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Abstract. Whole organ scale patient specific biophysical simulations
contribute to the understanding, diagnosis and treatment of complex
diseases such as cardiac arrhythmia. However, many individual steps
are required to bridge the gap from an anatomical scan to a personal-
ized biophysical model. In biophysical modeling, differential equations
are solved on spatial domains represented by volumetric meshes of high
resolution and in model-based segmentation, surface or volume meshes
represent the patient’s geometry. We simplify the personalization pro-
cess by representing the simulation mesh and additional relevant struc-
tures relative to the segmentation mesh. Using a surface correspondence
preserving model-based segmentation algorithm, we facilitate the inte-
gration of anatomical information into biophysical models avoiding a
complex processing pipeline. In a simulation study, we observe surface
correspondence of up to 1.6 mm accuracy for the four heart chambers.
We compare isotropic and anisotropic atrial excitation propagation in a
personalized simulation.
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1 Introduction

Personalized simulations of the heart [18] require – in addition to patient anatomy
– structures such as the fast conduction tracts or muscle fibre directions hardly
visible in clinical images but key for excitation propagation. Given the pa-
tient’s heart anatomy, this information may be reconstructed by rule-based ap-
proaches [19,9] or by mapping a specific atlas to the patient [12]. Model-based
segmentation (MBS) [5,21] allows to directly link this information to the generic
model subsequently personalized by adaptation to an image. Good surface cor-
respondence after the adaptation process (as suggested by [8]) is a prerequisite.

We propose a generic interface for MBS, in which meshes carry additional
information such as fast conduction tracts or muscle fibre directions. Anatom-
ical personalization is achieved by representing relevant structures relative to
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Fig. 1. Interface for structure encoding. Left: Functional structures (green) are en-
coded by linear combinations (thin dotted lines) of vertices of the segmentation mesh
(blue) elements such as triangles or tetrahedra. Right: The mesh can be adapted to
patient anatomies and the encoded structures transform accordingly.

the (partly volumetric) segmentation mesh prior to adaptation, see Fig. 1 (bot-
tom left). During the adaptation of the segmentation mesh to image data, the
structures are deformed in the same way as the mesh, see Fig. 1 (bottom right).
The positions of the structures in an average anatomy can be obtained from his-
tological studies or specialized measurements beforehand. For fast conduction
tracts, this information is qualitative rather than quantitative [13] and cannot
be obtained from CT scans. Relative encoding or atlas-based approaches do not
capture variations across patients per se; these have to be modeled on top.

We investigate for the MBS approach presented in [5], to what extent vertex
positions of the generic model are mapped to corresponding positions. Because
a dense set of thousands of manual landmarks as ground truth can hardly be
defined with sufficient accuracy, we perform MBS of a patient’s dataset using
the heart shape derived from other individuals as starting point. As metric,
we compare the distance of corresponding vertices along the mesh surface. We
map muscle fibre directions and fast conduction tracts to the right atrium and
simulate atrial excitation propagation on a patient-specific mesh.

Previous approaches use a pipeline of segmentation, marching cubes meshing,
mesh decimation and atlas registration [16] or surface correspondence matching,
subsampling and thin plate spline warping [7,11]. We avoid these steps.

2 Encoding of Simulation Structures

Since the resolution of segmentation meshes is optimized for segmentation and
not for biophysical simulations, we cannot simply attach structures to mesh ver-
tices. In order to decouple mesh resolution from simulation structure positions,
we use local coordinates (relative to the segmentation mesh) α ∈ Rd

+ instead of
global coordinates. A segmentation meshM is composed of a set of vertices VM
and a set of elements EM. Every element e ∈ EM is a convex combination of a
small set of vertices {v1, ..,vd} ⊂ VM. Triangles and tetrahedra are very common
mesh elements. As the elements e are convex sets of points, we can represent any
of their interior points x ∈ e ⊂ R3 in terms of local coordinates x =

∑d
i=1 αivi
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Fig. 2. Four views on one out of the 37 segmented CT data sets.

where αi ≥ 0 and 1 =
∑d

i=1 αi. For a point x outside the mesh M we have two
options: On the one hand, its projection z = PM(x) = arg minz∈e∈EM ‖x − z‖
can be used (discarding small numerical deviations). On the other hand, we can
explicitly encode finite wall thickness in (or height above) a triangulated surface
by the scaled normal ñ = n/

√
‖n‖, n = (v2−v1)× (v3−v1) using the relation

x =
∑3

i=1 αivi +α4 · ñ. The factor
√
‖n‖ (unlike ‖n‖) rescales the wall thickness

linearly and not quadratically as the normal n would.
We represent directions (and not positions) of muscle fibers f ∈ R3 as vectors

starting at e’s center by f =
∑d

i=1(αi − 1
d )vi.

3 Analysis of Surface Correspondence

In the following, we empirically assess the surface correspondence achieved by the
segmentation algorithm [5] after different shape initialisations. First, we describe
our evaluation approach (3.1), next, we discuss the distance measures used (3.2)
and then, we present results on a dataset of 37 CT scans (example shown in
Fig. 2) acquired by a Philips iCT scanner (3.3 and 3.4). Finally, we describe a
simulation of excitation propagation in the human atria (3.5).

