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ABSTRACT

We propose a deep learning-based automatic coronary artery
centerline tree tracker (AuCoTrack) extending the work of
[1]. A multi-resolution 3D Convolutional Neural Network
(CNN) is employed to simultaneously predict movement di-
rections and detect bifurcations. Moreover, an automated
artery endpoint detector is used to prevent premature ter-
mination of the tracking process. On Coronary Computed
Tomography Angiography (CCTA or coronary CTA) scans
annotated by clinical experts, an average sensitivity of 87.1%
and clinically relevant overlap of 89.1% could be obtained.
In addition, the MICCAI 2008 Coronary Artery Tracking
Challenge (CAT08) training and test datasets were used to
benchmark the algorithm and to assess its generalization ca-
pabilities. On CAT08, an average overlap of 93.6% and a
clinically relevant overlap of 96.4% were achieved.

Index Terms— coronary artery centerline tracking, coro-
nary computed tomography angiography, neural networks

1. INTRODUCTION

Coronary artery disease (CAD) results in narrowing or block-
age of coronary arteries due to the build-up of cholesterol and
fatty deposits on the inner lining of the arterial wall. Such
constrictions can result in an inadequate supply of blood to
the heart muscles which can be fatal [2]. CAD is one on the
leading causes of death worldwide with 9.43 million deaths
reported in 2016 [3]. Coronary Angiography (CA) is an inter-
ventional procedure for CAD evaluation and treatment. The
severity and anatomical extent of CAD can be assessed non-
invasively by Coronary Computed Tomography Angiography
(CCTA) [4]. Manual reading of volumetric CCTA images
is a time-consuming task. Several advanced visualization
techniques relying on coronary artery centerlines have been
proven to facilitate the clinical workflow. In [5], approaches
for the assisted extraction of coronary artery centerlines are
categorized as: automatic requiring no user interaction at all
[6, 7, 8], semi-automatic requiring one seed point per artery
[9, 10, 11] or interactive requiring multiple user interactions
per artery [1, 5, 12]. Recently, [1] proposed a CNN-based
tracking scheme which iteratively predicts a movement direc-

tion and a step-size. As an interactive method, almost state-
of-the-art performance could be achieved. Typically, their
tracker required multiple seeds per artery in order to success-
fully extract the related centerline due to premature stopping.
The approach did not identify and handle bifurcations. In or-
der to render the algorithm automatic, an additional network
was used for seed point extraction.

Building on [1], we propose a multi-resolution CNN-
based algorithm to extract the entire coronary tree automat-
ically without user interaction. Our approach detects bifur-
cation points and properly integrates them into the tracking
process. In addition, the tracker is guided by another CNN in
order to prevent premature termination. The algorithm does
not rely on a segmentation network or any other automated
method to generate multiple seed points per artery. We show
that a simple automated detection of two seeds (one for each
coronary tree) suffices and that the proposed method is very
robust towards variations of those points. The ostium points
obtained from a deformable shape model of the heart [13] are
used to initialize the automatic coronary centerline extraction.

2. METHODOLOGY

Our automatic coronary artery tracker (AuCoTrack) sequen-
tially traces the coronary artery centerline while deciding
in each step forward in which direction to continue or if a
new vessel branches off (direction and bifurcation classifier,
DBC-Net). Simultaneously, the tracker monitors whether an
endpoint of an artery is reached and the tracking should be
stopped (stop classification network, STC-Net), see Figure 1.
A global priority queue containing active centerline points is
maintained which is initialized with points located at the left
and right ostium. Two or three points are added to the queue
at each step depending on the discovery of a bifurcation. We
avoid double visits by only following centerline points lo-
cated at a minimum distance from already found centerline
points. Processing can be done in parallel and the tracker
terminates once no more active centerline points are queued.

The direction of movement is found by a multi-class pre-
diction on the unit sphere whose surface is discretised into
1000 admissible directions (DBC-Net). We perform peak de-
tection in order to find two or three likely directions depend-
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Fig. 1. Overview of the AuCoTrack pipeline. At inference time (black arrows), multiresolution image patches P1 and P2

are fed into the two networks (yellow boxes) which results in a predicted direction on the unit ball (red dots) and the decision
whether to branch or stop (orange boxes) by the DBC-Net and the STC-Net, respectively. The stopping prediction is illustrated
in the gray box on the bottom left. The main tracking loop (light green box and black dotted arrow) is initialised with the
ostiae (blue dots) and results in the coronary tree (red lines). This tree can be mapped back to the underlying CCTA scan via a
stretched multiplanar reformat (sMPR). The network architecture of the DBC-Net and STC-Net is essentially an encoder with
parallel pathways at two different resolutions whose representations are combined (box top left). For training (red arrows),
patches along with their labels (bifurcation/vessel, stop/continue, direction encoded in binary vector) are used.

