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Abstract. We propose a parametric lumped model (LM) for fast patient-
specific computational fluid dynamic simulations of blood flow in elongated
vessel networks to alleviate the computational burden of 3D finite element
(FE) simulations. We learn the coefficients balancing the local nonlinear
hydraulic effects from a training set of precomputed FE simulations. Our
LM yields pressure predictions accurate up to 2.76mmHg on 35 coronary
trees obtained from 32 coronary computed tomography angiograms. We
also observe a very good predictive performance on a validation set of 59
physiologicalmeasurements suggesting thatFE simulations can be replaced
by our LM. As LM predictions can be computed extremely fast, our ap-
proach paves the way to use a personalised interactive biophysical model
with realtime feedback in clinical practice.

Keywords: CCTA, coronary blood flow, lumped parameter biophysical
simulation, patient specific model.

1 Introduction

Fractional flow reserve (FFR) based on invasive coronary angiography is the gold-
standard for the assessment of the functional impact of a lesion, thus helping

Fig. 1. From image to simulation. The heart and its coronary arteries are (automati-
cally) segmented from a CTA scan yielding a tree representation of centerline points
and polygonal cross-sections (area encoded as color) used to conduct a patient-specific
blood flow simulation (FFR encoded as color).
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Fig. 2. Parametric nonlinear lumped model with n = 21 elements and m = 15 nodes
including ground. Based on the centerline representation, we set up a lumped model
with nonlinear resistances. The black boxes indicate inflow and outflow boundary condi-
tions. The white tubes representing tree segment transfer functions ϕ(f) are composed
of a series of linear and nonlinear resistance elements reflecting both the local vessel
geometry and hydraulic effects.

with clinical decisions for revascularization [14]. More recently, patient-specific
simulations of physiologic information from the anatomic CCTA data have been
proposed [7,16]. These computational fluid dynamics models are based on 3D fi-
nite element (FE) Navier-Stokes simulations, and are challenging both in terms
of computation and complexity. Computation alone can be accelerated by per-
forming them on GPUs, and complexity can be cut down by reduced order
models e.g. [3,6,5], reuse of precomputations or lattice Boltzmann [10] meth-
ods. Operating a simulation pipeline from image to prediction (see Figure 1) in
a failproof way is challenging as FE computations are sensitive to the quality
of the underlying mesh. Besides complexity reduction, simpler and more robust
models could be more appropriate for statistical reasons as many patient-specific
parameters are unknown in practice. Lumped models (LM) were first used as
systemic tree circulation model over 50 years ago [12] and later applied to the
coronary circulation [9]. While machine learning techniques already assessed the
sensitivity of a blood flow simulation to the segmentation [15], our goal is to use
a data driven approach to approximate the FE simulation with a parametric LM
that can be simulated extremely quickly. We determine the circumstances under
which such an approximation is appropriate and accurate and use the LM for
FFR predictions (Figure 1). The FFR value is defined as FFR = Pd/Pa ∈ [0, 1]
where Pd and Pa are the pressures distal and proximal to the stenosis averaged
over the cardiac cycle. Values above 0.8 are regarded as insignificant [17], and
repeated measurements have a standard deviation of σ = 0.025 [13] suggesting
a grey zone of 0.8± 2σ where clinical decisions require additional information.

2 Methodology

Most FE models use lumped boundary conditions such as Windkessels [20];
and their coupling is not always simple. As we are seeking a fast, simple and
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Fig. 3. Transfer functions and hydraulic effects. The geometry weights are obtained
from the vessel’s local cross-sectional area A, perimeter P , length �, radius r and cur-
vature κ. Blood density is denoted by ρ and viscosity by μ. Note that our cross-sections
are not circular. Local effect-specific transfer functions ϕc

e(f) are linearly combined to
yield local transfer functions ϕc(f). The local transfer functions ϕc(f) are summed
along the centerline c = 1..C to yield the tree segment transfer function ϕ(f).

