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Abstract

We propose a novel algorithm to solve the ex-
pectation propagation relaxation of Bayesian
inference for continuous-variable graphical
models. In contrast to most previous al-
gorithms, our method is provably conver-
gent. By marrying convergent EP ideas from
[15] with covariance decoupling techniques
[23, 13], it runs at least an order of magnitude
faster than the most common EP solver.

1 Introduction

A growing number of challenging machine learning
applications require decision-making from incomplete
data (e.g., stochastic optimization, active sampling,
robotics), which relies on quantitative representations
of uncertainty (e.g., Bayesian posterior, belief state)
and is out of reach of the commonly used paradigm
of learning as point estimation on hand-selected data.
While Bayesian inference is harder than point estima-
tion in general, it can be relaxed to variational opti-
mization problems which can be computationally com-
petitive, if only they are treated with the algorithmic
state-of-the-art established for the latter.

In this paper, we propose a novel algorithm for the ex-
pectation propagation (EP; or adaptive TAP, or expec-
tation consistent (EC)) relaxation [14, 11, 15], which is
both much faster than the commonly used sequential
EP algorithm, and is provably convergent (the sequen-
tial algorithm lacks such a guarantee). Our method
builds on the convergent double loop algorithm of
[15], but runs orders of magnitude faster. We gain
a deeper understanding of EP (or EC) as optimization
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problem, unifying it with covariance decoupling ideas
[23, 13], and allowing for “point estimation” algorith-
mic progress to be brought to bear on this powerful
approximate inference formulation.

Suppose that observations y ∈ Rm are modelled as
y = Xu + ε, where u ∈ Rn are latent variables
of interest, ε ∼ N(0, σ2I) is Gaussian noise, and
X ∈ Rm×n is the design matrix. For example, u can
be an image to be reconstructed from y (e.g., Fourier
coefficients in magnetic resonance imaging [22]), fur-
ther examples are found in [18]. The prior distribution
has the form P (u) ∝

∏q
i=1 ti(si) with non-Gaussian

potentials ti(·), and s := Bu for a matrix B. A well-
known example are Laplace sparsity priors defined by
ti(si) = e−τi|si| [18], where B collects simple filters
(e.g., derivatives, wavelet coefficients). This formal
setup also encompasses binary classification (u clas-
sifier weights,

∏q
i=1 ti(si) the classification likelihood

[13]) or spiking neuron models [5]. The posterior dis-
tribution is

P (u|y) = Z−1N(y|Xu, σ2I)
∏q

i=1
ti(si), (1)

Z :=
∫
N(y|Xu, σ2I)

∏q
i=1 ti(si) du the partition

function for P (u|y), and s = Bu. Bayesian inference
amounts to computing moments of P (u|y) and/or
logZ. Hyperparameters f can be learned by maxi-
mizing logZ(f) [10] (e.g., motion deblurring by blind
deconvolution [9]). In Bayesian experimental design
(or active learning) [13], X is built up sequentially
by greedily maximizing expected information scores.
These applications require posterior covariance infor-
mation beyond any single point estimate.

The expectation propagation relaxation along with
known algorithms is described in Section 2, scalable
inference techniques are reviewed in Section 3. We de-
velop our novel algorithm in Section 4, provide a range
of real-world experiments (image deblurring and re-
construction) in Section 5, and close with a discussion
(Section 6).
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2 Expectation Propagation

Expectation propagation (EP) [11, 15] stands out
among variational inference approximations. First, it
is more generally applicable than most others. Second,
a range of empirical studies indicate that EP can be a
far more accurate approximation to Bayesian inference
than today’s competitors of comparable running time
[7, 12]. Consequently, EP has been applied to a wide
range of problems: binary and multi-way classification
[11, 20], neuronal spiking models [5], ordinal regression
[2], semi-supervised learning [8], sparse linear models
and ICA [6, 18], and inference in Ising models [15] (the
algorithm developed in this paper can be applied in all
these cases).1 On the other hand, EP is more difficult
to handle than most other methods, for a number of
reasons. It is not an optimization problem based on a
bound on logZ (1), but constitutes a search for a sad-
dle point [15]. Moreover, its stationary equations are
more complicated in structure than commonly used
bounds. Finally, running EP can be numerically chal-
lenging [18, 1].

In the sequel, we describe the variational optimization
problem behind (fractional) EP, details can be found in
[11, 15, 18]. The goal is to fit the posterior distribution
P (u|y) from (1) by a Gaussian of the form

Q(u|y) := Z−1Q N(y|Xu, σ2I)eb
T s− 1

2s
T (diagπ)s ,

CovQ[u|y]−1 = A := σ−2XTX +BT (diagπ)B, (2)

where ZQ :=
∫
N(y|Xu, σ2I)eb

T s− 1
2s

T (diagπ)s du,
s = Bu. Q(u|y) depends on the variational pa-
rameters b and π � 0, collected as θ = (π, b) be-
low. Let marginal distributions N(µi, ρi) be indexed
by moment parameters µ, ρ, η ∈ (0, 1] a fractional
parameter (while standard EP uses η = 1, η < 1 can
improve numerical stability of Gaussian EP [18]). For
i ∈ {1, . . . , q}, denote κi = κi(si) := bisi − 1

2πis
2
i .

