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Abstract
Gaussian processes (GPs) are a flexible class of
methods with state of the art performance on
spatial statistics applications. However, GPs re-
quire O(n3) computations and O(n2) storage,
and popular GP kernels are typically limited to
smoothing and interpolation. To address these
difficulties, Kronecker methods have been used
to exploit structure in the GP covariance ma-
trix for scalability, while allowing for expres-
sive kernel learning. However, Kronecker meth-
ods have been confined to Gaussian likelihoods.
We propose new scalable Kronecker methods
for Gaussian processes with non-Gaussian likeli-
hoods, using a Laplace approximation which in-
volves linear conjugate gradients for inference,
and a lower bound on the GP marginal likelihood
for kernel learning. Our approach has near lin-
ear scaling, requiringO(Dn

D+1
D ) operations and

O(Dn
2
D ) storage, for n training data-points on a

denseD > 1 dimensional grid. Moreover, we in-
troduce a log Gaussian Cox process, with highly
expressive kernels, for modelling spatiotemporal
count processes, and apply it to a point pattern
(n = 233,088) of a decade of crime events in
Chicago. Using our model, we discover spatially
varying multiscale seasonal trends and produce
highly accurate long-range local area forecasts.

1. Introduction
Gaussian processes were pioneered in geostatistics (Math-
eron, 1963) where they are commonly known as kriging
models (Ripley, 1981). O’Hagan (1978) instigated their
general use, pursuing applications to optimal design, curve
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fitting, and time series. GPs remain a mainstay of spa-
tial and spatiotemporal statistics (Diggle & Ribeiro, 2007;
Cressie & Wikle, 2011) and have gained widespread popu-
larity in machine learning (Williams & Rasmussen, 2006).

Unfortunately, the O(n3) computations and O(n2) storage
requirements for GPs has greatly limited their applicability.
Kronecker methods have recently been introduced (Saatçi,
2011) to scale up Gaussian processes, with no losses in
predictive accuracy. While these methods require that the
input space (predictors) are on a multidimensional lattice,
this structure is present in many spatiotemporal statistics
applications, where predictors are often indexed by a grid
of spatial coordinates and time.

A variety of approximate approaches have been proposed
for scalable GP inference, including inducing point meth-
ods (Quiñonero-Candela & Rasmussen, 2005), and finite
basis representations through random projections (Lázaro-
Gredilla et al., 2010; Yang et al., 2014). Groot et al. (2014)
use Kronecker inference and low-rank approximations for
non-Gaussian likelihoods, focusing on classification only
and scaling to moderately sized datasets (n < 7000). We
perform a detailed comparison and demonstrate that our
new approach far outperforms theirs in terms of scalabil-
ity and accuracy.

Our contributions are:

• We extend Kronecker methods for non-Gaussian like-
lihoods, enabling applications outside of standard re-
gression settings. We use a Laplace approximation on
the likelihood, with linear conjugate gradients for in-
ference, and a lower bound on the GP marginal like-
lihood, for kernel learning. Moreover, our methodol-
ogy extends to incomplete grids – caused by, for ex-
ample, water or political boundaries. The Laplace ap-
proximation is a natural choice for Kronecker meth-
ods, whereas alternatives such as EP or VB would re-
quire another layer of approximation as the required
marginal variance approximations are not tractable for
large n: EP has sequential local updates, one per dat-
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apoint, while VB can be understood as a sequence of
marginal variance reweighted Laplace approximations
with a smoothed effective likelihood, i.e., computing
the marginal variances is required in any case.

• We develop a spatiotemporal log Gaussian Cox pro-
cess (LGCP), with highly expressive spectral mixture
covariance kernels (Wilson & Adams, 2013). Our
model is capable of learning intricate structure on
large datasets, allowing us to derive new scientific in-
sights from the data, and to perform long range extrap-
olations. This is the first use of structure learning with
expressive kernels, enabling long-range forecasts, for
GPs with non-Gaussian likelihoods.

• We apply our model to a challenging public policy
problem, that of small area crime rate forecasting. Us-
ing a decade of publicly available date-stamped and
geocoded crime reports we fit the n = 233,088 point
pattern of crimes coded as “assault” using the first 8
years of data to train our model, and forecast 2 years
into the future. We produce very fine-grained spa-
tiotemporal forecasts, which we evaluate in a fully
probabilistic framework. Our forecasts far outperform
predictions made using popular alternatives. We in-
terpret the learned structure to gain insights into the
fundamental properties of these data.

We begin with a review of Gaussian processes in section 2
and then present the log-Gaussian Cox Process model for
spatiotemporal point processes which we wish to fit in sec-
tion 3. In section 4 we describe the standard Laplace ap-
proximation approach to GP inference and hyperparameter
learning. In sections 5 and 6 we present our new Kronecker
methods for scalable inference, hyperparameter learning,
and missing observations. We detail our experiments on
synthetic and real data in section 8.

