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Abstract

Purpose: The trend towards lower radiation doses and advances in CT reconstruction may impair oper-
ation of pre-trained segmentation models, thereby giving rise to the problem of estimating dose robustness
of existing segmentation models. Previous studies addressing the issue suffer either from a lack of registered
low- and full-dose CT images or from simplified simulations.

Approach: In this work, we employ raw data from full-dose acquisitions to simulate low-dose CT scans,
avoiding the need to rescan a patient. The accuracy of the simulation is validated using a real CT scan of a
phantom. We consider down to 20% reduction of radiation dose, for which we measure deviations of several
pre-trained segmentation models from the full-dose prediction. Additionally, compatibility with existing
denoising methods is considered.

Results: The results reveal surprising robustness of the TotalSegmentator approach, showing minimal
differences at the pixel level even without denoising. Less robust models show good compatibility with the
denoising methods, which help to improve robustness in almost all cases. With the CNN-based denoising,
the median Dice between low-and full-dose data does not fall below 0.9 (12 for the Hausdorff distance) for
all but one model. We observe volatile results for labels with effective radii less than 19 mm and improved
results for contrasted CT acquisitions.

Conclusion: The proposed approach facilitates clinically relevant analysis of dose robustness for human
organ segmentation models. The results outline robustness properties of a diverse set of models. Further
studies are needed to identify robustness of approaches for lesion segmentation and to rank the factors
contributing to dose robustness.
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1 Introduction

Computed tomography (CT) is an important medical imaging modality widely adopted in many clinical appli-
cations. It is commonly used for detecting injuries, tumors, infections, and abnormalities. Since the analysis of
CT images is time consuming, automated CT annotation and quantification remains an active area of research.

Semantic image segmentation is a significant step in CT analysis and often a prerequisite for subsequent
quantitative assessments and clinical decision making [11]. For this reason, great efforts are being made to
alleviate the burden of manual segmentation from radiologists. In recent years, the performance of algorithms
for automated CT segmentation has considerably increased due to the adoption of deep neural networks (also
deep learning models) [30]. Neural networks implicitly derive useful segmentation features from pairs of CT
images and the corresponding ground truth segmentations through the training process. Therefore, the training
data need to be representative with respect to the following application.

At the same time, CT acquisitions expose a patient to X-ray radiation, which may have irreversible conse-
quences to the human body. For this reason, usage and development of CT systems is guided by the ALARA
(”as low as reasonably achievable”) principle [22]. This implies the inclination to lower tube currents, thus
lower dose, whenever possible. Dose reduction mainly leads to a decreased signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR), limiting the diagnostic quality of the resulting images. Therefore, the research
community actively investigates CT denoising algorithms to increase image quality of low-dose CT (LDCT)
scans [8].

To effectively increase the SNR in LDCT scans, several methods have been developed in recent years. They
can be categorized into projection [32, 39] and image denoising [29, 4, 41]. Solving the denoising problem for
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raw projections is advantageous as the noise model is known. However, in the projection space, denoising is
applied on top of the Radon transform, where small image details are hidden in the line integrals. As a result,
images reconstructed from denoised projections run the risk of being blurred. On the other hand, denoising
reconstructed images reveals opportunities for formulating an optimization problem in terms of the desired
image quality, but leads to an unknown noise distribution.

Although there are approaches considering semantic segmentation and LDCT image denoising jointly [10, 21],
they are usually developed independently and may introduce discrepancies between expected and actual image
characteristics. Therefore, the risk of incompatibility exists. Retrospective data used to train segmentation
models may contain neither new reconstruction options nor lower dose levels. This can lead to unexpected
predictions of a segmentation model when applied to low-dose data.

We propose a method to assess robustness of existing semantic segmentation models against dose reduction
in CT images. Our approach relies on low-dose simulations conducted on raw data, which allows reliable
estimations per patient without the need for additional rescanning. This paper has two major contributions:

• We provide quantitative estimations of dose robustness for existing deep neural networks trained for
semantic segmentation of human organs in CT scans. These estimations can help assess generalization
and identify limitations when reducing the dose in CT scans without retraining existing segmentation
models.

• We quantitatively investigate the impact of denoising methods applied to low-dose CT scans on segmen-
tation results.