The cavity marginal is Q−i(si) ∝ N(si|µi, ρi)e−ηκi ,
the tilted marginal P̂i(si) ∝ Q−i(si)ti(si)

η. While
P̂i(si) is not a Gaussian, its moments (mean and
variance) can be computed tractably. An EP fixed
point (π, b) satisfies expectation consistency [15]: if
N(µi, ρi) = Q(si|y), then P̂i(si) and Q(si|y) have the
same mean and variance for all i = 1, . . . , q. The cor-
responding (negative free) energy function is

φ(π, b,µ,ρ) := −2 logZQ

− 2
η

∑q

i=1

(
log EQ−i [ti(si)

η]− log EQ−i [e
ηκi ]
)
,

where ZQ is the partition function of Q(u|y) (see
Eq. 2). If we define µ, ρ in terms of π, b (by re-
quiring that N(µi, ρi) = Q(si|y)), it is easy to see

1A comprehensive bibliography can be found at
http://research.microsoft.com/en-us/um/people/
minka/papers/ep/roadmap.html.

that ∇πφ = ∇bφ = 0 implies expectation consistency.
However, this dependency tends to be broken interme-
diately in most EP algorithms. A schematic overview
of the expectation consistency conditions is as follows
(notations θ̃,θ−, s∗, z are introduced in subsequent

sections;
MM←→ denotes Gaussian moment matching):

θ̃↔(µ,ρ)︷ ︸︸ ︷
N(µi, ρi) →

θ−(=θ̃−ηθ)︷ ︸︸ ︷
Q−i(si) ∝ N(si|µi, ρi)e−ηκi

↓
Q(si|y)︸ ︷︷ ︸
=N(s∗i,zi)

MM←→ P̂i(si) ∝ Q−i(si)ti(si)η
(3)

The total criterion φ(π, b,µ(π, b),ρ(π, b)) is neither
convex nor concave [15].

The most commonly used sequential EP algorithm vis-
its each potential i ∈ {1, . . . , q} in turn, first up-
dating µi, ρi, then πi, bi based on one iteration2 of
∂πiφ = ∂biφ = 0 [11, 15]. For models of moderate size
n, a numerically robust implementation maintains the
inverse covariance matrix A (2) as representation of
Q(u|y). A sweep over all potentials costs O(q n2). If
memory costs of O(n2) are prohibitive, we can deter-
mine µi, ρi on demand by solving a linear system with
A, in which case a sweep requires q such systems. The
sequential EP algorithm is too slow to be useful for
many applications. Notably, all publications for EP
we are aware of (with the exception of two references
discussed in the sequel) employ this method, generally
known as “the EP algorithm”.

In [4], a parallel variant of EP is applied to rather large
models of a particular structure. They alternate be-
tween updates of all µ, ρ and all π, b, the latter by one
iteration of ∂πφ = ∂bφ = 0 (these equations decouple
w.r.t. i = 1, . . . , q). The most expensive step per iter-
ation by far is the computation of marginal variances
ρ, which is feasible only for the very sparse matrices
A specific to their application. Neither sequential nor
parallel algorithm come with a convergence proof.

A provably convergent double loop algorithm for EP
is given by Opper and Winther in [15]. For its deriva-
tion, we need to consider a natural parameterization
of the problem. The underlying reason for this is that
log partition functions like logZQ (2) are simple con-
vex functions in natural parameters, and derivatives
w.r.t. the latter result in posterior expectations. As
noted above, we need two sets of natural parameters.
First, θ = (π, b) index the Gaussian approximation
Q(u|y). Recall that κi = bisi − 1

2πis
2
i . Second, de-

note by θ̃ = (π̃, b̃) the natural parameters for µ,ρ

2“One iteration” means solving for πi, bi, assuming that
the cavity distribution Q−i(si) is fixed (ignoring its depen-
dence on πi, bi).
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(π̃i = 1/ρi, b̃i = µi/ρi), and κ̃i = b̃isi − 1
2 π̃is

2
i , so that

N(si|µi, ρi) = Z−1i eκ̃i , where Zi =
∫
eκ̃i dsi is the nor-

malization constant. With θ− = (π−, b−) = θ̃ − ηθ
and κ−i = b−isi − 1

2π−is
2
i = κ̃i − ηκi, the cavity

marginals are Q−i(si) ∝ eκ−i , the tilted marginals
P̂i(si) = Ẑ−1i eκ−iti(si)

η, with Ẑi =
∫
eκ−iti(si)

η dsi.