parametrisable FE alternative, a lumped model is a natural choice. Using the
hydraulic analogy, we can identify volumetric flow rate f with electrical current
and pressure p with voltage allowing the interpretation of the coronary hydraulic
network as an electrical circuit. Resistors translate into (constricted) pipes, cur-
rent and voltage sources correspond to dynamic pumps. Starting from the tree
representation shown in Figure 1(a), we set up a circuit with two macroscopic
component types: nonlinear vessel segment resistors (white tubes) and bound-
ary conditions (black boxes). The boundary condition may be a pressure or
flow source driving the network; but any (lumped) boundary condition driving a
conventional FE model can be used here. The challenge is to translate the local
geometry of the vessel (radius, perimeter, cross-sectional area) into parameters
of the nonlinear resistor. In the following, we detail our translation process.

2.1 Transfer Functions and Hydraulic Effects

The hydraulic analogon to Ohm’s law is Poiseuille’s law stating that pressure
drop p and flow f through a thin elongated pipe are linearly related by the linear
transfer function pF so that p = ϕP (f) = wP f , where the resistance constant wP

depends on the length of the pipe and its cross-sectional area. Poiseuille friction
is only one hydraulic effect causing a pressure drop (or energy loss) in hydraulic
networks. Friction between blood and the vessel wall is caused by changes of
cross-sectional area, bifurcations as well as ovality and curvature of the vessel.

In our framework (see Figure 3), we use piecewise polynomial (invertable
and point symmetric) effect transfer functions ϕc

e(f) = wc
esign(f)|f |de to model

hydraulic effects with degree de and geometry-specific weights wc
e depending

solely on the local vessel geometry and material constants such as blood density
ρ and viscosity μ. If de = 1, we recover resistors and if de �= 1, we talk about
varistors. The functional form of the effect transfer functions were taken from the



436 H. Nickisch et al.

fluid-mechanic literature [18,11,1,19] where the individual hydraulic effects had
been experimentally and analytically studied in isolation. To combine multiple
interdependent effects e = 1..E, we assume local-effect superposition ϕc(f) =
∑E

e=1 αeϕ
c
e(f) with effect-specific coefficients αe. An illustration of local-effect

superposition and tree segment compression is given at the bottom of Figure
3. In total, we include 6 different hydraulic effects, where the first 5 have a
single coefficient each and the last one has three coefficients, yielding a total
of 8 coefficients. To compress the size of the hydraulic network, we can sum
up the transfer functions ϕc(f) along a tree segment’s centerline c = 1..C into
a single tree segment transfer function ϕ(f) =

∑C
c=1 ϕ

c(f). This is possible
because the flow through a tree segment is constant within the segment, as
shown at the bottom of Figure 2. The compression operation can be inverted
by expansion, once the simulation is done and the value of f is known. The
hydraulic effects are also location specific in the sense that the first 5 effects
are active everywhere except at bifurcations and the last one is active only at
bifurcations. This representation of the hydraulic network as an assembly of
transfer functions encoding hydraulic effects is now used to simulate blood flow.

2.2 Simulation

We make use of modified nodal analysis (MNA) [2] as employed in the popular
circuit simulator SPICE1. A circuit graph is composed of i = 1..m nodes and j =
1..n elements. Note that m < n since the circuit is connected. We wish to know
the pressures pj and flows fj through all elements, a problem with 2n unknowns.
In matrix-vector notation, we compute p, f ∈ R

n using circuit topology and
element properties using the Newton-Raphson method. Typically, a handful of
iterations are sufficient to solve the system up to machine precision which is due
to two stepsize control mechanisms: damping and line search updates.