2. Gaussian processes
We assume a basic familiarity with Gaussian processes
(GPs) (Williams & Rasmussen, 2006). We are given
a dataset D = (y, X) of targets (responses), y =
{y1, . . . , yn}, indexed by predictors (inputs) X =
{x1, . . . , xn}. The targets could be real-valued, categori-
cal, counts, etc., and the predictors, for example, could be
spatial locations, times, and other covariates. We assume
the relationship between the predictors and targets is deter-
mined by a latent Gaussian process f(x) ∼ GP(m, kθ),
and an observation model p(y(x)|f(x)). The GP is defined
by its mean m and covariance function kθ (parametrized
by θ), such that any collection of function values f =
f(X) ∼ N (µ,K) has a Gaussian distribution with mean
µi = m(xi) and covariance matrix Kij = k(xi, xj |θ).

Our goal is to infer the predictive distribution p(f∗|y, x∗),
for any test input x∗, which allows us to sample from

p(y∗|y, x∗) via the observation model p(y(x)|f(x)):

p(f∗|D, x∗,θ) =

∫
p(f∗|X, x∗,f ,θ)p(f |D,θ)df (1)

We also wish to infer the marginal likelihood of the data,
conditioned only on kernel hyperparameters θ,

p(y|θ) =

∫
p(y|f)p(f |θ)df , (2)

so that we can optimize this likelihood, or use it to infer
p(θ|y), for kernel learning. Having an expression for the
marginal likelihood is particularly useful for kernel learn-
ing, because it allows one to bypass the extremely strong
dependencies between f and θ in trying to learn θ. Unfor-
tunately, for all but the Gaussian likelihood (used for stan-
dard GP regression), where p(y|f) = N (f ,Σ), equations
(1) and (2) are analytically intractable.

3. A motivating example: Cox Processes
In this section, we describe the log-Gaussian Cox Process
(LGCP), a particularly important spatial statistics model for
point process data (Møller et al., 1998; Diggle et al., 2013).
While the LGCP is a general model, its use has been lim-
ited to small datasets. We focus on this model because
of its importance in spatial statistics and its suitability for
the Kronecker methods we propose. Note, however, that
our methods are generally applicable to Gaussian process
models with non-Gaussian likelihoods, such as Gaussian
process classification.

An LGCP is a Cox process (inhomogeneous Poisson pro-
cess with stochastic intensity) driven by a latent log inten-
sity function log λ := f with a GP prior:

f(s) ∼ GP(µ(s), kθ(·, ·)) . (3)

Conditional on a realization of the intensity function, the
number of points in a given space-time region S is:

yS |λ(s) ∼ Poisson
(∫

s∈S
λ(s) ds

)
.

Following a common approach in spatial statistics, we in-
troduce a “computational grid” (Diggle et al., 2013) on the
observation window and represent each grid cell with its
centroid, s1, . . . , sn. Let the count of points inside grid
cell i be yi. Thus our model is a Gaussian process with a
Poisson observation model and exponential link function:

yi|f(si) ∼ Poisson (exp[f(si)]) . (4)

4. Laplace Approximation
The Laplace approximation models the posterior distribu-
tion of the Gaussian process, p(f |y, X), as a Gaussian dis-
tribution, to provide analytic expressions for the predictive
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distribution and marginal likelihood in Eqs. (1) and (2). We
follow the exposition in Williams & Rasmussen (2006).

Laplace’s method uses a second order Taylor expansion to
approximate the unnormalized log posterior,

Ψ(f) := log p(f |D)
const
= log p(y|f) + log p(f |X) , (5)

centered at the f̂ which maximizes Ψ(f). We have:

∇Ψ(f) = ∇ log p(y|f)−K−1(f − µ) (6)

∇∇Ψ(f) = ∇∇ log p(y|f)−K−1 (7)

W := −∇∇ log p(y|f) is an n × n diagonal matrix since
the likelihood p(y|f) factorizes as

∏
i p(yi|fi).

We use Newton’s method to find f̂ . The Newton update is

f new ← f old − (∇∇Ψ)−1∇Ψ . (8)

Given f̂ , the Laplace approximation for p(f |y) is given by
a Gaussian:

p(f |y) ≈ N (f |f̂ , (K−1 +W )−1) . (9)

Substituting the approximate posterior of Eq. (9) into
Eq. (1), and defining A = W−1 +K, we find the approxi-
mate predictive distribution is

p(f∗|D, x∗,θ) ≈ N (k>∗ ∇ log p(y|f̂), k∗∗ − k>∗ A−1k∗)
(10)

where k∗=[k(x∗, x1), .., k(x∗, xn)]> and k∗∗=k(x∗, x∗).