If φ∩(θ, θ̃) := − 2
η

∑
i log Ẑi − 2 logZQ and φ∪(θ̃) :=

2
η

∑
i logZi, we have that φ(θ, θ̃) = φ∩(θ, θ̃) + φ∪(θ̃),

where φ∩(θ, θ̃) is jointly concave3, while φ∪(θ̃) is
convex. Define φ(θ̃) := maxθ φ(θ, θ̃). The Op-
per&Winther algorithm (locally) minimizes φ(θ̃) via
two nested loops. The inner loop (IL) is the concave
maximization θ ← argmaxθ φ∩(θ, θ̃) for fixed θ̃. An
outer loop (OL) iteration consists of an IL followed by
an update of θ̃: µ ← EQ[s|y], ρ ← VarQ[s|y]. Within
the schema (3), the IL ensures expectation consistency
MM←→ in the lower row, while the OL update equates
marginals in the left column. While this algorithm
provably converges to a stationary point of φ(θ̃) when-
ever the criterion is lower bounded [15], it is expensive
to run, as variance computations VarQ[s|y] are re-
quired frequently during the IL optimization (conver-
gence and properties are discussed in the Appendix).

3 Scalable Variational Inference

Scalable algorithms for a variational inference relax-
ation4 different from EP have been proposed in [13, 21]
(this relaxation is called VB in the sequel, for “Vari-
ational Bounding”). They can be used whenever all
potentials are super-Gaussian, meaning that ti(si) =

maxπi>0 e
bisi− 1

2πis
2
i−hi(πi)/2 for some hi(πi), which

implies the bound −2 logZ ≤ φVB(π) := −2 logZQ +
h(π) on the log partition function of P (u|y) (up to an
additive constant), where h(π) :=

∑
i hi(πi). Note

that in this relaxation, b is fixed up front (b = 0
if all potentials ti(si) are even), and π are the sole
variational parameters. They proceed in two steps.
First, −2 logZQ = log |A| + minu∗ R(π, b,u∗) (up to
an additive constant), where R(π, b,u∗) := σ−2‖y −
Xu∗‖2 + sT∗ (diagπ)s∗ − 2bTs∗, s∗ = Bu∗. Second,
since π 7→ log |A| is a concave function, Fenchel dual-
ity [17, ch. 12] implies that log |A| = minz z

Tπ−g∗(z)
for some g∗(z). The variational problem becomes

min
π�0

φVB(π) (4)

= min
z�0

min
π�0,u∗

zTπ − g∗(z) +R(π, b,u∗) + h(π).

It is solved by a double loop algorithm, alternating
between inner loop (IL) minimizations w.r.t. π,u∗ for

3Log partition functions (log Ẑi, logZQ) are convex in

their natural parameters, and θ− = θ̃ − ηθ is linear.
4In contrast to EP, this relaxation is convex iff all ti(si)

are log-concave [13, 21].

fixed z and outer loop (OL) updates of z and g∗(z).

The important difference to both the double loop algo-
rithm of [15] and the parallel algorithm of [4] lies in the
decoupling transformation log |A| = minz z

Tπ−g∗(z).
φVB(π) is hard to minimize due to the coupling term
log |A|. For example, ∇π log |A| = diag(BA−1BT ) =
VarQ[s|y] requires Gaussian variance computations,
which are very expensive in practice [21]. But log |A|
is replaced by a fixed linear function in each IL prob-
lem, where we can eliminate π analytically and are
left with a penalized least squares problem of the form
minu∗ σ

−2‖y − Xu∗‖2 −
∑
i ψi(s∗i), easy to solve

with standard algorithms that do not need Gaus-
sian variances at all. To understand the decoupling
transformation more generally, consider minimizing
(4) w.r.t. each variable in turn, keeping the others
fixed. The solutions are u∗ = EQ[u|y] (means) and
z = ∇π log |A| = VarQ[s|y] (variances). The role of
decoupling is to split between computations of means
and variances [21]: the latter, much more expensive
to obtain in general, are required at OL update points
only, much less frequently than the former (means)
which are obtained by solving a single linear system.

Most applications cited at the beginning of Section 2
come with potentials which are not super-Gaussian,
but can easily be handled with EP. Moreover, in super-
Gaussian situations, EP seems to be substantially
more accurate than VB as approximation to Bayesian
inference [7, 12]. To construct an efficient EP solver,
we have to make use of decoupling in a similar fash-
ion, so to minimize the number of Gaussian variances
computations, while retaining provable convergence.

4 Speeding up Expectation
Propagation

A fast and convergent EP algorithm is obtained by
marrying the double loop algorithm of [15] with the
decoupling trick of [13]. Our strategy is to rewrite
the EP saddle point problem (structure minθ̃ maxθ)
by introducing decoupling variables z, u∗ (structure
minθ̃ maxθ minz minu∗), then reorder the optimiza-
tions in the computationally most favourable way
(structure minz minθ̃ minu∗ maxθ). First,

φ∩(θ, θ̃) (5)

= min
z,u∗

zTπ − g∗(z) +R(π, b,u∗)− 2η−1
∑

i
log Ẑi︸ ︷︷ ︸

=:φ∩(v,θ,θ̃), v=(z,u∗)

