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ABSTRACT

Automated and fast multi-label segmentation of medical images is challenging and clinically important. This
paper builds upon a supervised machine learning framework that uses training data sets with dense organ
annotations and vantage point trees to classify voxels in unseen images based on similarity of binary feature
vectors extracted from the data. Without explicit model knowledge, the algorithm is applicable to different
modalities and organs, and achieves high accuracy. The method is successfully tested on 70 abdominal CT
and 42 pelvic MR images. With respect to ground truth, an average Dice overlap score of 0.76 for the CT
segmentation of liver, spleen and kidneys is achieved. The mean score for the MR delineation of bladder, bones,
prostate and rectum is 0.65. Additionally, we benchmark several variations of the main components of the
method and reduce the computation time by up to 47% without significant loss of accuracy. The segmentation
results are — for a nearest neighbor method — surprisingly accurate, robust as well as data and time efficient.
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1. INTRODUCTION

Multi-label segmentation of 3D medical images from only a few training cases is of high importance to ap-
plications such as radiotherapy planning, because delineation of anatomical structures is challenging due to
anatomical variability of organs in shape, size and appearance among patients and fuzzy boundaries between
tissues. Manual classification of organs is time-consuming and subject to inter- and intra-observer variability.
All existing segmentation methods (e.g., model-based segmentation,! atlas-based segmentation?) are subject to
trade-offs in terms of accuracy, runtime, stability, generality, data efficiency, scalability and simplicity.

A recently proposed simple, generic, data and time efficient supervised machine learning method?® employs
a labeled training dataset to classify voxels in an unseen image. The segmentation algorithm does not rely on
explicit shape models and is applicable to different organs and modalities. As the method yields surprisingly
accurate results, we investigate in detail its three main components: binary context features, Vantage Point Tree
(VPT)*5 nearest neighbor and Random Walker (RW) regularization,® and evaluate alternatives to each of them.
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Figure 1: Nearest Neighbor Classification Pipeline
Feature vectors capture neighborhood information by comparing intensities within spatial proximity (dashed circles).
Training and testing features are extracted on regular grids by using LBP (green lines) and BRIEF (red lines) sampling
patterns. Classifying test features is done by finding a subset of most similar training samples (Nearest Neighbors). By
retrieving their labels, probability maps are obtained for each available class in the training data. The probabilities are

then interpolated across the image and spatially regularized. Finally, the labels with maximum likelihood are selected.




2. METHODS

Our supervised learning approach has two independent phases: training and testing as illustrated in Figure 1.
During training, the algorithm loads images with dense voxel annotations, paired with binary body contour
masks that indicate regions relevant for feature sampling. After reducing noise by pre-smoothing the images,
features are extracted on regular grids within the masks (1(a)). These vectors encode neighborhood information
by comparing intensity pairs in spatial proximity (dashed circles in 1(a)). An intensity difference at location
x is defined as A;(x) = p(z + y;) — p(x + z;) where p(z) is the pixel intensity. Using a sampling pattern
(yi,zi) i = l..n relative to a location x, an n-dimensional binary feature vector h(z) can be constructed by
hi(z) = sign(A;(z))/2 4+ 1/2. Using the sign, instead of the actual difference, and hence binary features, makes
the descriptors robust to monotonic gray-level changes and also enables fast matching by calculating the Hamming
distance dg (h,1) = ||h — I||1 between two vectors h and I.* A combination of two different feature descriptors is
implemented here. On the one hand, Local Binary Patterns (LBP)7 focus on relations around the central region
(by setting y; = 0) by comparing the intensity at « with intensities randomly selected in its spatial proximity
(green lines in 1(a)). On the other hand, Binary Robust Independent Elementary Features (BRIEF)® capture
interactions among neighboring structures by evaluating the intensities of the patches around (red lines in 1(a)).

In the test phase, classification of a previously unseen image requires the extraction of features with the same
combination of sampling patterns (1(b)). Assigning labels to these test features is then based on the subset of
training features with shortest distance to them, known as Nearest Neighbors (NNs). Finding these features
can be achieved by going through all possible solutions (Exhaustive Search), however, in high dimensional
classification, it would be inefficient. Instead, hierarchical tree structures can be exploited to optimize this
procedure. The Vantage Point Tree (VPT)?* has been shown to perform well in high dimensional nearest neighbor
search®? and is thus adopted here. VPTs are constructed by recursively splitting the data points using absolute
distances from randomly chosen centers. These centers, called vantage points, partition the data at each iteration
in such a way that approximately half of the points are within a distance threshold, and the other half are beyond
it. This results in a structure where data points in the same sub-branch also tend to be neighbors in space and
thus, searching for them is more efficient. Moreover, ensembles of VPTs increase accuracy without increasing
search time too much. The labels of multiple NNs are retrieved to create probability maps for each available
class in the training data (1(c)). These are then linearly interpolated across the whole image. Subsequently, the
labels are spatially regularized by a multi-label Random Walker.® The RW combines the computed probability
maps and the image intensities to obtain smooth segmentation. Finally, the labels with highest probabilities are
selected (1(d)).