Application areas of our research include radiation therapy planning using low-dose CT protocols [35],
segmentation of cancer screening data [6], segmentation of CT data for interventional therapy planning [26],
and analysis of novel LDCT protocols using existing deep learning models [1].

This paper is an extension of the conference abstract [38]. Compared with the abstract, we made the
following major extensions. Firstly, we significantly extended the set of segmentation models included in the
study. Secondly, the effect of denoising methods on dose robustness was investigated. Thirdly, more ablation
studies were added.

2 Related Work

Robustness of deep neural networks (DNNs) has received increasing attention in recent years due to their wide
adoption in real-world applications. Although DNNs achieve state-of-the-art performance in various tasks, their
black-box nature poses significant challenges for understanding their limitations. A data-driven approach to
produce DNNs and verify their performance may lead to poor generalization, e.g., in the case of overfitting,
and even malicious attacks [12]. Therefore, many studies are aimed to investigate and improve robustness of
DNNs with respect to realistic input perturbations, enabling them to operate safely and reliably in diverse
environments.

Due to the high availability of massive data volumes and realistic corruption models, the problem has been
more extensively researched in the domain of natural images. Hendrycks et al. [18] enriched the validation
set of ImageNet [7] with diverse corruptions (Gaussian noise, impulse noise, frosted glass blur etc.) of varying
intensities (the ImageNet-C dataset). They showed that advances in performance from AlexNet [25] to ResNet
[16] are not translated into robustness at the same scale. Kamann et al. [24] explored robustness of semantic
segmentation models. They extended the set of corruptions used in ImageNet-C with noise, blur and geomet-
ric distortions specific to the camera. The authors considered the DeepLabv3+ architecture [5] with various
backbones. In contrast to the previously mentioned work, the results revealed a correlation between model
performance and its robustness. They also highlighted the substantial impact of noise corruption on model
performance.

Contrary to natural images, in the domain of medical images, specifically in CT, robustness studies are
facing difficulties with both data availability and realistic corruptions. During the 2016 Low Dose CT Grand
Challenge [33] low-dose CT images were simulated using projection data and used to assess the impact of
denoising algorithms on the ability of radiologists to identify lesions inside the liver. For the top-performing
denoising methods, observer performance was comparable to that of the full-dose setting. Hammond et al. [14]
acquired CT scans of a male swine using various low-dose protocols. The acquired lung volumes were segmented
using an intensity-based segmentation algorithm. They reported visually successful segmentation results, and for
low-dose scans, the selected quantitative parenchymal and airway measurements remained relevant to pulmonary
disease characterization. Hooper et al. [19] investigated robustness of a 3D classification network (121-layer
DenseNet [20]) trained to triage head CT data. The authors reprojected available CT volumes in axial geometry
and simulated reduced tube current, limited angle and sparse view artifacts at different scales (4x, 8x, 16x).
The first was done by adding Gaussian white noise with the adjusted variance to the projections. Although the
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simulation of acquired projections may introduce additional errors, and the physics of CT acquisition implies
the Poisson noise model, the authors found the performance of the model on all levels of tube current reduction
to be surprisingly stable. Liu et al. [31] included adversarial noise realizations as well as adversarial synthetic
lung nodules in the training of a nodules detection network. They showed that the resulting model also became
more robust against uniform and Poisson noise models applied in the image space. Aiello et al. [1] investigated
the applicability of existing deep learning models for lungs and COVID-19 lesions segmentation trained on full-
dose CT scans to low-dose scenarios. Due to the lack of registered pairs of low- and full-dose data, the authors
compared the statistics calculated based on the resulting segmentation masks, specifically the COVID-19 volume
percentage. The results showed a high level of agreement between low- and full-dose predictions.

In all of the aforementioned studies, we observe a trade-off between the use of actual and simulated low-dose
data. The use of actual CT data imposes additional limitations on the dataset size, often requiring an extra
registration step. On the other hand, simulations allow scaling experiments, albeit at the cost of using simplified
simulations due to the absence of raw data. Consequently, the applicability of the results to real-life scenarios
becomes a matter of concern.