= min
z,u∗

σ−2‖y −Xu∗‖2 −
∑

i
ψi(s∗i, πi, bi)− g∗(z),

ψi := −(zi + s2∗i)πi + 2bis∗i + 2η−1 log Ẑi.
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Here, we overload notations φ and φ∩ to mean
both fully extended functions (e.g., φ∪(z,u∗,θ, θ̃))
and corresponding min or max marginals (e.g.,
φ∪(θ, θ̃) = minz minu∗ φ∪(z,u∗,θ, θ̃) or φ(z, θ̃) =
minu∗ maxθ φ(z,u∗,θ, θ̃)). With v := (z,u∗) and
φ∩(θ, θ̃) = minv φ∩(v,θ, θ̃), the IL problem of [15] is
maxθ minv φ∩. As shown in the Appendix, for fixed θ̃,
φ∩(v,θ, θ̃) is a closed proper concave-convex function
(convex in v for each θ, concave in θ for each v) [17].
Strong duality holds: maxθ minv φ∩ = minv maxθ φ∩,
so the IL problem is equivalent to

min
z

(
min
u∗

σ−2‖y −Xu∗‖2 −
∑

i
ψi(s∗i)

)
− g∗(z),

ψi(s∗i) := min
πi,bi

ψi(s∗i, πi, bi). (6)

This problem is jointly convex in z,u∗ (note that
ψi(s∗i) is concave as minimum of concave functions,
and the minimization over πi, bi is a jointly convex
problem). Solving the inner problem of (6) for fixed z,
θ̃ is a simple and very efficient penalized least squares
building block, denoted by (u∗,θ)← PLS(z, θ̃) in the
sequel. At its solution, u∗ = EQ[u|y], where Q(u|y)
is indexed by θ.

This means that the problem addressed in [15] can be
written in the form minz,θ̃ φ(z, θ̃). The significance is

the same as in Section 3: both φ(z, θ̃) and minθ̃ φ(z, θ̃)
(local minimum) for fixed z can be determined very ef-
ficiently. The dominating cost of computing Gaussian
variances is concentrated in the update of z. Two main
ideas lead to the algorithm we propose here. First, we
descend on φ(z, θ̃) rather than φ(θ̃) = minz φ(z, θ̃)
[15], saving on variance computations. One iteration
of our method determines z ← VarQ[s|y], then a lo-

cal minimum minθ̃ φ(z, θ̃) in a convergent way. Em-
pirically, such “optimistic” iterations seem to always
descend on φ(z, θ̃) until convergence to a stationary
point of φ(θ̃), but just as for the sequential or parallel
algorithm, we cannot establish this rigorously. At this
point, the second idea is to rely on the inner loop opti-
mization of [15] in order to enforce descent eventually.
We obtain a provably convergent algorithm by com-
bining optimistic steps minθ̃ φ(z, θ̃) for fixed z with
the rigorous but slow mechanism of [15]. As most, if
not all optimistic steps produce sufficient descent in
practice, provable convergence comes almost for free
(in contrast to [15], where it carries a large price tag).

We have maxθ φ(θ, θ̃) = minz maxθ φ(z,θ, θ̃) by
strong duality. First, φ(θ̃) ≤ φ(z, θ̃), so that φ(z, θ̃)
is lower bounded if φ(θ̃) is (which, like [15], we as-
sume). Next, as shown in the Appendix, we can very
efficiently minimize φ(z, θ̃) locally w.r.t. θ̃ by setting
ρ ← z, then iterating between (u∗,θ) ← PLS(z, θ̃)
and µ ← s∗ = Bu∗ = EQ[s|y]. In the sequel, we

denote this subalgorithm by θ̃′ ← updateTTil(z, θ̃).
While updateTTil may call PLS multiple times, it
does not require expensive Gaussian variance compu-
tations. An “optimistic” step of our algorithm updates
z′ ← VarQ[s|y], then θ̃′ ← updateTTil(z′, θ̃), at the
cost of one variance computation. Within the schema
(3), we update z, set ρ ← z, then attain expectation

consistency and µ
!
= EQ[s|y] = s∗ = Bu∗ for fixed

variances z, ρ.

Suppose we are at a point z, θ̃ (and θ), so that θ̃ is a
local minimum point of φ(z, θ̃). How can we descend:
φ(z′, θ̃′) < φ(z, θ̃) unless θ̃ is a stationary point of
φ(θ̃)? Let θ(1) = θ. The optimistic step would be
z(1) = VarQ[s|y], then θ̃′ ← updateTTil(z(1), θ̃). If

φ(z(1), θ̃′) is sufficiently smaller than φ(z, θ̃), we are
done with our descent step: z′ = z(1). Otherwise,
we run one iteration θ(1) → θ(2) of the inner op-
timization maxθ φ(θ, θ̃) of [15]. This requires vari-
ance computations, while z(1) can be reused (and z(2)

may already be computed). We set θ ← θ(2) and
attempt another optimistic step: z(2) = VarQ[s|y],

updateTTil(z(2), θ̃). Without intervening descent, we
would eventually obtain θ(k) = maxθ φ(θ, θ̃), thus
z(k) = argminz′ φ(z′, θ̃). If no descent happens from

there, θ̃ must be a stationary point of φ(θ̃) (see [15]
and Appendix).