The above presented framework (with h;(x) = sign(A;(z))/241/2, VPT classification and RW post process-
ing) following the suggestions of the initial paper? is referred to as the “Defaults” pipeline here. In the search
of higher accuracy and faster execution, for each of the main three steps two alternative solutions are proposed.
Each of these modifications adopts the standard default configuration and replaces only one component at a
time.

In the feature extraction phase, first a minimum intensity threshold 7 is introduced yielding h;(z) =
sign(A;(z) — 7)/2 + 1/2 (“Threshold”). Then experiments are also performed on the absolute intensity dif-
ferences between the sampling pairs where h;(z) = A;(z) (“Difference”). In the nearest neighbor search step,
the Vantage Point Tree is replaced by two other classification methods:? k-Means tree (“K-means”) and k-d
tree (“Kd tree”). All classifier methods are generic in the distance metric they use to match the feature vec-
tors. Therefore, when absolute intensity differences are used to construct the features, the standard L, norm
is calculated. In case of binary vectors, the Hamming distance is measured. Finally, the post processing (reg-
ularization) step is evaluated with a 3 x 3 x 3 median filter (“Median filter”). Additionally, we explore a new
strategy without spatial regularization (“No Regularization”) in which under-classification is compensated. In
this pipeline, background labels are only assigned if their probability is > 0.4. Otherwise, the label with second
highest probability is chosen.

*The Hamming distance can be computed efficiently with the use of the POPCNT instruction in x86_64 architectures.
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Figure 2: Confusion Matrices
The two confusion matrices summarize the average outcome of the CT and MR data cross validations. The approximate
amount of features compared to the organ with the least samples in each experiment is indicated below each class. The
strong diagonals of the confusion matrices give an insight that most of the times voxels are correctly classified. The
confusion with background can be explained by the prevalence of background training data. It can also be seen that the
algorithm occasionally confuses some organs with others, e.g., bladder and prostate.

3. EXPERIMENTS AND RESULTS
3.1 Analyzed Data and Parameters

The default pipeline, as well as the alternative solutions, are applied to images from two different modalities, each
with four different annotated organs. First, 70 abdominal CT images with liver, spleen, left and right kidneys
segmentation, of size 512 x 512 x 394 voxels (1.37 x 1.37 x 1.36 mm) are used for a 5-fold cross validation. Then,
42 male pelvic MRI T1 images (528 x 528 x 120 voxels, 1.05 x 1.05 x 2.5 mm) with dense bladder, bone, prostate
and rectum labels are used for a 7-fold cross validation.

For each of the pipelines, 1280 intensity comparisons are used to construct the feature vector, where 20-40%
employ a BRIEF sampling pattern and 40-60% - LBP. The displacement distribution of the randomly selected
points around the voxel of interest is normal with a standard deviation of [20/30; 80].T In the MR data, training
features are extracted from each 4*" voxel (see Figure 1) and in the CT from each 6" as the images are larger.
The classification is based on the 20 NNs of the feature vectors extracted from each 274 (MR)/4!" (CT) voxel
from the test images.

For each experiment 15 VP trees, containing the features, are either fully grown or terminated at a fixed leaf
size of 15.

3.2 Evaluation

The evaluation of the segmentation is based on the spatial overlap with the ground truth classification. A
summary of the outcomes from the cross validation procedures by the default pipeline can be seen in Figure 2.
The confusion matrices give an overview on whether (and if true, how often) certain classes get confused with
others. The high values on the diagonals in both cases indicate that voxels belonging to the organs are correctly
classified in most cases. It can be observed that organs are occasionally labeled as background some of the time
mainly due to the fact that background features dominate in the training data. Inter-organ confusion happens
in very few cases for the CT experiments and slightly more often in the MR scenario.

The accuracy is then measured independently for foreground/background classes except for the background
using the Dice overlap score D = 2TP/(2TP + FP + FN), see Figure 3, where TP are the correctly positively

tThe min and max values correspond to the std. dev. of the displacement distribution of the sampling points measured
by voxels. These are adapted for images of size 512 x 512 x 394. The pattern used for the MR data is adjusted to match
the size and the anisotropy of the voxels.
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Threshold 0.83 0.73 0.74 0.73 0.72 0.63 0.61 0.63
Difference 0.74 0.56 0.52 0.47 0.72 0.52 0.47 0.54
K-means 0.76 0.63 0.66 0.64 0.50 0.58 0.50 0.57
Kd tree 0.70 0.61 0.54 0.54 0.66 0.29 0.29 0.38
No regularization | 0.83 0.70 0.70 0.68 0.70 0.58 0.55 0.59
Median filter 0.83 0.72 0.72 0.69 0.72 0.61 0.58 0.62