ing on the prediction of a bifurcation. We employ angle con-
straints to concentrate on meaningful configurations i.e. we
require that the (a) highest response (way back) is similar to
the previous direction (angle<60°), (b) second response (way
ahead) is different from the previous direction (angle>110°),
and (c) third response (branching) is different from the other
two (angle>40°). The third response is calculated only in the
case DBC-Net predicts the presence of a bifurcation. A fixed
step of 1 mm is taken in the predicted direction. The STC-Net
casts a binary vote on whether the coronary tracking contin-
ues. Both DBC-Net and STC-Net use the same network ar-
chitecture and operate locally on isotropic 3D patches P1, P2

of size 193 sampled at the two resolutions 0.5mm and 1.0mm.
Each of the two network branches has 7 convolutional layers
with kernels of size 3. Layers 3 and 4 use dilated convolutions
with the spacing of 2 and 4 between the kernel points respec-
tively .We use ReLu activation functions and batch normali-
sation. The result of the two branches is stacked and reduced
to the number of direction classes to form Layer LD. Layer
LD is then followed by two linear layers and a sigmoid acti-
vation for the patch type prediction. In case of DBC-Net, the
output of layer LD is followed by a softmax activation to get
the direction response.

We train and evaluate the two networks on a set of volu-
metric CCTA scans where the coronary artery tree – as anno-
tated by clinical experts – is represented by a set of centerlines
and their topological connections.

Binary cross entropy loss (BCEpatch) is used for the
patch type classification and categorical cross entropy loss
(CEdir) is used for the direction classification. The com-

bined loss function used to train the DBC-Net is L =
CEdir + λbBCEpatch. The weighting factor λb is fixed
at 5. For STC-Net, we employ only binary cross entropy
loss for stop patch type classification. For optimisation, we
use Adam with a learning rate of 0.0001 and a mini-batch
size of 64. We use several augmentation strategies during
training. We use random translations (along three axes) to
make the direction prediction more robust and rotational per-
turbations (along three axes) to introduce a certain degree
of rotational invariance. The training of the DBC/STC-Nets
requires carefully selected pairs of input patches and output
labels in terms of binary vectors encoding the directions, stop
and bifurcation indicators. The binary direction vectors are
obtained by placing a sphere with radius R = 1.5mm around
the centerline point and a subsequent nearest neighbor match-
ing of the vessel intersections with the sphere to the discrete
sphere tessellation. The number of intersections with the
sphere governs the flag in terms of bifurcation or stop patch.
Care was taken to oversample the bifurcations (by a factor of
10, see Section 3). The STC-Net was trained with patches
particularly selected beyond the end of the coronary artery,
see Figure 1 bottom left box.

3. RESULTS

We evaluate our AuCoTrack algorithm using the evaluation
metrics defined in [5]. Sensitivity was an additional metric
used on the training dataset.
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Fig. 2. Rendering of AuCoTrack result: (a) initialization at
ostiae, (b) initialization approximately at center of LAD and
RCA, (c) detected bifurcation overlayed on tracking result.
Green = correct, blue = init points, orange = bifurcations.

3.1. Training Dataset

The training dataset consists of 43 CCTA images which were
annotated by clinical experts. The number of annotated coro-
nary arteries per CCTA scan varies from 4 to 20. The mean
number of annotated coronary arteries per CCTA scan in this
dataset is 9. The training dataset contains 428 annotated coro-
nary arteries. Four-fold cross validation has been performed
in-order to evaluate the proposed algorithm.

Figure 2 (a) shows that the result of the automatic coro-
nary centerline extraction when the seed points for tracker ini-
tialization are placed at the left and right coronary ostium.
Figure 2 (b) shows the result when the initialization takes
place approximately at the center of LAD and RCA. The ex-
tracted coronary tree is very similar in both cases. The sensi-
tivity obtained when the seed points are placed at the ostiae is
88.9% and it is 87.3% when the seed points are placed in the
middle of LAD and RCA. This shows that the seed point can
essentially be placed anywhere on the coronary tree. Figure
2 (c) shows the bifurcation detection overlaid on the tracking
result. The orange marks on the coronary tree indicate that a
bifurcation has been detected at that centerline point by the
DBC-Net. This implies that three direction vectors will be
obtained to generate the candidate points.