Note that in most cases in practice, our algorithm does
not run into the inner optimization of [15] even once.
Yet the possibility of doing so is what makes our con-
vergence proof work. Algorithm 1 provides a schema.

A word of warning about the inner optimization
maxθ φ(θ, θ̃). From (6), it is tempting to iterate be-
tween z ← VarQ[s|y] and (u∗,θ) ← PLS(z, θ̃). How-
ever, this does not lead to descent and typically fails in
practice. As seen in Section 3, the update of z serves
to refit an upper bound, suitable for minimizing, but
not maximizing over θ. In our algorithm, this problem
is compensated by the minimization over θ̃: optimistic
steps seem to always descend.

4.1 Computational Details

In this section, we provide details for computational
primitives required in Algorithm 1. First, we show how
to efficiently compute PLS, i.e. solve the inner problem
in (6) for fixed z � 0. As all ψi(s∗i) are concave, this
is a convex penalized least squares problem, for which
many very efficient solvers are available. A slight tech-
nical challenge comes from the implicit definition of the
regularizer: evaluating ψi and its derivatives entails a
bivariate convex minimization.

In our experiments, we employ a standard gradient-
based Quasi-Newton optimizer. Suppose we are at u∗



     656

Matthias Seeger, Hannes Nickisch

Algorithm 1 Double loop EP algorithm.
The part shaded in grey was never accessed in our
experiments (see text for comments).

∆(a, b) := (b− a)/max{|a|, |b|, 10−9}.
Iterate over z and θ̃ ↔ (µ,ρ).
repeat
π(1) = π.
for k = 1, 2, . . . do
z(k) = VarQ[s|y].

(θ̃′,θ′)← updateTTil(z(k), θ̃).
if ∆(φ(z(k), θ̃′), φ(z, θ̃)) > ε then

Sufficient descent: z ← z(k), θ̃ ← θ̃′,
θ ← θ′. Leave loop over k.

else
Run iteration of maxθ φ(θ, θ̃):
θ(k) → θ(k+1). Set θ ← θ(k+1).
if |∆(φ(θ(k+1), θ̃), φ(θ(k), θ̃))| < ε then

Converged to stationary point θ̃: Termi-
nate algorithm.

end if
end if

end for
until Maximum number of iterations done

and have determined the maximizer θ = (π, b). If
f(u∗) = σ−2‖y −Xu∗‖2 −

∑
i ψi(s∗i), then ψ′i(s∗i) =

∂s∗iψi(s∗i, πi, bi) = 2(bi − πis∗i), so that ∇u∗f(u∗) =
2σ−2XT (Xu∗ − y) + 2BT (π ◦ s∗ − b), at the cost of
one matrix-vector multiplication (MVM) with XTX,
BT , B respectively (here, “◦” denotes the compo-
nentwise product). For the bivariate minimizations,
the derivatives are ∂biψi = 2(s∗i − EP̂i

[si]), ∂πiψi =

−(zi + s2∗i) + EP̂i
[s2i ]: we have to adjust bi, πi so that

mean and variance of P̂i coincides with s∗i and zi. De-
tails for the computation of P̂i are given in [18]. In our
implementation, we initialize the minimization by two
standard EP updates, then run Newton’s algorithm
(details are given in a longer paper). Even for large q,
these bivariate minimizations can often be done more
rapidly than MVMs with XTX. Moreover, they can
be solved in parallel on graphics hardware.

The inner optimization maxθ φ(θ, θ̃) of [15] can be
addressed by any convex solver. We employ Quasi-
Newton once more. The gradients are ∂bφ(π, b, θ̃) =
2((EP̂i

[si]) − (EQ[si])), ∂πφ(π, b, θ̃) = (EQ[s2i ]) −
(EP̂i

[s2i ]). This computation entails z = VarQ[s|y].
Note that with a standard solver, a sufficient increase
in φ(θ, θ̃) (for fixed θ̃) may require a number of
VarQ[s|y] computations. We are not aware of an ef-
fective way to decouple this problem as in Section 3.

sharp image: u       convolution filter: f       blurred image: y

VB posterior mean                               EP posterior mean

VB posterior standard dev                   EP posterior standard dev

Figure 1: Deconvolution setting and resulting
marginals (variances on u, not on s). u is 48 × 73,
pixels, the kernel f is 22 × 25 (n = 3504, q = 10512,
τa = τr = 15, σ2 = 10−5).

Gaussian Variances

Finally, how do we compute Gaussian variances z =
VarQ[s|y] = diag(BA−1BT )? This is by far the most
expensive computation in all EP algorithms discussed
here: our main contribution is a novel convergent al-
gorithm which requires few of these calls. In our ex-
periments, n is a few thousand, q ≈ 3n, and we can
maintain an n × n matrix in memory. We use the
identity

z = diag
(
BA−1

∑
i
δiδ

T
i B

)
=
∑

i
(BA−1δi)◦(Bδi),

where δi = (I{j=i})j . We compute the Cholesky de-
composition A = LLT , then A−1 from L, using LA-
PACK code, then accumulate z by 2n MVMs with B.