3 Materials and Methods

Our method relies on simulations of low-dose CT acquisitions. For this purpose, we use a dataset with raw
projections, which includes tube currents and reference photon counts. We reconstruct the data using several
denoising options and subsequently apply pre-trained segmentation models to these reconstructions. As the data
is not annotated, we define robustness as a measure of deviation from the full dose prediction, and calculate it
using segmentation metrics. In this section, we introduce each step of this pipeline.

3.1 Low Dose Simulation

To avoid potential rescanning of a patient, we simulate low-dose CT acquisitions from full-dose projections.
Since the noise model in the projection space is known, we can achieve accurate simulation results without
additional radiation exposure [34].

Having an object with attenuation µ and the mean number of photons nα
0 emitted at current α, according

to Beer’s law, the mean number of photons hitting the detector element nα along ray r(i) is given by[3]

nα = nα
0 · exp

(
−
∫
r(i)

µdr

)
, (1)

where the integral
∫
r(i)

µdr is referred to as the line integral lα and latter used in the reconstruction algorithms.

Due to the nature of the radiation process and photon-matter interaction, both the number of photons at
the emitter and the receiver obey Poisson statistics. Electronics inside the detector element also introduce noise
to the measurements, which can be well-described using the Gaussian distribution; however, in our experiments,
we neglect it. As a result, the acquired measurements follow the distribution

nα ∼ P(nα). (2)

With known mean values, one can simulate any tube current, but in reality, only noise realizations are
available. To estimate the number of photons at a lower current β, we follow the approach proposed by Žabić et
al. [42] and sample new photon counts nα→β from the following distribution:

nα→β ∼ α− β

α
P
(

β

α− β
nα

)
. (3)

Since the initial tube current cannot be changed and is dictated by the already acquired CT data, we will
operate in terms of relative dose level defined as

dose level =
β

α
∗ 100%. (4)

In this study, the input data represent line integrals lα measured for each detector element and each detector
position for the current α. Using Equation (1), we convert the line integrals into the photon counts nα. The
number of emitted photons nα

0 is measured using air scans. Following Equation (3), we sample new photon

counts nβ for a lower current β. With nβ
0 = nα

0 · β/α, the resulting photon counts are converted back to line
integrals lβ and used for the reconstruction.

The accuracy of the considered low-dose model was confirmed experimentally using axial phantom CT scans.
The phantom was scanned several times at different tube currents. Between acquisitions, the phantom was not
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Figure 1: A full-dose CT scan of the phantom used to validate the low-dose simulation along with the selected
ROIs. The sampled standard deviation σ̂ is calculated for each ROI and for each dose level. The deviation
across dose levels for each ROI is shown next to the image.

Figure 2: Examples of reconstructed images at 20% dose level with different denoising methods applied: (a)
without, (b) iterative and (c) CNN. Level/Window is set to 50/500.
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moved; thus, the resulting CT images were registered. Given projections corresponding to the highest tube
current, we simulated low dose scans with the corresponding tube currents. To compare the results, we selected
several regions of interest (ROIs), as shown in Fig. 1. Within the ROIs, we calculated the standard deviations
for each current. In this study, we limit the range of dose levels with 20% so that the average relative error
between sampled standard deviations calculated for simulated and real scans within each ROI does not exceed
1%.

3.2 Semantic segmentation

Our study includes several existing deep learning models trained on various CT datasets for 3D semantic
segmentation of human organs.

The majority of the selected segmentation models are based on the nnU-Net framework[23]. nnU-Net aims
to automate the configuration (i.e., pre-processing, network architecture, training and post-processing) of deep
learning-based segmentation. For instance, the framework automatically resamples and normalizes data based on
the statistics calculated across all training cases. During training, nnU-Net applies the following augmentations
randomly: rotations, scaling, Gaussian noise, Gaussian blur, change of brightness and contrast, simulation of
low resolution, gamma correction, and mirroring. Among these, the Gaussian noise augmentation may be the
most relevant for dose robustness. It is applied to normalized data with a 15% probability, and variance is
drawn from U(0, 1). Recently, a large dataset of CT scans for organ segmentation has been released[40]. When
combined with nnU-net, it led to a solution called TotalSegmentator[40]. TotalSegmentator consists of five
segmentation models for different organ groups. We analyze them individually as well as in combination.