This completes what we refer to as inference with a Gaus-
sian process. We have so far assumed a fixed set of hyper-
parameters θ. For learning, we train these hyperparameters
through marginal likelihood optimization. The Laplace ap-
proximate marginal likelihood is:

log p(y|X,θ) = log

∫
exp[Ψ(f)]df (11)

≈ log p(y|f̂)− 1

2
α>K−1α− 1

2
log |I +KW | , (12)

where α := K−1(f̂ − µ). Standard practice is to find the
θ̂ which maximizes the approximate marginal likelihood
of Eq. (12), and then condition on θ̂ in Eq. (10) to perform
inference and make predictions.

Both learning and inference requires solving linear systems
involving matrices of size n × n. This takes O(n3) time
and O(n2) storage, with e.g. the Cholesky decomposition
(Williams & Rasmussen, 2006).

5. Kronecker Methods
Kronecker approaches have recently been exploited in var-
ious Gaussian process settings, e.g., Bonilla et al. (2007);

Finley et al. (2009); Stegle et al. (2011). We provide a
brief review of Kronecker methods for efficient GPs, fol-
lowing Saatçi (2011), Gilboa et al. (2013), and Wilson et al.
(2014). In the next section we extend these methods to non-
Gaussian likelihoods.

The key assumptions enabling the use of Kronecker meth-
ods is that the GP kernel is formed by a product of ker-
nels across input dimensions and the inputs are on a Carte-
sian product grid (multidimensional lattice), x ∈ X =
X1 × · · · × XD. (This grid need not be regular and the Xi
can have different cardinalities.) Given these two assump-
tions, the covariance matrix K decomposes as a Kronecker
product of covariance matrices K = K1 ⊗ · · · ⊗KD.

Saatçi (2011) shows that the computationally expensive
steps in GP regression can be made much faster assuming
Kronecker structure. Inference and learning require solv-
ing linear systems K−1v and computing log-determinants
log |K|. Typical approaches requireO(n3) time andO(n2)
space. Using Kronecker methods, these operations only re-
quire O(Dn

D+1
D ) operations and O(Dn

2
D ) storage, for n

datapoints and D input dimensions. In Section A.1, we re-
view the key Kronecker algebra results, including efficient
matrix-vector multiplication and eigendecomposition.

Wilson et al. (2014) extend these efficient methods to par-
tial grids, by augmenting the data with imaginary obser-
vations to form a complete grid, and then ignoring the ef-
fects of the imaginary observations using a special noise
model in combination with linear conjugate gradients. Par-
tial grids are common, and can be caused by, e.g., govern-
ment boundaries, which interfere with grid structure.

6. Kronecker Methods for Non-Gaussian
Likelihoods

We introduce our efficient Kronecker approach for Gaus-
sian processes inference (section 6.2) and learning (section
6.3) with non-Gaussian likelihoods, after introducing some
notation and transformations for numerical conditioning.

6.1. Numerical Conditioning
For numerical stability, we use the following transforma-
tions: B = I + W 1/2KW 1/2, Q = W 1/2B−1W 1/2,
b = W (f − µ) +∇ log p(y|f), and a = b−QKb. Now
(K−1 + W )−1 = K − KQK, from the matrix inversion
lemma, and the Newton update in Eq. (8) becomes:

f new ← Ka (13)

The predictive distribution in Eq. (10) becomes:

p(f∗|D, x∗,θ) ≈ N (k>∗ ∇ log p(y|f̂), k∗∗ − k>∗ Qk∗)
(14)

6.2. Inference
Existing Kronecker methods do not apply to non-Gaussian
likelihoods because we are no longer working solely with
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the covariance matrix K. We use linear conjugate gradi-
ents (LCG), an iterative method for solving linear systems
which only involves matrix-vector products, to efficiently
calculate the key steps of the inference algorithm in Section
4. Our full algorithm is shown in Algorithm 1. The Newton
update step in Eq. (13) requires costly matrix-vector multi-
plications and inversions of B = (I +W 1/2KW 1/2). We
replace Eq. (13) with the following two steps:

Bz = W−1/2b (15)

αnew = W 1/2z (16)

For numerical stability, we follow (Williams & Ras-
mussen, 2006, p. 46) and apply our Newton updates to α
rather than f . The variable b = W (f −µ) +∇ log p(y|f)
can still be calculated efficiently because W is diagonal,
and Eq. (15) can be solved efficiently for z using LCG be-
cause matrix-vector products withB are efficient due to the
diagonal and Kronecker structure.

The number of iterations required for convergence of LCG
to within machine precision is in practice independent of n
(the number of columns in B), and depends on the condi-
tioning of B. Solving Eq. (15) requires O(Dn

D+1
D ) opera-

tions andO(Dn
2
D ) storage, which is the cost of matrix vec-

tor products with the Kronecker matrix K. No modifica-
tions are necessary to calculate the predictive distribution in
Eq. (14). We can thus efficiently evaluate the approximate
predictive distribution in O(mDn

D+1
D ) where m � n is

the number of Newton steps. For partial grids, we apply the
extensions in Wilson et al. (2014) without modification.