If n is larger than 104 or so, this approach is not work-
able anymore. If A is very sparse, it may possess a
sparse Cholesky decomposition which can be deter-
mined efficiently, in which case z is determined easily
[4]. However, for typical image reconstruction mod-
els, X is dense. For the VB relaxation of Section 3,
variances have been approximated by the Lanczos al-
gorithm [22, 13]. It is noted in [19] that variances are
strongly (but selectively) underestimated in this way,
and consequences for the VB double loop algorithm
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are established there: in a nutshell, while outcomes
are qualitatively different, the algorithm behaviour re-
mains reasonable. In contrast, if any of the EP algo-
rithms discussed in this paper are run with Lanczos
variance approximations, they exhibit highly erratic
behaviour. Parallel EP [4] rapidly diverges, our variant
ends in numerical breakdown. While we are lacking a
complete explanation for these failures at present, it
seems evident that the expectation consistency condi-
tions, whose structure is more complicated than the
simple VB bound, do not tolerate strong variance er-
rors. Our observation underlines the thesis of [19, 21].
Robustness to variance errors of the kind produced by
Lanczos becomes an important asset of variational in-
ference relaxations, at least if large scale inference is
to be addressed. The EP relaxation, as it stands, does
not seem to be robust in this sense. Explaining this
fact, and possibly finding a robust modification of the
expectation consistency conditions, remain important
topics for future research.

5 Experiments

5.1 Expectation Propagation vs. VB

In the following experiment, we compare approximate
inference outcomes of EP (Section 2) and VB (Sec-
tion 3), complementing previous studies [7, 12]. We
address the (non-blind) deconvolution problem for im-
age deblurring (details ommitted here are found in
[9]): u ∈ Rn represent the desired sharp image,
X = (diag f̃)Fn, where Fn is the n×n discrete Fourier
transform (DFT)5, f̃ = Fnf the spectrum of the blur
kernel f, and y = Fnỹ, ỹ the blurry image. Our model
setup is similar to what was previously used in [19]:
P (u) is a Laplace sparsity prior (see Section 1), the
transform B consists of an orthonormal wavelet trans-
form Ba and horizontal/vertical differences Br (“total
variation”), corresponding prior parameters are τa, τr.
Recall that b is fixed6 depending on the ti(·) in VB:
since they are even, b = 0. In contrast, they are free
variational parameters in EP. Posterior marginals, as
approximated by EP and VB, are shown in Figure 1,
while we compare parameters b, π in Figure 2.

The EP and VB approximations are substantially dif-
ferent. While the means are visually similar, EP’s
posterior variances are larger and show a more pro-
nounced structure. An explanation is offered by the
striking differences in final parameters b, π. Roughly,

5Strictly speaking, we encode C by R2, and Fn is the
“real-to-complex” DFT (closely related to the discrete co-

sine transform). Both f̃ and ỹ are Hermitian and can be
stored as Rn vectors.

6This is an inherent feature of the variational bound,
which would cease to be valid if b were optimized over.

πi scales the degree of penalization of si [18]. While
both EP and VB strongly penalize certain coefficients,
VB (in contrast to EP) seems to universally penalize
all si (all πVB,i > 10), thus may produce small vari-
ances simply by overpenalization. EP clearly makes
use of b, which allow to control the posterior mean
independent of the covariance: a mechanism not avail-
able for VB. It is important to note that our find-
ings are in line with those in [12], who found that VB
strongly underapproximated marginal variances (they
obtained the ground truth by expensive Monte Carlo
simulations). As noted in Section 1, it is often the pos-
terior uncertainty estimates (covariances) which give
Bayesian decision-making an edge over point estima-
tion approaches.

5.2 EP Timing Comparison

In this section, we provide timing comparisons between
EP algorithms discussed in this paper. Our setup is
much the same as in Section 5.1, but both the choice
of X and data is taken from [19]. The problem is
inference over images u ∈ Rn from “Cartesian MRI”
measurements (discrete Fourier coefficients) y ∈ Cm,
so that X = IJ,·Fn, where J is an index selecting
acquired coefficients (in fact, complete columns in DF
space (“phase encodes”) are sampled, according to a
design optimized for natural images). The prior is the
same as used above.
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Figure 2: Final parameters for deconvolution. Left: b
sorted (bVB = 0 by construction). Right: π.