In addition, we include two recently proposed transformer-based[9] methods: UNETR[15] and Swin UNETR[37].
The latter achieves state-of-the-art results on several segmentation datasets, including Medical Segmentation
Decathlon[36]. Both approaches use random flips, rotations and intensities shifting during training. We consider
3 Swin UNETR models with different number of parameters. The largest model swin-unetr-base is initialized
with the weights after self-supervised pre-training, other two models are trained from scratch.

The considered models mostly employ contrasted CT scans at portal venous phase for training. Regarding
the rest, KiTS2021[17] contains contrasted CT scans at the late arterial phase, SegTHOR[27] contains scans
with or without intravenous contrast, and TotalSegmentator[40] includes a variety of contrast phases as well as
non-contrasted CT images.

The taxonomy of the models included in this study is shown in Table 1. The pre-trained models and
evaluation scripts are obtained from the corresponding official repositories 1,2,3. No fine-tuning on low-dose
data is performed. In the case of nnU-Net, only 3D models with the highest resolution are used for evaluation.
If multiple models are available for different folds of cross-validation, only the first model is selected. Because
the scope of the segmentation is limited to human organs, no other predicted labels are included. For instance,
nnunet-kits predicts labels not only for the kidney, but also for tumors. However, in this case, only the kidney
segmentation is considered, while all other labels are ignored.

3.3 CT denoising

Noise is an essential attribute of CT images. Even without lowering the dose, existing acquisition protocols
yield images corrupted by noise. For this reason, denoising algorithms have been a research topic for many
years to assist clinicians in better resolving low-contrast details.

In this study, iterative and CNN-based denoising methods will be a part of the evaluation implemented within
the corresponding iDose4[2] and Precise Image[13] reconstructions (Philips Healthcare, Cleveland, Ohio, USA).
iDose4 includes noise reduction in both the projection and image space. Addressing noise in raw projections
copes better with streak and bias artifacts. The following image-based denoising preserves the noise power
spectrum and underlying edges. The CNN-based denoising method represents a network trained in a supervised
manner with simulated low-dose CT data. Reconstructions without denoising in the image space are also
included in this study.

3.4 Data

This study was performed in compliance with the local Institutional Review Board of Tel Aviv Sourasky Medical
Center, Israel. Informed consent was obtained from all subjects and/or their legal guardian(s). All the methods
were performed in accordance with the relevant guidelines and regulations. All scans were performed on the
Philips Spectral CT 7500 System as part of the regulatory approval pathway required by governmental regulatory
bodies.

1https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1
2https://github.com/Project-MONAI/research-contributions
3https://github.com/wasserth/TotalSegmentator
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Table 1: Taxonomy of segmentation models included into the study.

Model Name Training Dataset
#training-

scans
Architecture #parameters #classes

totsegm-all TotalSegmentator [40] consists of the five models below
totsegm-organs TotalSegmentator [40] 1082 U-Net 31M 18
totsegm-vertebrae TotalSegmentator [40] 1082 U-Net 31M 25
totsegm-cardiac TotalSegmentator [40] 1082 U-Net 31M 19
totsegm-muscles TotalSegmentator [40] 1082 U-Net 31M 22
totsegm-ribs TotalSegmentator [40] 1082 U-Net 31M 25
nnunet-liver MSD [36] 104 U-Net 31M 3
nnunet-abdmn BTCV [28] 24 U-Net 31M 14
nnunet-pancreas MSD [36] 224 U-Net 31M 3
nnunet-spleen MSD [36] 32 U-Net 31M 2
nnunet-thor SegTHOR [27] 32 U-Net 31M 5
nnunet-kits KiTS2021 [17] 240 U-Net 31M 4
swin-unetr-base BTCV [28] 24 Swin UNETR 62M 14
swin-unetr-small BTCV [28] 24 Swin UNETR 16M 14
swin-unetr-tiny BTCV [28] 24 Swin UNETR 4M 14
unetr BTCV [28] 24 UNETR 93M 14

The data represent raw projections of the abdominal area in helical geometry with 8 cm collimation and
pitch factor 1.38. The reconstruction is done using 420 mm field of view (FOV) with pixel numbers along X
and Y set to 512. The slice thickness is 1 mm with the slice increment 0.5 mm. Approximately half of the CT
studies include contrast in variable phases injected either orally or intravenously. Data of 42 patients with a
total of 99 scans are used for the evaluation in this study. The dataset contains both scans of healthy patients
and those with pathologies.