6.3. Hyperparameter learning
To evaluate the marginal likelihood in Eq. (12), we must
compute log |I + KW |. Fiedler (1971) showed that for
Hermitian positive semidefinite matrices U and V :∏

i

(ui + vi) ≤ |U + V | ≤
∏
i

(ui + vn−i+1) (17)

where u1 ≤ u2 ≤ . . . ≤ un and v1 ≤ . . . ≤ vn are the
eigenvalues of U and V . To apply this bound let e1 ≤
e2 ≤ . . . ≤ en be the eigenvalues of K and w1 ≤ w2 ≤
. . . ≤ wn be the eigenvalues of W . Then we use that the
eigenvalues of W−1 are w−1n ≤ w−1n−1 ≤ . . . ≤ w

−1
1 :

log |I +KW | = log(|K +W−1||W |)
≤ log

∏
i

(ei + w−1i )
∏
i

wi (18)

=
∑
i

log(1 + eiwi)

Putting this together with Equation (12) we have our bound
on the Laplace approximation’s log-marginal likelihood:

log p(y|X,θ) ≥ log p(y|f̂)−1

2
α̂>K−1α̂−1

2

∑
i

log(1+eiwi)

(19)

We chose the lower bound as we use gradient ascent for
our learning approach to find the best θ̂ to maximize the
approximate marginal likelihood. We approximately cal-
culate the necessary gradients using finite differences.

6.4. Evaluation of our Learning Approach
The bound we used on the Laplace approximation’s log-
marginal likelihood has been shown to be the closest pos-
sible bound on Hermitian psd matrices |U + V | in terms of
the eigenvalues of U and V (Fiedler, 1971), and has been
used for heteroscedastic regression (Gilboa et al., 2014).
However, its most appealing quality is computational effi-
ciency. We efficiently find the eigendecomposition of K
using standard Kronecker methods, where we calculate the
eigenvalues of K1, . . . ,KD, each in time O(n

3
D ). We im-

mediately know the eigenvalues of W because it is diago-
nal. Putting this together, the time complexity of comput-
ing this bound is O(Dn

3
D ). The log-determinant is recal-

culated many times during hyperparameter learning, so its
time complexity is quite important to scalable methods.1

As shown in Figure 1(a), as the sample size increases the
lower bound on the negative log marginal likelihood ap-
proaches the negative log marginal likelihood calculated
with the true log determinant. This result makes perfect
sense for our Bayesian model, because the log-determinant
is a complexity penalty term defined by our prior, which be-
comes less influential with increasing datasizes compared
to the data dependent model fit term, leading to an approx-
imation ratio converging to 1.

Next, we compare the accuracy and run-time of our bound
to a recently proposed (Groot et al., 2014) log-det approx-
imation relying on a low-rank decomposition of K. In
Figure 1(b) we generated synthetic data on an

√
n ×
√
n

grid and calculated the approximation ratio by dividing
the approximate value log |I + KW | by the true value
log |I + KW | calculated with the full matrix. Our bound
always has an approximation ratio between 1 and 2, and it
gets slightly worse as the number of observations increases.
This contrasts with the low-rank approximation. When the
rank r is close to

√
n the approximation ratio is reasonable,

but quickly deteriorates as the sample size increases.

In Figure 1(c) we compare the running times of these meth-
ods, switching to a 3-dimensional grid. The exact method

1An alternative would be to try to exactly compute the eigen-
values of I+KW using LCG. But this would require performing
at least n matrix-vector products, which could be quite compu-
tationally expensive. Note that this was not an issue in comput-
ing the Laplace predictive distribution, because LCG solves linear
systems to within machine precision for J � n iterations. Our
approach, with the Fiedler bound, on the other hand, provides an
approximation to the Laplace marginal likelihood, and a lower
bound which we can optimize, at the cost of a single eigendecom-
position of K, which is in fact more efficient than a single matrix
vector product Bv.
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Figure 1. We evaluate our lower bound on the Laplace marginal likelihood in Eq. (19), and our upper bound on the log determinant in
Eq. (18), compared to exact values and low rank approximations. In a), the approximation ratio is the ratio of the Laplace negative
marginal likelihood with a given approximation (our bound or the low rank approximation). In b) and c), the approximation ratio is the
ratio of the true log determinant with a given approximation.

quickly becomes impractical. For a million observations, a
rank-5 approximation takes 6 seconds, a rank-15 approxi-
mation takes 600 seconds, while our bound takes only 0.24
seconds. We do not have the true log-determinant to com-
pare, but our bound is provably a lower bound, so the ratio
between the low rank approximation’s log-determinant and
ours is a lower-bound on the true approximation ratio. This
ratio is 2.8 for the rank-15 approximation and 30 for the
rank-5 approximation (switching signs to match the value
in the negative log marginal likelihood calculation).