3.1 Approach

An assessment of the surface correspondence by a densely sampled set of ground
truth landmark points is practically impossible. Therefore, we follow an indirect
approach where we look at the positional error of the segmentation algorithm
itself instead of the anatomical variation in a group of patients.

The segmentation algorithm [5] applies a sequence of parametric, multi-affine
and deformable adaptation steps to an average initial shape balancing attraction
by the initial shape and the image features. The final nonrigid adaptation of the
mesh (as done in [5]) is driven by two energies: an internal energy provides the
mesh with stiffness along the surface and keeps the vertex distribution similar to
the mean mesh (surface curvature is not penalised) and an external energy pulls
the mesh along its normals towards edges with features similar to the ones in the
training set. There is no explicit mechanism to enforce surface correspondence
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Fig. 3. Surface correspondence is validated by adapting a mean mesh M to different
anatomies and using the resulting meshes Mj as mean meshes for a second adaptation
step whose outputs are compared to each other.

but correspondence is implicitly preserved because the external energy acts along
the surface only.

We vary the intial shape model and analyze the surface correspondence of
the resulting segmentations. The initial shapes cover the possible anatomical
variations in a group of patients, hence, we obtain a faithful measure of surface
correspondence that can be evaluated for every vertex of the segmentation mesh.
The shape variations in a group of patients tend to be overestimated by this
approach because the difference between initial shape and adapted mesh is bigger
than the difference between mean shape and adapted mesh on average.

We have a set of anatomical images I1, .., IN (see Fig. 3), a mean mesh M
and a segmentation algorithm S : (M, Ii) 7→ Mi using the mean mesh as a soft
geometrical constraint [5] and returning an adapted meshMi. Then we use the
adapted mesh Mj as new mean mesh, compute Mj

k ← S(Mj , Ik) and compare

the vertex distances between the meshesMk andMj
k adapted to the same image

Ik. Small distances along the surface and simultaneously a high segmentation
quality indicate good surface correspondence across different images I.

3.2 Distance Measures

There are several distance measures between topologically identical meshes M
and N with corresponding vertices v ∈ M, w ∈ N , see Fig. 4. Segmentation
quality is assessed by the mesh-to-mesh distance dM focusing on the differences
between the surfaces. Absolute deviations between corresponding vertices are
quantified by the Euclidean distance dE . Our validation experiments use dS to
measure the shift along the surface defined by the mesh.

3.3 Analysis of the Results

We composed a dataset of N = 37 CT scans acquired at the same heart phase
(diastasis/reduced filling) yielding very good segmentation quality, see Fig. 2.
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Fig. 4. Distance measures between corresponding vertices v and w of topologically
identical meshes M and N : Euclidean distance dE , mesh-to-mesh distance dM (after
projection) and surface distance dS .

“Very good” means that we require a mesh-to-mesh distance dM between seg-
mentations with different initial shapes below 5 mm for 99% of the vertices. We
obtained an average mesh-to-mesh distance of 0.6 mm. All j = 1..37 scans were
segmented and we used the results Mj as initial shapes for the final segmenta-

tion of other datasets as explained in section 3.1 yielding Mj
k. As a next step,

we computed surface distances dS betweenMj
k and the segmentationMk from

the initial shape to asess the degree of surface correspondence.

Error histograms for the vertices of the four heart chambers are shown in
Fig. 5. The average surface error over the four heart chambers amounts to
1.6 mm. Note that since dE , dM and dS form a triangle, a small mesh distance
dM implies dE ≈ dS . It can be seen that the surface error dS is smallest for
the left ventricle. Further, most of the vertices have an error of 1 mm since the
histograms have a peak around that value and there are some outliers (in the
order of a few percent) that show larger errors. Also, the histograms are very
consistent across different scans as indicated by the small error bars.

Looking at the spatial distribution of the errors (Fig. 6), we see outliers in
right atrial high curvature regions and in the lower part of the right ventricle.

3.4 Examples of Encoded Structures

We used our approach to encode muscle fiber directions in a volumetric left
ventricle mesh using a rule-based approach [19] needed for electrophysiological
and mechanical simulations, see Fig. 7 left. As shown by Figs. 5 (upper left) and
6, the surface correspondence error in the left ventricle is 1.5 mm on average.

Secondly, we encoded the sinus node (SN), Crista Terminalis (CT), pectinate
muscles (PM), Bachmann bundle (BB), and right atrial inferior isthmus (II) as
placed by the rule-based approach of [9] in the right atrium, see Fig. 7 left.

Average distance SN CT PM BB II

Euclidean distance dE [mm] 1.95 1.83 1.82 1.79 1.86
Mesh-to-mesh distance dM [mm] 0.50 0.51 0.48 0.56 0.48
Surface distance dS [mm] 1.95 1.84 1.83 1.79 1.87
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Fig. 5. Surface error histograms dS for N = 37 patients at the same heart phase
(diastasis). We show results for the four heart chambers: left/right ventricle/atrium.
We computed histograms for all N = 37 scans individually and visualize the mean
(green bar) and two times its standard error (red) capturing 95% of the variance.