An ablation study was performed and revealed the opti-
mal number of equispaced points on the direction sphere to be
1000 (using the spherical Fibonacci mapping). The number of
pathways in the multi-resolution DBC-Net and STC-Net was
fixed at 2 and the importance sampling parameter for the bi-
furcation class was found to be around 10 [14]. The patch size
of 19 is selected to balance fast processing and enough field-
of-view to cover average coronary artery radii. We obtained
a sensitivity of 87.1% ± 3.2%, a clinically relevant overlap
of 89.1%± 2.3% and a total overlap of 80.4%± 2.0%. The
accuracy inside was 0.34mm ± 0.0017mm which is below
the average voxel size of 0.402 × 0.43mm3.

3.2. CAT08 Training Dataset

The best model cross-validated on the training dataset was
used to extract centerlines on the CAT08 training datasets. Ta-
ble 1 shows that an average overlap (OV) of 93.4%, clinically
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Fig. 3. Clinically relevant overlap of all the arteries present in
the training dataset which occur more than 3 times evaluated
using cross validation. The occurrence count of each artery is
also shown in the plot.

No. Image Quality Calcium Score OV OF OT AI T
0 Moderate Moderate 94.2 77.7 95.1 0.4 55
1 Moderate Moderate 97.3 99.4 99.6 0.32 39
2 Good Low 98.3 99.7 100 0.31 43
3 Poor Moderate 86.3 63.0 89.1 0.40 41
4 Moderate Low 92.9 57.3 97.9 0.33 31
5 Poor Moderate 97.6 77.5 99.7 0.43 33
6 Good Low 96.7 87.2 99.6 0.30 36
7 Good Severe 83.9 49.1 86.3 0.38 48

Avg 93.4 76.5 95.9 0.36 41

Table 1. Results of our method on CAT08 training set which
was used as a test set. For each case, overlap (OV, in %), over-
lap until first error (OF, in %) and clinically relevant overlap
(OT, in %), average accuracy inside (AI, in mm), time taken
for coronary tree extraction (T, in s) along with subjective im-
age quality and calcium score is shown.

relevant overlap (OT) of 95.9% and overlap until first error
(OF) of 76.5% was obtained for these 8 CCTA scans. This
is a good test of generalization as the CCTA training dataset
and the CAT08 dataset used for testing are disjoint and were
acquired on scanners from different vendors.

3.3. CAT08 Test Dataset

We tested our algorithm on the CAT08 test set to benchmark
the performance of our algorithm against methods available
on the leaderboard of the CAT08 challenge. An average over-
lap of 93.6%± 5.2%, clinically relevant overlap of 96.4%±
4.1% , overlap until first error of 76.3% ± 22.7% and accu-
racy inside of 0.37mm± 0.05mm was obtained for these 24
CCTA scans. Cases 8, 10 and 27 required one additional seed
point due to failure in the detection of bifurcations for one of
the vessels. There are significant motion artifacts present in
case 26 which hamper the bifurcation detection. Hence, ad-
ditional seed points are provided for 3 of the vessels in this
CCTA image. Table 2 shows the comparison of the perfor-
mance of our algorithm (AuCoTrack) with the current auto-
matic coronary centerline extraction techniques and the state-
of-the-art CNN-based technique which requires at-least one
seed point per vessel for the centerline extraction. Overall,



Method OV OF OT AI T
AuCoTrack 93.6 76.3 96.4 0.37 42
Zheng et al. 93.5 76.5 95.6 0.20 60
Kitamura et al. 90.6 70.9 92.5 0.25 160
Yang et al. 93.7 74.2 95.9 0.30 120
Wolterink et al. (Interactive) 93.7 81.5 97.0 0.21 10

Table 2. We compare of our AuCoTrack pipeline with the
top automatic coronary artery centerline algorithms in terms
of overlap (OV, in %), overlap until first error (OF, in %) and
clinically relevant overlap (OT, in %), average accuracy inside
(AI, in mm) and time taken (T, in s) on the CAT08 date. The
interactive CNN-based tracker [1] is below the dashed line.

AuCoTrack achieves better clinically relevant overlap than
other automatic methods.

4. DISCUSSION

An automatic deep learning-based coronary artery centerline
tracker in CCTA images (AuCoTrack) was proposed. Our
framework was evaluated on 43 training CCTA images and
additional datasets available from the CAT08 challenge. On
the training dataset, AuCoTrack was evaluated using four-
fold cross validation. To test the generalisation of our ap-
proach, the model was applied to the CAT08 training set. For
further evaluation, we trained on a combined dataset contain-
ing the 43 training CCTA scans and the 8 CCTA scans from
the CAT08 training set. The resulting model was then applied
to the CAT08 test set and the extracted centerlines were sub-
mitted to the CAT08 challenge evaluation framework. Our
method obtained an accuracy inside of 0.37 mm, a overlap
of 93.6% and a clinically relevant overlap of 96.4% on aver-
age. Moreover, an overlap rank (OR) of 9.87 was achieved
outperforming the available top three automatic algorithms
on the CAT08 leaderboard [6] OR=10.43, [7] OR=13.81 and
[8] OR=10.55. We remark, that the state-of-the-art automatic
centerline extraction algorithm by [6] requires artery segmen-
tation masks as input for their model driven and data driven
approach. Their algorithm is trained on 108 training CCTA
scans. Similarly, a hybrid learning representation approach
that utilizes segmentation masks proposed by [15] was trained
on 100 CCTA scans.