Finally, we know theoretically that Fiedler’s bound is ex-
act when the diagonal matrix W is equal to spherical noise
σ2I , which is the case for a Gaussian observation model.2

Since the Gaussian distribution is a good approximation to
the Poisson distribution in the case of a large mean parame-
ter, we evaluated our log-determinant bound while varying
the prior mean µ of f from 0 to 10. As shown in Figure
1(d), for larger values of µ, our bound becomes more accu-
rate. There is no reason to expect the same behavior from
a low-rank approximation, and in fact the rank-20 approxi-
mation becomes worse as the mean of λ increases.

2The entries of W are equal to the second derivative of
the likelihood of the observation model, so in the case of
the Poisson observation model with exponential link function,
Wii = −∇∇ log p(y|f) = exp[f̂i].

6.5. Algorithm Details and Analysis
For inference, our approach makes no further approxi-
mations in computing the Laplace predictive distribution,
since LCG converges to within machine precision. Thus,
unlike inducing points methods like FITC or approximate
methods like Nyström, our approach to inference gives the
same answer as if we used standard Cholesky methods.

Pseudocode for our algorithm is shown in Algorithm 1.
Given K1, . . . ,KD where each matrix is n1/D × n1/D,
line 2 takes O(Dn2/D). Line 5 repeatedly applies Equa-
tion (A21), and matrix-vector multiplication (

⊗
Kd) v re-

duces to D matrix-matrix multiplications V Kj where V is
a matrix with n entries total, reshaped to be n

D−1
D × n 1

D .
This matrix-matrix multiplication is O(n

D−1
D n

1
D n

1
D ) =

O(n
D+1
D ) so the total run-time is O(Dn

D+1
D ). Line 7 is

elementwise vector multiplication which is O(n). Line 8
is calculated with LCG as discussed in Section 6 and takes
O(Dn

D+1
D ). Lines 4 through 12 comprise the Newton up-

date. Newton’s method typically takes a very small number
of iterations m� n to converge, so the overall run-time is
O(mDn

D+1
D ). Line 13 requiresD eigendecompositions of

matrices K1, . . . ,KD which takes time O(Dn
3
D ) as dis-

cussed in Section 6.4. Line 14 is elementwise vector mul-
tiplication and addition so it is O(n).

Overall, the runtime is O(Dn
D+1
D ). There is no speedup

for D = 1, and for D > 1 this is nearly linear time. This is
much faster than the standard Cholesky approach which re-
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Algorithm 1 Kronecker GP Inference and Learning
1: Input: θ,µ,K, p(y|f),y
2: Construct K1, . . . ,KD

3: α← 0
4: repeat
5: f ←Kα+ µ # Eq. (A21)
6: W ← −∇∇ log p(y|f) # Diagonal
7: b←W (f − µ) +∇p(y|f)

8: Solve Bz = W−
1
2 b with CG # Eq. (15)

9: ∆α←W
1
2 z −α # Eq. (16)

10: ξ̂ ← arg minξ Ψ(α+ξ∆α) # Line Search
11: α← α+ ξ̂∆α # Update
12: until convergence of Ψ
13: e = eig(K) # exploit Kronecker structure
14: Z ← α>(f − µ)/2 +

∑
i log(1 + eiWi)/2− log p(y|f)

15: Output: f ,α, Z

quiresO(n3) time. The memory requirements are given by
the total number of entries in K1, . . .Kp: O(Dn

2
D ). This

is smaller than the storage required for the n observations,
so it is not a major factor. But it is worth noting because it is
much less memory than required by the standard Cholesky
approach of O(n2) space.

7. Model Specification
We propose to combine our fast Kronecker methods for
non-Gaussian likelihoods, discussed in section 6, with Cox
processes, which we introduced in section 3. We will use
this model for crime rate forecasting in section 8.

With large sample sizes but little prior information to guide
the choice of appropriate covariance functions, we turn to a
class of recently proposed expressive covariance functions
called Spectral Mixture (SM) kernels (Wilson & Adams,
2013). These kernels model the spectral density given by
the Fourier transform of a stationary kernel (k = k(τ) =
k(x− x′)) as a scale-location mixture of Gaussians. Since
mixtures of Gaussians are dense in the set of all distribution
functions and Bochner’s theorem shows a deterministic re-
lationship between spectral densities and stationary covari-
ances, SM kernels can approximate any stationary covari-
ance function to arbitrary precision. For 1D inputs z, and
τ = z− z′, an SM kernel with Q components has the form

k(τ) =

Q∑
q=1

wq exp(−2π2τ2vq) cos(2πτµq) . (20)

wq is the weight, 1/µq is the period, and 1/
√
vq is the

length-scale associated with component q. In the spectral
domain, µq and vq are the mean and variance of the Gaus-
sian for component q. Wilson et al. (2014) showed that
a combination of Kronecker methods and spectral mixture
kernels distinctly enables structure discovery on large mul-
tidimensional datasets – structure discovery that is not pos-
sible using other popular scalable approaches, due to the
limiting approximations in these alternatives.

