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ABSTRACT

The detection and subsequent correction of motion artifacts is essential for the high diagnostic value of non-
invasive coronary angiography using cardiac CT. However, motion correction algorithms have a substantial
computational footprint and possible failure modes which warrants a motion artifact detection step to decide
whether motion correction is required in the first place. We investigate how accurately motion artifacts in the
coronary arteries can be predicted by deep learning approaches. A forward model simulating cardiac motion
by creating and integrating artificial motion vector fields in the filtered back projection (FBP) algorithm allows
us to generate training data from nine prospectively ECG-triggered high quality clinical cases. We train a
Convolutional Neural Network (CNN) classifying 2D motion-free and motion-perturbed coronary cross-section
images and achieve a classification accuracy of 94.4%± 2.9% by four-fold cross-validation.
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1. INTRODUCTION

Non-invasive coronary angiography using cardiac CT imaging has become a preferred technique for the detection
and diagnosis of coronary artery disease (CAD). However, motion artifacts due to cardiac motion may limit
or even preclude the evaluation of portions of coronary arteries or cause misinterpretations. Several motion
compensation approaches have been developed which deal with motion estimation via 3-D/3-D registration of
multiple heart phases [1, 2, 3]. These approaches are computationally demanding and have possible failure modes
which offers potential applications for reliable motion artifact measures. The classification of each location in
the coronary artery tree in motion-free and motion-corrupted could decide whether and where motion correction
is required in the first place. Additionally, the success of motion compensation methods could be verified by an
appropriate measure for motion artifacts. Rohkohl et al. [4] also introduced a motion compensation method
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Figure 1: Multiple CT image volumes with varying artifact levels are created by the forward model which
introduces motion locally around the coronary arteries by means of an artificial motion vector field. Randomly
rotated, cropped and flipped coronary cross-sections are used as input features for supervised learning. The
corresponding target label (no artifact or artifact) depends on the utilized motion vector field.



which is based on motion vector field estimation by minimizing handcrafted motion artifact measures. We
found current handcrafted measures [4, 5] like normalized entropy and positivity not to be sufficiently robust
with regard to the high variability of background intensities and the noise level of clinical cases (see Figure 7).
Motion artifacts in the coronary arteries manifest in typical patterns containing arc-shaped blurring and intensity
undershoots due to the CT reconstruction geometry (see Figure 1, 5 or 6). Over the past few years CNNs have
been driving advances in many pattern recognition tasks [6] and by means of machine learning, the challenging
task of designing a handcrafted measure with the required robustness, might be circumvented. Therefore, the
goal is to investigate the feasibility of deep-learning-based motion artifact recognition in coronary arteries. In
contrast to typical supervised learning, the required feature and label data is generated by a forward model
which introduces artificial motion to cases with high quality.

2. MATERIAL AND METHODS

Nine prospectively ECG-triggered clinical datasets acquired with a 256-slice CT scanner (Brilliance iCT, Philips
Healthcare, Cleveland, OH, USA) are included. The mean heart rates range between 45.8 bpm and 66.0 bpm.
The target phase was chosen at mid-diastole between 70% and 80% R-R interval, respectively. It is verified by
visual inspection that the nine reconstructed step-and-shoot cases exhibit no motion artifacts. Additionally, a
well-segmented coronary tree including the centerline and the lumen contour is created for each case using the
Comprehensive Cardiac Analysis Tool (IntelliSpace Portal 9.0, Philips Healthcare, Cleveland, OH, USA). The
required data for supervised learning is generated by applying the following forward model on these nine cases.