An analysis of the individual CAT08 cases showed that
the performance is not strongly affected by the presence of
coronary calcium. For example, on the CAT08 test images
with low, moderate and severe calcium scores, an average
overlap of 92.9%, 94.0% and 94.2% was obtained.

The number of annotated centerlines in the training
dataset varied from 4 to 20. We observed a high clinically rel-
evant overlap independent of the number of annotated arteries
which demonstrates that our algorithm is capable of extract-
ing the entire (left or right) coronary tree from a single seed.
In order to address the problem of premature or late stopping,

we employ a voting mechanism combining a CNN-based
endpoint detection with a moving average entropy criterion.

AuCoTrack achieves a clinically relevant overlap of
96.4% on the CAT08 test set and 89.1% on the training
dataset. This difference is due to the fact that the CAT08 test
set contains annotations for only 4 coronaries and the training
dataset contains a variable number ranging from 4 to 20.

[1] achieved near state-of-the-art performance as an inter-
active method for the CAT08 dataset. A main constraint of
their method is that it requires one or more seed points per
vessel as no functionality for detecting and handling bifurca-
tions is available. Our method relies only on a single seed
point per coronary tree and bifurcations are properly handled
by the tracker. Successful vessel detection (OT > 50%) was
observed in 95% of the cases from the CAT08 dataset. The
ostium points required for initializing AuCoTrack were au-
tomatically obtained from a deformable shape model of the
heart [13]. Moreover, we observed that our algorithm is very
robust towards variations of those point, see Figure 2. In [1]
the tracker termination is guided by a moving average entropy
criteria which fails in case of a severe stenosis. Consequently,
their method may require several initialization points per ves-
sel in order to warm-start the tracking process.

A branch-aware coronary centerline extraction approach
based on Double Deep Q-Network proposed by [16] was
evaluated only on the CAT08 training dataset. This method
does not terminate on reaching the end of coronary artery but
terminates when the tracker goes out of the CCTA scan or
reaches an already visited point.

In future work, the accuracy of AuCoTrack can be fur-
ther boosted by an image-based recentering step of the ex-
tracted centerline control points. Furthermore, seed points
for potentially missed vessels can be obtained by a rough
pre-segmentation and could be integrated into the tracking
scheme by adding them directly into the priority queue. False
positive detections of vessels e.g. coronary veins or thoracic
arteries can be reduced by combing further anatomical prior
information with the local tracker. Initialisation at interme-
diate landmarks different from the ostiae is feasible and can
be further explored. The algorithm can be parallelized much
stronger in order to decrease runtime per case or to enable
intermediate assessment of a partial result. Also, multiscale
processing is a possible option for future work. The tracking
scheme is very generic and versatile and can potentially also
be used to track other 3D tubular structures such as airways,
rib centerlines and other blood vessels.

5. ACKNOWLEDGEMENTS

At the time of conducting this study, all authors were asso-
ciated with Philips Research. Zohaib Salahuddin holds an
EACEA Erasmus+ grant for masters in Medical Imaging and
Applications (MAIA).



6. COMPLIANCE WITH ETHICAL STANDARDS

This research was evaluated using human subject data made
available in open access. Ethical approval was not required as
confirmed by the license attached with the open access data.

7. REFERENCES

[1] Jelmer M. Wolterink, Robbert W. van Hamersvelt,
Max A. Viergever, Tim Leiner, and Ivana Išgum, “Coro-
nary artery centerline extraction in cardiac CT angiogra-
phy using a CNN-based orientation classifier,” Medical
Image Analysis, vol. 51, pp. 46 – 60, 2019.

[2] Arup Malakar, Debashree Choudhury, Binata Halder,
Prosenjit Paul, Dr Arif Uddin, and Supriyo Chakraborty,
“A review on coronary artery disease, its risk factors,
and therapeutics,” Journal of Cellular Physiology, vol.
234, 02 2019.

[3] WHO, “Global health estimates 2016: Deaths by cause,
age, sex, by country and by region, 2000-2016.,” 2018.
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