For our space-time data, in which locations s are labeled
with coordinates (x, y, t), we specify the following separa-
ble form for our covariance function kθ:

kθ((x, y, t), (x
′, y′, t′)) = kx(x, x′)ky(y, y′)kt(t, t

′)

where kx and ky are Matérn-5/2 kernels for space and kt
is a spectral mixture kernel with Q = 20 components for
time. We used Matérn-5/2 kernels because the spatial di-
mensions in this application vary smoothly, and the Matérn
kernel is a popular choice for spatial data (Stein, 1999).

We also consider the negative binomial likelihood as an al-
ternative to the Poisson likelihood. This is a common al-
ternative choice for count data (Hilbe, 2011), especially in
cases of overdispersion and we find that it has computa-
tional benefits. The GLM formulation of the negative bi-
nomial distribution has mean m and variance m + m2

r . It
approaches the Poisson distribution as r →∞.

8. Experiments
We evaluate our methods on synthetic and real data, focus-
ing on runtime and accuracy for inference and hyperparam-
eter learning. Our methods are implemented in GPML v3.6
(Rasmussen & Nickisch, 2010). We apply our methods
to spatiotemporal crime rate forecasting, comparing with
FITC, SSGPR (Lázaro-Gredilla et al., 2010), low rank Kro-
necker methods (Groot et al., 2014), and Kronecker meth-
ods with a Gaussian observation model.

8.1. Synthetic Data
To demonstrate the vast improvements in scalability of-
fered by our method we simulated a realization from a GP
on a grid of size n×n×nwith covariance function given by
the product of three SM kernels. For each realization f(si),
we then drew yi ∼ NegativeBinomial(exp(f(si) + 1). Us-
ing this as training data, we ran non-linear conjugate gradi-
ents to learn the hyperparameters that maximized the lower
bound on the approximate marginal likelihood in equation
(19), using the same product of SM kernels. We initialized
our hyperparameters by taking the true hyperparameter val-
ues and adding random noise. We compared our new Kro-
necker methods to standard methods and FITC with vary-
ing numbers of inducing points. In each case, we used the
Laplace approximation. We used 5-fold crossvalidation,
relearning the hyperparameters for each fold and making
predictions for the latent function values fi on the 20% of
data that was held out. The average MSE and running times
for each method on each dataset are shown in Figure 2.
We also calculated the log-likelihood of our posterior pre-
dictions for varying numbers of observations n for FITC-
100, as shown in Table A3 in the Appendix. Our method
achieved significantly higher predictive log-likelihood than
FITC-100 for n ≥ 1000.

In our final synthetic test, we simulated 100 million ob-
servations from a GP on an 8 dimensional grid, possibly
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(b) Accuracy

Figure 2. Run-time and accuracy (mean squared error) of optimizing the hyperparameters of a GP with the Laplace approximation,
comparing our new Kronecker inference methods to standard GP inference, FITC, and Kronecker with low rank. The standard method
has cubic running time. Each experiment was run with 5-fold crossvalidation but error bars are not shown for legibility. There is no
significant difference between the standard and Kronecker methods in terms of accuracy. For grids of size 10 × 10 × 10 observations
and greater, FITC has significantly lower accuracy than Kronecker and standard methods.

the largest dataset that has ever been modeled with a Gaus-
sian process. This is particularly exceptional given the non-
Gaussian likelihood. In this case, we had a simple covari-
ance structure given by a squared exponential (RBF) kernel
with different length-scales per dimension. We success-
fully evaluated the marginal likelihood in 27 minutes.

8.2. Crime Rate Forecasting in Chicago
The City of Chicago makes geocoded, date-stamped crime
report data publicly available through its data portal3. For
our application, we chose crimes coded as “assault” which
includes all “unlawful attacks” with a weapon or otherwise.
Assault has a marked seasonal pattern, peaking in the sum-
mer. We used a decade of data from January 1, 2004 to
December 31, 2013, consisting of 233,088 reported inci-
dents of assault. We trained our model on data from the
first 8 years of the dataset (2004-2011), and made forecasts
for each week of 2012 and 2013. Forecasting this far into
the future goes well beyond what is currently believed to
be possible by practitioners.