Figure 3: Cross Validation Evaluation, Dice Score Distribution
The Dice score distribution of the default framework shows satisfactory results for the segmentation of liver, spleen,
kidneys (CT) and bladder (MR). The proposed alternative solutions do not improve the accuracy except in few cases.

classified voxels, FP are the falsely positively labeled and FN are the false negative ones. It can be observed
that the distribution of the Dice score differs among the different modalities and organs even when the same
framework is used. The relatively small spread of the results of the CT segmentation for liver and kidneys by
the “Default”, “Threshold”, “No regularization” and “Median filter” pipelines shows that the algorithm is stable
across these organs. In the MR classification of rectum and prostate, however, the wider spread indicates that
the method achieves good segmentation for some of the images, but it is not robust. Nevertheless, the default
choice of using binary features and VPTs performs best on average with a Dice of 0.76 for the CT images and
0.65 for the MR images. Some of the alternative solutions also deliver competitive results, e.g. “Threshold” and
“Median filter”.

3.3 Time Complexity

Runtime is another relevant factor when assessing the performance of the different pipelines, because time
sensitive scenarios often require fast segmentation. Each test naturally depends on the amount and size of the
data. The length of each step can also vary depending on the machine specification and computing power. Figure
4 gives an insight into the duration of the main steps of the segmentation for the given complete data set with the
default pipeline. It can be observed that the runtime for both MR and CT images is approximately 2 minutes,
but the intermediate steps differ between the two modalities. The CT images used here are larger as compared
to the MR data, but less feature vectors are extracted from them (CT: training every 6", testing every 4*
voxel; MR: training every 4th, testing every 2"¢). Therefore, extracting the features as well as constructing and



Features Extraction
VPT Construction
VPT Querying

NN Labeling
Labels Upsampling
RW Regularization

17% 5%

1o

S 14% 28% 23% 6% 27%

0.0 0.5 1.0 1.5 2.0
Time (min)

Figure 4: Default Pipeline Segmentation Duration

The duration of the segmentation phases is dependent on the size of the data. The CT images used here have more
voxels, but less features are extracted from them. Hence, construction and querying of VPTs is faster, but up-sampling
the probability maps and their spatial regularization takes longer time.

querying the VPTs is relatively fast. Due to the large number of voxels, however, the up-sampling of the label
probability maps and especially the regularization are more time-consuming. The RW takes approximately 47%
of the CT and up to 27% of the MR classification duration and yet it does not significantly improve the accuracy
compared to median filtering. The results in 3 show that omitting the regularization and compensating the under-
segmentation reduces the Dice score by no more than 6% (on average). Hence, using the “No Regularization”
pipeline would be more suitable when fast coarse classification is of interest. Nonetheless, both frameworks are
feasible using a standard computer and hence, meet the constraints of a typical clinical setting.

3.4 Segmentation Visualization

The results achieved by the default segmentation method for one CT and one MR image can be seen in Figure
5. For each organ in both modalities, sagittal, axial and coronal views are given. It can be observed that most of
the voxels are correctly classified (green in 5). Occasionally some background voxels are labeled as organs (red
in 5). Under-segmentation is rare (blue in 5). Additionally, Figure 6 illustrates two outlier cases (1 CT and 1
MR) where the segmentation has relatively lower Dice scores. The segmentation method successfully identifies
the locations of all organs. However, as the organs often vary in shape, size and appearance, the algorithm has
difficulties in finding the exact boundaries.

4. CONCLUSIONS

We evaluate a fully automatic multi-organ segmentation method on a large dataset and benchmark variations
of it. The default VPT framework with RW regularization is able to classify binary features extracted from
different imaging modalities with high accuracy. The hypothesis that binarization yields higher robustness
against contrast variations is confirmed when comparing the results of “Difference”. Alternative solutions to the
feature construction, the classification method and post processing do not result in higher precision. However,
an alternative post processing technique reduces computation time by up to 47% which underlines the clinical
relevance of this generic approach.
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Figure 5: Ground Truth vs. Algorithm Segmentation

Segmentation by the default pipeline on CT and MR images and Dice score per organ. Outcomes of the classification are
indicated by colors: TP in green, FP in red, FN in blue. For each organ in both modalities, sagittal, axial and coronal
views are given.
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Figure 6: Ground Truth vs. Algorithm Segmentation (Outlier)

Segmentation by the default pipeline on CT and MR images and Dice score per organ. Outcomes of the classification are
indicated by colors: TP in green, FP in red, FN in blue. For each organ, sagittal, axial and coronal views are given.
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