2.1 FORWARD MODEL

The forward model simulates patient motion by applying the motion compensated filtered back projection (MC-
FBP) algorithm [1, 7]. This reconstruction algorithm includes angular weighting for gated reconstruction and
aperture weighting for avoidance of cone-beam artifacts. Usually, motion vector fields are estimated to shift
image voxels according to the point in time of each specific projection. Thus, the subsequent back projection
leads to a correction of the detected motion. In contrast, the forward model as shown in Figure 1 inverts this
process. It takes the CT image with corresponding projection data, the segmented coronary tree and the target
motion strength s ∈ R+ as input and delivers a motion degraded CT image as output. The heart motion, or
strictly speaking the reversing motion is simulated by an artificial continuous motion vector field ~mt : Ω → R3

which describes the displacement of each voxel coordinate ~x ∈ Ω ⊂ R3 in the CT volume at each time point t
in millimeters. The time t ∈ [0%, 100%] is measured in percent cardiac cycle and the continuous motion vector
field is separable in a time and a location component:

~mt(~x) = w(~x) · ~δ(t) (1)

The location-dependent weight mask w : Ω → [0, 1] limits the motion to the area of the coronary arteries and
is generated by dilation of the binary input lumen mask and a subsequent uniform filtering. The smoothing is
necessary to avoid reconstruction artifacts, because the elastic tissue structure forbids abrupt changes of motion
in a local neighborhood. The time component ~δ(t) ∈ R3 is obtained by piecewise linear interpolation between

five sample vectors ~δi ∈ R3, i ∈ {1, . . . , 5} (see Figure 2 and Figure 4). The corresponding time points are given
by ti ∈ {r− 10%, r− 5%, r, r+ 5%, r+ 10%}, where r denotes the reference heart phase of the input CT volume.

The first and the last sample vectors ~δ1 and ~δ5 are constant extrapolated for time values outside the covered
range of 20% R-R interval. In practice, the angular weighting window, which depends on the heart rate and the
gantry rotation speed, is usually narrower. Therefore, the influence of the sample vectors may differ. They are
computed with the following formula:

~δi =
s

maxj,k ‖~ρj − ~ρk‖2
· ~ρi (2)

The motion direction is given by random uniform vectors ~ρi ∼ U [−1, 1]3 for i ∈ {1, 2, 4, 5} and no motion occurs
at the reference heart phase, i.e. ~ρ3 = ~0. The first term in Equation (2) scales the motion vector fields so that
the target motion strength s corresponds to the maximal displacement during 20% R-R interval in millimeters
(see Figure 3). Of course, alternative normalization factors instead of the maximum pairwise Euclidean distance
are possible. Empirical results by visual inspection show that the current choice of maximum normalization
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Figure 2: Schematic drawing of the motion trajectory
(dashed line) which is determined by the sample vec-

tors ~δi (red arrows). The total displacement length
of the trajectory ` corresponds to the sum of the Eu-
clidean distances.
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Figure 3: The sample vectors ~δi (red arrows) are
scaled so that the target motion strength s corre-
sponds to the maximum pairwise Euclidean distance
(length of the dashed line).

delivers a better correlation to the artifact level than the total displacement length (visualized in Figure 2).
The resultant role of s as motion level regulator is illustrated in Figure 5. It also has to be noted that the
current choice of random uniform vectors for ~ρi may yield no realistic physical simulation of the cardiac motion.
Restrictions should be specified in further investigations to create an appropriate subset of motion manifestations.
Nevertheless, CT volumes created by the proposed forward model show the typical motion artifact pattern of
arc-shaped blurring and intensity undershoots at the coronary arteries (see Figure 5 and Figure 6).

Figure 4: Schematic drawing of ~mt(~x).
The displacement vectors (bright red)
are linearly interpolated from the sam-
ple vectors (dark red) in time domain.
The motion directions are spatially con-
stant, while the displacement length de-
creases with increasing distance to the
coronary centerline shown in black.
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Figure 5: Coronary cross-section images sampled from 3D CT image
volumes which were perturbed by the forward model. The same
coronary cross-section images are given row-wise in different motion
states. The motion strength s increases from left to right, while the
motion directions, i.e. ~ρi, i ∈ {1, . . . , 5} were fixed. The lengths of
the displacement vectors in the motion trajectory and consequently
the artifact level are regulated by the target motion strength s.