We consider 5 dose levels: 20%, 40%, 60%, 80%, 100%. Low-dose simulation and CT reconstruction is
performed for each dose factor and each denoising method (w/o denoising, iterative, CNN). The resulting dataset
consists of 1485 CT scans. Although the data come from a spectral scanner, we only consider conventional
images. The reason for the simplification is the following segmentation operating only on conventional images.
Examples of the reconstructed images are shown in Fig. 2. The reconstructed data are passed as inputs to the
segmentation models.

3.5 Evaluation

Since reference annotations are not available, dose robustness is defined as the deviation of low-dose segmentation
results from the full-dose results. It is measured by calculating metrics between segmentations for a reduced
and 100% dose level.

In this paper, we employ the Dice similarity coefficient (Dice) and Hausdorff Distance 95% (HD95) to
assess the difference between two segmentation results. HD95 represents the 95th percentile of surface distances
between two segmentation masks. The metrics are calculated as follows:

Dice(xi, yi) =
2
∑

i xi ∗ yi∑
i xi +

∑
i yi

, (5)

HD95(xi, yi) = P95(d(xi, yj), d(yj , xi)), (6)

where xi and yj denote voxels in 3D binary segmentation masks. In the case of multiple labels, we average the
values produced for each one of them.

4 Results

In Table 2, we compare robustness of the segmentation models when reducing dose level to 20%. The metrics
are grouped according to the denoising options. The median and the median absolute deviation were used to
aggregate the results as some metrics fall into the extremes of the value range. The swin-unetr-base, nnunet-
lung, swin-unetr-tiny models are the least robust, whereas the models from TotalSegmentator are the most
robust. Advances in denoising methods help improve robustness in almost all cases, and in some cases, it plays
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a decisive role. For example, for the swin-unetr-base model, the median Dice improves from 0 for scans without
denoising to 0.8 for scans with CNN-based denoising. With the CNN-based denoising, the median Dice between
low- and full-dose data does not go below 0.9 (12 for the Hausdorff distance) for all but one model. An example
of segmentation results calculated for 20% and 100% dose level images for the totalsegm-all model is shown in
Fig. 3. Examples for other models can be found in supplementary Figures S1-S11.

Figure 3: A segmentation example for totalsegm-all calculated for (b) 20% and (a) 100% dose level images with
iterative denoising applied. The last image (c) shows the difference between the two segmentations.

5 Discussion

5.1 Robustness of the TotalSegmentator approach

As shown in the results, the TotalSegmentator model outperforms other approaches in terms of robustness.
Even without additional denoising techniques, it reproduces the segmentation results at lower doses.

The key feature of this approach is the dataset size and diversity, which is four times larger than the next
largest dataset, as shown in Table 1. In addition, the training data contain labeled low-dose CT scans. To
demonstrate this, we calculate the standard deviation within the liver region. Assuming a constant CT value of
the liver, the statistics allows to assess the dose. Figure 4 shows that the distribution of the standard deviations
corresponding to the TotalSegmentator data has a heavy tail toward higher noise levels. The distribution par-
tially overlaps with the one for 20% dose level. Another key attribute of TotalSegmentator is the large number
of predicted classes, which may provide better reinforcement during training, leading to a more robust latent
space. Finally, as the model is based on the nnU-Net framework, it was trained using Gaussian noise augmen-
tation. However, other nnU-Net models, such as nnunet-liver or nnunet-abdmn, do not achieve similar results
making the augmentation not the sole contributor to dose robustness. We consider the aforementioned features
of TotalSegmentator as potential root causes of its robustness, however, isolated experiments are required to
confirm that.

Figure 4: Kernel density estimations of sampled standard deviations calculated inside the liver region for
each CT scan from different datasets: 20% and 100% dose data reconstructed using iterative denoising and
TotalSegmentator training data.
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Table 2: Differences between segmentation masks calculated for the corresponding 20% and 100% dose level CT
scans. The difference is measured with the Dice score and the Hausdorff distance (95 percentile). The median
and the median absolute deviation is calculated across all CT images for a given pair of a model and denoising
method.

