted artifact level

Polar contour plot of the angle error €,

» most accurate prediction of the motion direction for patches with severe artifacts

Motion Compensation Experiment

. Patch sampling

. Motion vector

y S estimation
A
3. Motion
compensated
reconstruction

> reasonable motion vector estimation in six test cases with real motion artifacts
» artifact reduction archived by subsequent MC-FBP in four of six test cases

Conclusion: Convolutional Neural Networks are remarkably successful in solving the
ill-posed problem of image-based motion estimation. Model extension to 3D motion
trajectories will be a part of future research.
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