2.2 SUPERVISED LEARNING

The forward model enables the creation of multiple motion-degraded 3D CT image volumes with controlled
motion levels at the coronary arteries. It is important to consider that the motion level is not equivalent to the
artifact level. Phantom studies show that the artifact level additionally depends on the relation of the motion
direction, the tube positions during acquisition and the orientation of the coronary arteries. Also other factors
like background intensities and the angular weighting window have an impact. Therefore, the motion strength s
is merely an approximate measure for the artifact level in the coronary arteries.
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Figure 6: Coronary cross-section images are sampled from 3D CT volumes which are generated by the forward
model. The visualized example patches I60×60(~c) are randomly rotated, flipped and cropped to a size of 60× 60
pixels. The corresponding motion strength s is given above. The artifact level in the coronary arteries is not
monotonically increasing with the underlying motion strength s, but on average growing intensity undershoots
and blurring can be observed. Patches highlighted in green or red are assigned to the classes no artifact or
artifact respectively and defined as input feature data of the neural network. Due to the ambiguous class label,
the non-highlighted patches with a motion level between 2 and 5 are excluded from the learning process.

Figure 6 shows randomly sampled coronary cross-section images from 3D CT image volumes perturbed with
a varying motion strength s ∈ {0, 1, . . . , 10}. On the basis of velocity measurements at the coronary arteries
by Vembar et al. [8], the data generation process for the supervised learning task was limited to the maximal
displacement of 10 millimeters during 20% cardiac circle. Figure 6 reveals the difficulties of the given learning
problem. The neural network has to be robust regarding variations in noise level, background intensities, vessel
radius and effective intensity of the contrast agent. Another requirement on a reliable motion artifact measure
is the differentiation between blurring artifacts and branching coronary arteries.

In this paper, the supervised learning problem is defined as a classification task to separate 2D artifact and
no artifact coronary cross-section images. The database is generated by applying the proposed forward model
seven times per clinical case and the target label l (0: no artifact, 1: artifact) is given by the utilized input
motion strength:

l =

{
0, if s ∈ {0, 1}
1, if s ∈ {6, 7, 8, 9, 10}

(3)

The gap in s is chosen to assure a better class division. As input for the supervised learning approach, coronary
cross-sections of the size 96 × 96 pixels are sampled perpendicular to the centerline with a resolution of 0.4
millimeter per pixel along the whole coronary tree. For this purpose, the original no-motion coronary centerlines
are used. The samples are clipped to the relevant intensity range with a window/level setting of 750/100 HU.
To guarantee balanced classes, a subset of two fifths of the samples from class artifact is randomly selected. The



dataset includes a total of 18k samples. These are case-wise separated for training, validation and testing with
a ratio of 6 : 2 : 1. During training, online data augmentation is performed by randomly rotating (by 0 to 360
degrees), horizontal mirroring and cropping of the image patches to the final CNN input size of 60 × 60 pixels
(see Figure 1). The forward model may cause a shifting of the original coronary centerline point ~c ∈ Ω (see
Figure 7, bottom). Therefore, the image translation by cropping is necessary to avoid a bias from the in-plane
coronary position. The neural network NN: I60×60(~c) 7→ p(~c) takes a 2D coronary cross-section image I60×60(~c)
as input and delivers a predicted artifact probability p(~c) as output.

3. EXPERIMENTS AND RESULTS

We use the Microsoft Cognitive Toolkit (CNTK) as the framework for deep learning. The neural network is a
feed-forward 20-layer ResNet [9], where the number of filters is doubled to {32, 64, 128}. The Adam optimizer [10]
with an initial learning rate of 0.01 (decreasing with a factor of 2 after every 10th epoch), a minibatch size of 100
and a momentum of 0.8 is defined as the learning setup. A classification accuracy of 94.4%± 2.9% by stratified
four-fold cross-validation is achieved by the proposed network architecture and hyperparameter selection. The
result is divided into a ratio of 47.1% : 47.3% : 2.8% : 2.9% for the rates TN : TP : FN : FP, where positive
refers to the class artifact.
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Figure 7: The multiplanar reformation (MPR) is visualized in the upper row. The predicted artifact probability
p(~c), the normalized entropy, the normalized positivity and the corresponding weight value w(~c) of each centerline
point ~c are plotted in the lower row. The reference state of no motion is given in the first subplot. The vessels in
the second and the third subplot are locally perturbed with a motion strength of s = 8. A vessel shift compared
to the original coronary centerline position can be observed in subplot three. In contrast to the hand-designed
measures, the areas of high activations in class artifact conform with the regions of motion influence.