In our first experiment, we use 64 × 64 images (n =
4096, q = 12160) and a design X sampling 16 columns
(m = 1024, 4 times undersampled). We compare the
sequential and parallel EP algorithms with our novel
fast (convergent) EP method. We chose not to in-
clude results for the double loop algorithm of [15], since
it runs even slower than the sequential method (see
comments in Section 4.1). Our results are averaged
over 20 different images (the y vectors are noisy ac-
quisitions, σ2 = 10−3, but the same across methods).
Moreover, τa = 0.04/σ, τr = 0.08/σ (same values as
in [19]). Timing runs were done on an otherwise un-
loaded standard desktop machine. For each run, we
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Figure 3: Timing comparison of EP algorithms for inference over greyscale images. Left: 64× 64 images. Right:
128× 128 image. Shown is relative distance to EP energy stationary point |(φ− φ∗)/φ∗| as function of running
time (left: mean, two std. over 20 different images).
Algorithms: sequential EP (Section 2; left only), parallel EP (Section 2), and fast EP (our method).

stored tupels (Tj , φj) at the end of each outer itera-
tion (for sequential EP, this is a sweep over all po-
tentials), Tj elapsed time (in secs), φj the EP energy
value attained. On a fixed image, all methods even-
tually attained the same energy value7 (say, φ∗), and
we show (Tj , |(φj − φ∗)/φ∗|). Results are presented in
Figure 3, left. First, the sequential algorithm is not
competitive with the others. At a time when the oth-
ers converged, it is roughly 1/4 through its first sweep
(while requiring about four sweeps to converge). Sec-
ond, the parallel and our fast EP algorithm converge
in about the same time. However, ours does so much
more smoothly and attains a near optimal solution
more quickly.

In a second experiment, we use a single 128×128 image
(n = 16384, q = 48896) and a design X sampling 36
columns (≈ 3.5 times undersampled). We compare the
parallel with our fast EP algorithm, since the sequen-
tial method is clearly infeasible at this scale. Here,
σ2 = 2 · 10−4, τa = 0.04/σ, τr = 0.08/σ. Results are
presented in Figure 3, right. On this larger problem,
our algorithm converges significantly faster.

Our method (fast EP in Figure 3) is provably con-
vergent, while parallel EP (and sequential EP) lacks
such a guarantee. Beyond, the main difference be-
tween fast and parallel EP lies in how thoroughly
variance computations are exploited. Fast EP spends
more effort between them, solving minθ̃ φ(z, θ̃) =

minθ̃ maxθ φ(θ, z, θ̃), while parallel EP simply does
a single EP update. Our method therefore incurs an
overhead, which motivates the results for 64 × 64 im-
ages. However, this overhead is modest (each step of

7While this is not guaranteed by present EP conver-
gence theory, it happened in all our cases.

PLS costs O(q+ n log n)), while the cost for variances,
at O(n(n2 + q)), grows very fast. The overhead for
fast EP pays off in the 128× 128 image example, due
to the fact that it requires about two variance com-
putations less than parallel EP to attain convergence.
Notably, the overhead cost can still be greatly reduced
by running different algorithms (see Section 6) or par-
allelizing the computations of the ψi(s∗i), which is not
done in our implementation.

6 Discussion

We proposed a novel, provably convergent algorithm
to solve the expectation propagation relaxation of
Bayesian inference. Based on the insight that the
most expensive computations by far in any variational
method concern Gaussian variances, we exploit a de-
coupling trick previously used in [23, 13] in order
to minimize the number of such computations. Our
method is at least an order of magnitude faster than
the commonly used sequential EP algorithm, and im-
proves on parallel EP [4], the previously fastest solver
we are aware of, both in running time and guaranteed
convergence. Moreover, it is in large parts similar to
recent algorithms for other relaxations [13], which al-
lows for transfer of efficient code. While the sequential
EP algorithm is most widely used today, our results in-
dicate that this is wasteful even for small and medium
size problems and should be avoided in the future.

There are numerous avenues for future work. First, for
problems of the general form discussed in Section 5,
the central penalized least squares primitive PLS could
be solved more efficiently by employing modern aug-
mented Lagrangian techniques, such as the ADMM al-
gorithm reviewed in [3] (today’s most efficient sparse
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deconvolution algorithms are based on this technique),
and by parallelizing the innermost bivariate optimiza-
tion problems leading to ψi(s∗i) and its derivatives.
Such measures would bring down the (already mod-
est) overhead of our technique, compared to parallel
EP. Moreover, we aim to resolve whether the “opti-
mistic steps” our algorithm is mainly based on, prov-
ably lead to descent by themselves (this would render
the fallback on [15], shaded in Algorithm 1, obsolete,
thus simplify the code).

Known EP algorithms (including ours presented here)
break down in the presence of substantial Gaussian
variance approximation errors, in contrast to algo-
rithms for simpler relaxations which behave robustly.
If Bayesian imaging applications, such as those in Sec-
tion 5, are to be run at realistic sizes, variance errors
cannot be avoided. The most important future direc-
tion is therefore to understand the reason for this non-
robustness of EP algorithms (or even the expectation-
consistency conditions as such) and to seek for alter-
natives which combine the accuracy of this relaxation
with good behaviour in the presence of typical Gaus-
sian variances approximation errors [19, 21].