Metric Model Name w/o denoising iterative CNN

Dice

totsegm-vertebrae 0.988± 0.002 0.988± 0.002 0.992± 0.002
totsegm-organs 0.986± 0.012 0.987± 0.011 0.990± 0.009
totsegm-muscles 0.986± 0.004 0.986± 0.004 0.990± 0.005
totsegm-all 0.982± 0.009 0.983± 0.008 0.988± 0.006
nnunet-spleen 0.975± 0.012 0.980± 0.010 0.988± 0.007
totsegm-cardiac 0.981± 0.010 0.982± 0.010 0.986± 0.008
totsegm-ribs 0.972± 0.007 0.974± 0.006 0.985± 0.004
nnunet-kits 0.974± 0.016 0.977± 0.014 0.983± 0.010
nnunet-thor 0.972± 0.017 0.974± 0.017 0.980± 0.012
nnunet-liver 0.948± 0.040 0.953± 0.036 0.951± 0.043
nnunet-abdmn 0.906± 0.062 0.916± 0.056 0.944± 0.040
unetr 0.858± 0.076 0.888± 0.061 0.944± 0.033
swin-unetr-small 0.497± 0.268 0.708± 0.185 0.932± 0.045
nnunet-pancreas 0.769± 0.147 0.855± 0.082 0.926± 0.033
swin-unetr-tiny 0.460± 0.274 0.680± 0.194 0.925± 0.048
swin-unetr-base 0.010± 0.010 0.026± 0.026 0.819± 0.123

Hausdorff95

totsegm-vertebrae 1.00± 0.00 1.00± 0.00 1.00± 0.00
totsegm-organs 1.41± 0.41 1.41± 0.41 1.00± 0.73
totsegm-muscles 1.00± 0.00 1.00± 0.00 1.00± 0.00
totsegm-all 1.00± 0.00 1.00± 0.00 1.00± 0.00
nnunet-spleen 2.00± 1.00 1.73± 0.73 1.00± 0.00
totsegm-cardiac 1.00± 0.00 1.00± 0.00 1.00± 0.00
totsegm-ribs 1.00± 0.00 1.00± 0.00 1.00± 0.00
nnunet-kits 1.73± 0.73 1.41± 0.41 1.41± 0.41
nnunet-thor 1.41± 0.41 1.41± 0.41 1.00± 0.00
nnunet-liver 11.64± 9.52 9.43± 8.02 11.87± 10.46
nnunet-abdmn 3.61± 2.19 3.00± 1.59 2.24± 1.24
unetr 4.12± 1.62 3.61± 1.37 2.00± 0.24
swin-unetr-small 47.03± 37.18 19.12± 15.96 2.24± 0.82
nnunet-pancreas 13.04± 9.04 9.35± 6.52 4.58± 2.35
swin-unetr-tiny 59.01± 39.03 31.24± 24.24 3.00± 1.00
swin-unetr-base 163.43± 64.73 147.99± 64.90 9.54± 7.30

5.2 Robustness across labels

Identifying challenging labels that contribute to the values presented in Table 2 would aid in addressing the
robustness problem more specifically. However, the selected set of segmentation models lacks a common subset
of labels applicable for straightforward analysis. Therefore, we employ label sizes to emphasize an overall trend.
In Figure 5, we present Dice scores calculated between the 20% and 100% dose levels scans reconstructed
using iterative denoising by the effective radius. The radius is derived based on the volume V occupied by the
predicted label

reff =
3

√
3

4π
V . (7)

The results show increased volatility and decreased value for smaller labels, including partially imaged organs.
However, starting from the radii between 12–19 mm, robustness achieves higher and more stable values, although
outliers are possible even for the largest organs. Despite labels not being characterized solely by their size, we
consider the results as an early indication that models segmenting smaller lesions, which are beyond the scope
of this study, may be less robust to dose reduction.

8



Figure 5: Distribution of Dice scores across effective radius intervals at the top along with the following binned
effective radius histograms for different organs: the liver, the right adrenal gland, the gallbladder, the lung
upper right lobe. The size of the intervals is sampled logarithmically. Accidental outliers of label size, e.g., for
the lung upper right lobe, are caused by FOV clipping.