3.1 RECOGNITION CHALLENGE

In order to visually evaluate the quality of the learned motion artifact measure, the following challenge is devel-
oped. Starting from the original CT image volume of the test case, local motion is introduced at an arbitrary
point in the coronary tree. Therefore, a little adjustment in the forward model is performed. The weight mask
w(~x), which limits the motion to a desired area, is generated now by dilation and subsequent uniform filtering
of a single centerline point in the coronary tree. For each centerline point ~c, a cross-section of the local motion
perturbed image volume is sampled and classified via CNN. The experiment investigates, whether the trained
artifact measure is able to detect the region of motion, given the approximate location of the coronary artery.

Figure 7 shows an exemplary result of this recognition challenge. The red marked weight w(~c) corresponds
to the relative displacement width. The blue marked predicted artifact probability p(~c) is smoothed by a five
point running average to increase the robustness. For comparison, the gray marked handcrafted artifact mea-
sures from [4] are provided. In the paper of Rohkohl et al., the normalized entropy and the normalized positivity
are merely used as relative artifact measures to compare the same image volume in different motion states. In
contrast to our deep-learning-based measure, the handcrafted ones are obviously not suitable for a section-wise
classification, due to a missing robustness regarding the variations mentioned in section 2.2. Apart from a few
exceptions, high motion artifact measures p(~c) predicted by our neural network are correctly located at the
created motion window. The experiment shows that the network is able to learn motion artifact pattern.

3.2 EXTENSION TO 3D CROSS-SECTIONAL VOLUMES

The sampling and learning processes are also adapted to 3D input data to investigate how far these additional
information provide a benefit. For example the differentiation between bifurcations and blurring artifacts might
be simplified. The input feature size of the network is extended to 60×60×11 voxels, where the third dimension
is sampled with a lower resolution of 0.8 mm per voxel orthogonal to the cross-section plane. This delivers
a depth range of ±4 mm around each centerline point. The transformations of the online data augmentation
are limited to the first two dimensions. Intensity clipping, network architecture (except for the first layer) and
hyperparameter selection remain the same. By this configuration, a classification accuracy of 95.6%± 2.7% with
a ratio of 47.9% : 47.7% : 2.1% : 2.3% for the rates TN : TP : FN : FP is archived by stratified four-fold
cross-validation. Even without extra hyperparameter tuning on the changed input dimension, the measure has
slightly improved. Nevertheless, higher memory requirements and execution time has to set against it.

4. CONCLUSIONS

We developed a machine-learning-based measure for motion artifacts in coronary arteries. A forward model is
presented, which uses artificial motion vector fields and the MC-FBP algorithm for ground truth data generation.
Supervised learning of a CNN is performed and high predictive accuracy is achieved on the artificially motion
perturbed data. Areas of artificial motion are correctly identified, given the approximate location and orientation
of the coronary arteries. In future work, we are planning to adapt the forward model, to produce data with more
accurate ground truth artifact level. Therefore, the orientation of the gantry and the coronary arteries will be
considered in the motion model.

The proposed measure is based on nine clinical datasets. In practice, CT images for non-invasive coronary
angiography are acquired with a wide variety of scanner types and imaging protocols. For instance, cardiac
motion leads to different artifact shapes in helical and step-and-shoot scans. In this paper, we demonstrate
the feasibility of accurate motion artifact recognition in the coronary arteries using deep learning in the first
place. These promising results warrant the collection of hand-labeled data and further studies to assess the
transferability of these initial results to motion artifact prediction in clinical practice. So, for the next stage, it
has to be investigated, whether the achieved performance also holds on a large number of real datasets and to
what extent a network fine-tuning is required.
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