Topology. To impose Kirchhoff’s laws (KL) on p and f , MNA uses the (sparse)
node-to-element incidence matrix A0 = [aij ]ij ∈ {±1, 0}m×n with aij = 1 if node
i is input to element j, aij = −1 if node i is output to element j and aij = 0
otherwise. Selecting a ground node and removing the corresponding row yields
the reduced incidence matrix A ∈ {±1, 0}(m−1)×n allowing to express the KLs
as Af = 0 (conservation law) and p = A�q (uniqueness law) where q ∈ R

m−1

contains the absolute pressures relative to the ground node. Hence, we are left
with n+m− 1 free variables in [f ;q] instead of 2n variables in [f ;p] and have
m − 1 additional constraints (one per node except ground) through Af = 0 so
that the remaining number of degrees of freedom is n.

Element Properties. As a next step, we deal with the n remaining degrees
of freedom by using the properties of the nR + nP + nF + nV = n elements.
We decompose 0 = Af = ARfR +AP fP +AF fF +AV fV into its constituents
(resistors, pressure sources, flow sources, varistors). Using fR = R−1pR, fF = f̂F ,
1 See http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html


Learning Patient-Specific Lumped Models 437

pP = p̂P , fV = ϕ−1(pV ), where R is the diagonal resistance matrix and f̂F , p̂P

are vectors containing the pressure/flow source parameters and ϕ−1 denotes the
nV inverse varistor transfer functions stacked into a vector, we obtain a system
of nx = m− 1 + nP nonlinear equations in the variables x = [q; fP ] ∈ R

nx

[
ARR

−1A�
R AP

A�
P 0

] [
q
fP

]

=

[−AF f̂F
p̂P

]

+

[−AV ϕ
−1(A�

V q)
0

]

. (1)

2.3 Parameter Learning

In the following, we detail how we adapt the effect coefficient vector α to min-
imise the quadratic distance between lumped model (LM) simulation results and
a training set of precomputed 3D finite element (FE) simulations. The training
set consists of flows fFE

i ∈ R
n through each of the n elements of the circuit

and absolute pressures qFE
i ∈ R

M at every cross-section of the coronary tree.
Note that m < M since the former refers to the number of nodes in the com-
pressed circuit as shown in Figure 2 and the latter to the number of nodes in
the expanded circuit. We use the flow from the FE simulation fFE

i to compute
the lumped model pressure drop p̂LM

i as a sum over the contributions from the
effects e = 1..E and set the coefficients α to make the absolute pressure of the
FE simulation qFE

i and the absolute pressure q̂LM
i = Cp̂LM

i as predicted by
the lumped model as similar as possible via nonnegative least squares [8]

α∗ = argmin
α�0

n∑

i=1

∥
∥qFE

i −Cp̂LM
i

∥
∥2 , p̂LM

i =

E∑

e=1

αeϕe(f
FE
i ). (2)

Here, the matrix C implements cumulative summation along the tree starting
from the root to convert relative pressures p into absolute pressures q. We use
the nonnegativity constraint on the coefficients to discourage non-physical model
behavior. Note that learning avoids running lumped simulations; we only employ
transfer functions.

3 Experiments

In the following, we describe two cascaded evaluation experiments; the first re-
porting on how well finite element (FE) simulations can be predicted by lumped
model (LM) simulations and the second explaining how well the LM approach
is suited for the prediction of physiological FFR measurements.

We trained a model with E = 8 coefficients α (see Figure 3) on a data set
collected from 32 patients and containing 35 coronary trees (either left or right)
using a 20-fold resampled equal split into training and test set to avoid overfit-
ting and obtain sensitivities (runtime ∼2min). We performed a total of 350 FE
simulations (runtime ∼20min each) on these datasets with 10 different biolog-
ically plausible inflows2 per coronary tree and mapped the simulated pressure
2 The 10 equispacedly sampled flow rates were automatically adjusted to yield physi-

cally valid pressure drops ranging from a few mmH to 100mmHg for the dataset.
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Δ 0.49± 0.09 0.78± 0.32 0.91± 0.37 1.21± 0.76 1.37± 0.52

Δ 1.47± 0.29 1.65± 0.37 2.41± 1.41 2.68± 1.39 4.74± 2.31

αP = 0.3± 0.14 αE = 2.52± 0.15 αO = 0.01± 0.00 αC = 1.05± 0.13 αB = 0.65± 0.05 αB0 = 0.04± 0.02 αB1 = 0.82± 0.05 αB2 = 1.04± 0.06