LGCPs have been most widely applied in the 2-
dimensional case, and we fit spatial LGCPs to the training
data, discretizing our data into a 288 × 446 grid for a total
of 128,448 observations. Posterior inference and learned
hyperparameter are shown in Section A.3 of the Appendix.

For our spatiotemporal forecasting, we used Spectral Mix-
ture (SM) kernels for the time dimension, as discussed in
section 7. Specifically, we consider Q = 20 mixture com-
ponents. For hyperparameter learning, our spatial grid was
17 × 26, corresponding to 1 mile by 1 mile grid cells, and
our temporal grid was one cell per week, for a total of
416 weeks. Thus, our dataset of 233,088 assaults was dis-
cretized to a grid of size 183,872. Both of these sample
sizes far exceed the state-of-the-art in fitting LGCPs, and

3http://data.cityofchicago.org

indeed in fitting most GP regression problems without ex-
treme simplifying assumptions or approximations.

To find a good starting set of hyperparameters, we used
the hyperparameter initialization procedure in Wilson et al.
(2014) with a Gaussian observation model. We also
rescaled counts by the maximum count at that location,
log-transformed, and then centered so that they would have
mean 0. We ran non-linear conjugate gradient descent for
200 iterations. Using the hyperparameters learned from
this stage, we switched to the count data and a negative
binomial likelihood. We then ran non-linear conjugate gra-
dient descent for another 200 iterations to relearn the hyper-
parameters and also the variance of the negative binomial.

Figure 3. Local area posterior forecasts of assault one year into
the future with the actual locations of assaults shown as black
dots. The model was fit to data from January 2004 to December
2011, and the forecasts were made for the first week of June 2012
(left) and December 2012 (right).

The spatial hyperparameters that we learned are σ2 =
0.2231, λ1 = 0.11 and λ2 = 0.02. This means that at this
high resolution, with so much temporal data, there was lit-
tle smoothing in space, with nearby locations allowed to be
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very different. Yet due to the multiplicative structure of our
covariance function, our posterior inference is able to “bor-
row strength” such that locations with few observations fol-
low a globally-learned time trend. We learned 60 tempo-
ral hyperparameters, and the spectral mixture components
with the highest weights are shown in Figure 4, visualized
in the covariance and frequency domains. We also show
what posterior time series predictions would be if only a
particular spectral component had been used, roughly giv-
ing an idea of the “explanatory” power of separate spectral
components. We interpret the components, by decreasing
weight, as follows: component 1 has a period and length-
scale larger than the observation window thus picking up a
decreasing trend over time. Components 2 (with period 1
month) and 4 pick up very-short-scale time variation, en-
abling the model to fit the observed data well. Component
3 picks up the yearly periodic trend (the spike in the spec-
tral domain is at 0.02 = 1

52.1 ). Component 5 picks up a
periodic trend with length longer than a year – 97 weeks,
a feature for which we do not have any explanation. The
exact hyperparameters are in Table A2 in the Appendix.

After learning the hyperparameters, we made predictions
for the entire 8 years of training data and 2 years of fore-
casts. In Figure A6 in the Appendix we show the time se-
ries of assaults for 9 neighborhoods with our predictions,
forecasts, and uncertainty intervals. Next, we rediscretized
our original point pattern to a grid of size 51 × 78 (n =
1.6 million observations) and made spatial predictions 6
months and 1 year into the future, as shown in Figure 3,
which also includes the observed point pattern of crimes.
Visually, our forecasts are quite accurate. The accuracy
and runtime of our method and competitors is shown in Ta-
ble 1. The near 0 RMSE for predictions at the training data
locations (i.e. the training error) for Kronecker Gaussian
SM-20 indicates overfitting, while our model, Kronecker
NegBinom SM-20, has a more reasonable RMSE of 0.79,
out-performing the other models. The forecasting RMSE
of our model was not significantly different than SSGPR
or Kronecker Gaussian, while it outperformed FITC. But
RMSE does not take forecasting intervals (posterior uncer-
tainty) into account. Kronecker Gaussian and SSGPR had
overly precise posterior estimates. Forecast log-likelihood
is the probability of the out-of-sample data (marginalizing
out the model parameters), so we can use it to directly
compare the models, where higher likelihoods are better.
The Kronecker Gaussian approach has the lowest forecast
log-likelihood. FITC was not overconfident, but its pos-
terior forecasts were essentially constant. Our model has
the highest forecast log-likelihood, showing a balance be-
tween a good fit and correct forecasting intervals. Kro-
necker Gaussian methods showed the fastest run-times due
to the availability of a closed form posterior. FITC was
very slow, even though we only used 100 inducing points.
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Figure 4. The five spectral mixture components with highest
weights learned by our model are shown as a covariance (top)
and spectral density (middle). In the bottom row, time series pre-
dictions were made on the dataset (ignoring space) using only that
component. Red indicates out-of-sample forecasts.