Appendix

We start by reviewing the convergence proof for the
EP double loop algorithm of Section 2 [15], which is
somewhat simpler if φ is viewed as function of θ− and
θ̃, where θ = η−1(θ̃ − θ−). The saddle point prob-
lem is minθ̃ maxθ− φ∩(θ−, θ̃) + φ∪(θ̃). Now, φ∩(θ̃) =

maxθ− φ∩(θ−, θ̃) is concave. If θ− = argmaxφ(θ−, θ̃),

then φ(θ̃′) ≤ R(θ̃′) := φ∩(θ−, θ̃)−gT (θ̃′−θ̃)+φ∪(θ̃′),
where g = −∇θ̃φ∩(θ̃) = −∂θ̃φ∩(θ−, θ̃) [17, ch. 12].

Since θ = η−1(θ̃−θ−), we have that g = ∂θ̃2 logZQ =

η−1(EQ[s|y],− 1
2EQ[s2|y]). Now, φ∪(θ̃) = R(θ̃), and

R(θ̃′) is convex, its minimum defined by ∇θ̃′φ∪(θ̃′) =

g. Therefore, minimizing R(θ̃′) leads to φ(θ̃′) < φ(θ̃),
unless g = ∇θ̃φ∪(θ̃), thus ∇θ̃φ(θ̃) = 0. Since the

sequence φ(θ̃) is nonincreasing and lower bounded,
it must converge to a stationary point. To deter-
mine g, note that if u∗ is the minimizer in (6), then
EQ[s|y] = s∗ = Bu∗ and EQ[s2|y] = s2∗ + VarQ[s|y].

Moreover, since φ∪(θ̃′) is the sum of log partition
functions of N(µi, ρi), the equation ∇θ̃′φ∪(θ̃′) = g

is solved by µ′ = s∗, ρ
′ = VarQ[s|y].

Importantly, exactly the same argument estab-
lishes the convergence (to a stationary point) of
minθ̃′ φ(z, θ̃′) for any fixed z � 0, thus the compu-

tation of updateTTil in Section 4. We only have to
replace log |A(π)| by zTπ−g∗(z) (both are concave in
θ, therefore concave in (θ−, θ̃)), noting that the gra-
dient w.r.t. π changes from ∇π log |A| = VarQ[s|y]

to ∇π(zTπ − g∗(z)) = z. The only difference to the
algorithm of [15] just discussed is that ρ is updated to
z, not to VarQ[s|y], so that variances do not have to
be computed.

Next, switching back to the (θ, θ̃) parameterization for
the remainder of the paper, we establish the properties
of the inner loop problem maxθ φ∩(θ, θ̃) (Eqs. 5, 6).
In particular, we prove that strong duality holds. In
the sequel, we consider θ̃ fixed and drop it from the no-
tation. Recall that v = (z,u∗) and φ∩(v,θ) from (5).
We begin by extending φ∩(v,θ) for all values of z and
π [17]. First, g∗(z) = infπ z

Tπ−log |A(π)| is the con-
cave dual function of log |A(π)|. Since log |A| → ∞
whenever any πi → ∞ [21], then g∗(z) → −∞ as
any zi ↘ 0, and φ∩ := +∞ if any zi ≤ 0. Moreover,
φ∩ := −∞ if z � 0 and any πi < 0, and φ∩(v,π, b) :=
limπ̃↘π φ∩(v, π̃, b) for any π � 0. With these exten-
sions, it is easy to see that φ∩(v,θ) is a closed proper
concave-convex function [17, ch. 33]: convex in v for
each θ, concave in θ for each v. Note that we always
have that maxθ minv φ∩ ≤ minv maxθ φ∩ (weak dual-
ity). In order to establish equality (strong duality), we
show that φ∩(·,θ) do not have a common nonzero di-
rection of recession. Given that, strong duality follows
from [17, Theorem 37.3].

Theorem 1 Let φ(v,θ) be defined as in (5), and ex-
tended to a closed proper concave-convex function. If
θ = (π, b) is such that π � 0 and A(π) is positive
definite, then φ(·,θ) has no nonzero direction of reces-
sion. For any d 6= 0 and any v so that φ(v,θ) <∞:

lim
t→∞

φ(v + td,θ)− φ(v,θ)

t
> 0.

Proof Write F (v) = φ∩(v,θ) for brevity, and
pick any d 6= 0. d is a direction of recession iff
limt→∞(F (v+ td)−F (v))/t ≤ 0 for some v [17, The-
orem 8.5]. Pick any v = (z,u∗), z � 0, and let
d = (dz,du). If du 6= 0, then F (v + td) = Ω(t2)
by the positive definite quadratic part. If (dz)i < 0
for any i, then there is some t0 > 0 so that (z + tdz)i
is negative and F (v + td) = ∞ for all t ≥ t0. This
leaves us with du = 0, dz � 0, so that (dz)i > 0
for some i. Let π̃ = π − (πi/2)δi. By definition,
g∗(z + tdz) ≤ (z + tdz)

T π̃ − log |A(π̃)|, therefore

F (v + td)− F (v)

t
= dTz π +

g∗(z)− g∗(z + tdz)

t

≥dTz (π − π̃) +
g∗(z) + log |A(π̃)| − zT π̃

t

=πi(dz)i/2 +
g∗(z) + log |A(π̃)| − zT π̃

t
,

which is positive as t→∞.
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