Fig. 4. Lumped model versus finite element simulations. We show LM simulated pres-
sure drop qaorta− q̂LM

i and FE simulated pressure drop qaorta−qFE
i for 10 exemplary

coronary trees and measure their deviation Δ by the mean absolute error and its
standard deviation averaged over the tree, 10 different flow rates and over the 20-fold
resampling. We also report values for the coefficients α along with standard error.

field and the velocity vector field on the centerline by averaging to generate the
FE training data set consisting of volumetric flow rate fFE

i and absolute pressure
qFE
i for every cross-section for the i = 1..350 runs. We used our own code for

surface meshing and relied on Netgen3 for volume meshing and OpenFOAM4 to
perform the calculations. From this dataset, leading to 105 terms in Equation 2,
we computed the coefficient values as reported at the bottom of Figure 4 whose
physical interpretation is hard. The predicted pressures in the 10 coronary trees
of Figure 4 show a very good visual agreement and yield an average absolute
deviation of 2.76mmHg±0.56mmHg.

We used another 41 patient data sets collected from multiple clinics with 59
FFR invasive measurements to benchmark our LM with the FE simulation on a
clinical prediction task. As boundary conditions, for both models and left/right

3 http://sourceforge.net/projects/netgen-mesher/
4 We use the FV solver simpleFoam from http://www.openfoam.com/.

http://sourceforge.net/projects/netgen-mesher/
http://www.openfoam.com/
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Fig. 5. Comparison of lumped model (LM, runtime <1s) and finite element (FE, run-
time 20min) FFR prediction with invasive ground truth (GT) measurements: We show
using a Bland-Altman plot for all pairs (a) GT/FE, (b) GT/LM and (c) FE/LM to
underpin the equivalence of LM and FE for this prediction task. The green and red
color correspond to correctly or incorrectly classified datapoints according to the clini-
cal threshold of 0.8. Gray is the intrinsic error margin. RMSE is the root mean squared
error and MAE denotes the mean absolute error. Further, we report the correlation co-
efficient (r), the accuracy (acc), sensitivity (sns) and specificity (spc) as well as positive
and negative predictive values (ppv,npv) for all pairs.

coronary trees independently, we employed an ostial pressure of p̂ = 100mmHg
and outlet resistances Ri scaling with the outlet diameter di according to Ri ∝
d
−1/3
i [4]. The result is summarised in Figure 5 showing similar performance for

both FE (a) and LM (b) and a very good agreement between the two methods
(c). The intrinsic error of 2σ = 0.05 for a repeated FFR measurement [13] puts
the dashed 2σ bands in Figures 5 (a)-(c) in perspective. The LM’s accuracy and
the deviation from the FE model are about the same.

4 Discussion and Conclusion

We have presented a steady-state parametric lumped model (LM) framework
simulating FFR values with accuracy comparable to finite element (FE) simu-
lations in a fraction of a second. The framework is extensible in at least three
ways: 1) It is possible to envisage transient simulations by including capacitors
or inductors. 2) Following this, one can directly use physiological measurements
as training data instead of precomputed FE simulations. 3) Finally, derivatives
w.r.t. transfer function parameters can be computed analytically by the implicit
function theorem which sets the stage for learning boundary conditions directly
from data. We have left open the question about the physical significance of the
learned coefficients because the underlying hydraulic effects are not independent
of each other. Instead, we prefer to regard the transfer functions of the hydraulic
effects merely as features in a linear machine learning model. Our computations
were based on CT images but other modalities such as interventional Xray can
be targeted. We demonstrated comparable accuracy for both LM and FE models
with deviations in the order of the ground truth variability; but even if LMs were
not accurate enough for some cases, their simplicity and speed makes them a
valuable interactive tool for segmentation guidance and quick estimation.
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