KronNB
SM-20

KronNB
SM-20
Low
Rank

KronGauss
SM-20

FITC-100
NB SM-20

SSGPR-
200

Training
RMSE

0.79 1.13 10−11 2.14 1.45

Forecast
RMSE

1.26 1.24 1.28 1.77 1.26

Forecast
log-
likelihood

-33,916 -172,879 -352,320 -42,897 -82,781

Run-time 2.8 hours 9 hours 22 min. 4.5 hours 2.8 hours

Table 1. Kron NB SM-20 (our method) uses Kronecker inference
with a negative binomial observation model and an SM kernel
with 20 components. KronNB SM-20 Low Rank uses a rank 5
approximation. KronGauss SM-20 uses a Gaussian observation
model. FITC 100 uses the same observation model and kernel
as KronNB SM-20 with 100 inducing points and FITC inference.
SSGPR-200 uses a Gaussian observation model and 200 spectral
points. Carrying forward the empirical mean and variance has a
forecast RMSE of 1.84 and log-likelihood of -306,430.

9. Conclusion
We proposed a new scalable Kronecker method for Gaus-
sian processes with non-Gaussian likelihoods, achieving
near linear run-times for inference and hyperparameter
learning. We evaluated our method on synthetic data,
where it outperformed competing alternatives, and demon-
strated its real-world applicability to the challenging prob-
lem of small area crime rate forecasting. Our kernel learn-
ing automatically discovered multiscale seasonal trends
and our inference generated highly accurate long-range
forecasts, with correct uncertainty intervals.
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A. Appendix
A.1. Kronecker Algebra

We exploit the identity (Steeb & Hardy, 2011):

(B> ⊗A)v = vec(AV B) (A21)

where v = vec(V ) and the vec operator turns a matrix into a vector by stacking columns vertically. Since a full n × n
matrix is never formed, this approach is very efficient in terms of space and time complexity, relying only on operations
with the smaller matrices Ki and the matrix V which only has n entries. We analyzed the complexity in Section 6.5.
Another result we use is that given the eigendecompositions of Kd = QdΛdQ

T
d , we have:

K = (
⊗

Qd)(
⊗

Λd)(
⊗

QTd ) (A22)

A.2. Supplementary Results

q Weight Period Length-scale
1 52.72 10813.9 133280.2
2 5.48 4.0 1.1
3 0.33 52.1 27700.8
4 0.05 22.0 1.6
5 0.02 97.4 7359.1

Table A2. The top five spectral mixture components learned for the temporal kernel in the LGCP fit to 8 years of assault data. The
components are visualized in Figure 4 where component q corresponds to the row of the table.

N Standard Kronecker FITC-100
125 -62.12 -61.52 -61.20
343 -157.47 -157.80 -159.21
1000 -445.48 -443.87 -455.84
1728 -739.56 -740.31 -756.95
8000 -3333.10 -3333.66 -3486.20

Table A3. Predictive log-likelihoods are shown corresponding to the experiment in Figure 2. A higher log-likelihood indicates a better
fit. The differences between the standard and Kronecker results were not significant but the difference between FITC-100 and the others
was significant (two-sample paired t-test, p ≤ .05) for n ≥ 1000.

A.3. A two-dimensional LGCP

We used a product of Matérn-5/2 kernels: kx(d) with length-scale λx and variance σ2 and ky(d) with length-scale λy and
variance fixed at 1: k((x, y), (x′, y′)) = kx(|x− x′|)ky(|y − y′|).

We discretized our data into a 288 × 446 grid for a total of 128,448 observations. Locations outside of the boundaries of
Chicago – about 56% of the full grid—were treated as missing. In Figure A5 we show the location of assaults represented
by dots, along with a map of our posterior intensity, log-intensity, and variance of the number of assaults. It is clear that
our approach is smoothing the data. The hyperparameters that we learn are σ2 = 5.34, λx = 2.23, and λy = 2.24, i.e.,
length-scales for moving north-south and east-west were found to be nearly identical for these data; by assuming Kronecker
structure our learning happens in a fashion analogous to Automatic Relevance Determination (Neal, 1996).
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(a) Point pattern of assaults (b) Posterior Intensity

(c) Posterior Latent Log-Intensity (d) Posterior Variance

Figure A5. We fit a log Gaussian Cox Process to the point pattern of reported incidents of assault in Chicago (a) and made posterior
estimates of the intensity surface (b). The latent log-intensity surface is visualized in (c) and the posterior variance is visualized in (d).
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Figure A6. We show the time series of weekly assaults in the nine neighborhoods with the most assaults in Chicago. The blue line shows
our posterior prediction (training data, first 8 years of data) and forecast (out-of-sample, last 2 years of data, to the right of the vertical
bar). Observed counts are shown as dots. 95% posterior intervals are shown in gray.