Summarizing the table, we find the average surface correspondence error dS (see
Fig. 4) for all five structures to be below 2 mm.

3.5 Simulating Atrial Excitation Propagation

To demonstrate our pipeline from image to simulation, we encode three things
into the segmentation mesh: the location and fiber directions fx along the Crista
Terminalis (see Fig. 7) and the simulation mesh itself, which has a four times
higher resolution than the segmentation mesh. Excitation propagation is mod-
eled by the anisotropic eikonal equation 1/v2x = ∇τ>x Dx∇τx, which we solve by
a fast marching algorithm [17]. Here vx ∈ R+ is the local propagation velocity,
τx ∈ R+ is the resulting local activation time and the local tensor Dx ∈ R3×3

models the anisotropy caused by different conduction velocities along fiber di-
rections fx and orthogonal to them. In Fig. 8, we compare an isotropic and an
anisotropic simulation as done in [9]. We use a velocity of vx = 0.9m

s , and Dx = I
in the isotropic case (upper row) as well as Dx = 3

2 fxf
>
x + 1

2I in the anisotropic
case (lower row). This corresponds to a velocity of 2vx along the fibers and
vx/2 orthogonal to the fibers in the anisotropic case. One can clearly see that

6



Fig. 6. Spatial distribution of the surface errors dS averaged over a subgroup of N = 24
patients (segmented with the same mesh) at the same heart phase (diastasis).

the shape of the wavefront distinctively differs (as in [9]) and the personalized
anisotropy is important.

4 Discussion and Conclusion

In this paper we have presented a generic interface allowing to encode informa-
tion in mesh models used for model-based segmentation. Once the mesh models
are adapted to data, we obtain a personalised model for subsequent biophysical
simulations. Experiments performed for the segmentation approach of [5] show
that vertex positions of the generic model are mapped to corresponding positions
after adapting the model to N = 37 CT scans with an average overall accuracy
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Fig. 7. Encoded structures. Left Rule-based atrial fast conduction pathways [9], where
the colors of the fibers correspond to 1) Sinus Node, 2) Crista Terminalis, 3) Pectinate
Muscles, 4) Bachman Bundle, and 5) Inferior Isthmus. Right Rule-based muscle fiber
directions [19] encoded in volumetric left ventricular mesh.

Fig. 8. Excitation propagation in the human atria. Upper row isotropic and lower
row anisotropic propagation using the Crista Terminalis. Left column local activation
times τx, right columns membrane potential after 30, 60, and 90 ms.

of 1.6 mm for the heart chambers. These errors exclude anatomical variations in
position across patients and they are larger than the segmentation error assessed
by point-to-surface distances with an average of 0.55 mm. However, these errors
are much smaller than the typical size of, for example, fast conducting pathways
in the atria. We have demonstrated our pipeline from image data to biophysical
model in a atrial excitation propagation simulation. The resulting models can
be further used, for example to quantify the influence of myocardial structures
on the excitation propagation in the atria [1].

The segmentation approach may be further optimized to better reconstruct
corresponding positions after model adaptation, e.g., by locally adjusting the
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mesh resolution or locally modifying the internal energy. In contrast, it does
not handle variations of these structures between different individuals. However,
if the structures are visible in the image, their position may be refined on an
individual basis. This has been done similarly for detecting the coronary ostia on
the aortic bulbus [20] or modeling the Purkinje system [4,15] or for personalising
Purkinje terminals [2].

Beyond structure encoding, we also attached a mesh optimized for biophysical
simulations directly to the model (host mesh fitting e.g.[14,6]) and simulated
atrial excitation propagation. This is an alternative to registering a mesh for
biophysical simulations to a binary segmentation result [10]. We could also use
FieldML [3] to formalize the coupling of a simulation to a personalized anatomy.
Thus, the direct encoding of simulation structures provides a simple processing
pipeline paving the way for the integration into clinical workflows.
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2013) under grant agreement number 224495 (euHeart project).
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Lorenz, C.: Automatic segmentation of cardiac CTs – personalized atrial models
augmented with electrophysiological structures. In: Functional Imaging and Mod-
eling of the Heart (FIMH). LNCS, vol. 6666, pp. 80–87 (2011)

12. Peyrat, J.M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R.,
Ayache, N.: A computational framework for the statistical analysis of cardiac diffu-
sion tensors: Application to a small database of canine hearts. IEEE Transactions
on Medical Imaging 26(10), 1–15 (October 2007)

13. Sakamoto, S., Nitta, T., Ishii, Y., Miyagi, Y., Ohmori, H., Shimizu, K.: Interatrial
electrical connections: The precise location and preferential conduction. Journal of
Cardiovascular Electrophysiology 16(10), 1077–1086 (2005)

14. Schulte, R.F., Sands, G.B., Sachse, F.B., Dössel, O., Pullan, A.J.: Creation of a
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