5.3 Contrast factor

Contrasted CT acquisitions help to better resolve structures inside the human body. Therefore, organ seg-
mentations without contrast may be less robust to dose reduction since it affects the CNR. Figure 6 shows the
distributions of Dice calculated between the 20% and 100% dose levels for reconstructions using iterative denois-
ing for contrasted and non-contrasted CT scans. All the considered models show different levels of improvement
for contrasted scans. However, for some models, non-contrasted scans lie outside the training data distribu-
tion. For example, nnunet-kits has the largest difference in robustness between contrasted and non-contrasted
cases, but the training dataset mostly contains cases in the late arterial contrast phase. At the same time,
the contrast factor has a minor impact on totsegm-all which was trained including non-contrasted CT scans.
totsegm-organs is influenced the most by the contrast factor among five included in totsegm-all . Robustness
of totsegm-vertebrae, totsegm-muscles, totsegm-ribs is not affected by contrast injection as they do not take up
contrast.

5.4 Outliers

To account for metrics that lie at the extremes of the value range, the results were aggregated using the median
and the median absolute deviation, as shown in Table 2. The outliers can also be observed in Fig. 5 and Fig. 6.
The root cause of these outliers is twofold: false positives for small structures (such as the gallbladder, the
adrenal gland) and FOV clipping. Both of these are a consequence of using a separate unlabeled dataset for
the experiments, which may contain minor biases compared with the original training dataset. Since there is
no ground truth available, the outliers cannot be adequately filtered. Therefore, we use more robust statistics
to present the results.

5.5 Failure dynamics

Finally, we present failure curves (Fig. 7) for the least robust swin-unetr-base model and the nnunet-abdmn
model, both trained using the same dataset. These curves show the Dice coefficient calculated for the considered
dose levels. Since the training data are the same, both approaches share the same set of labels. In Figure 7a,
for nnunet-abdmn, the decline in robustness is small and almost linear. The curves corresponding to the three
considered reconstruction options overlap, although CNN-based denoising leads to more robust predictions.
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Figure 6: Distribution of Dice scores calculated between the 20% and 100% dose levels for reconstructions
using iterative denoising.

Figure 7: Dice scores calculated for different dose levels. The first column (a) corresponds to nnunet-abdmn,
the second (b) - to swin-unetr-base. Four rows correspond to the four organs: the liver, the pancreas, the right
kidney and the gallbladder.
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The role of denoising becomes more significant for swin-unetr-base (Fig. 7b), where CNN-based denoising even
changes the convexity of the curves compared with the other options. The described dynamics are consistent
across all labels.

5.6 Limitations

This study has potential limitations. Our method assesses deviations from full-dose segmentation, not from
the ground truth. Consequently, the accuracy of a segmentation method is decoupled from its robustness, as
defined in this paper. For example, a constant function would exhibit complete robustness. Therefore, it is
crucial to consider segmentation accuracy in conjunction with robustness. In this work, we employ pre-trained
models, and their accuracy is evaluated and substantiated in the respective papers. Nevertheless, transitioning
to the data used in our study may introduce a minor domain shift. Although visual results in supplementary
Figures S1-S11 indicate adequate generalization, this may manifest as outliers observed in the results. This
limitation can be mitigated by incorporating proper annotations for the data used to simulate low-dose images.
Alternatively, another model for low-dose simulation can be explored. For example, a generative adversarial
network (GAN) can be used to generate low-dose images from full-dose images. However, this noise model
would require training data and additional validation to ensure that the generated images are realistic.

6 Conclusion

We introduced a method to test robustness of semantic segmentation models against dose reduction in CT
images. Our approach allows systematic and practically relevant analysis with respect to various dose levels
and intrinsically co-registered low- and full-dose image pairs without rescanning a patient. We analyzed pre-
trained organ segmentation models in conjunction with different denoising options. Based on the results of the
experiments, we can draw the following conclusions:

• Deep learning-based segmentation models for anatomical segmentation can exhibit robustness to dose
reduction even without the application of additional denoising.

• The considered denoising methods do not compromise dose robustness of the segmentation models. In-
stead, they enable consistent segmentation results across a broader range of doses and can significantly
change failure dynamics when reducing dose level.

• The use of a contrast agent usually improves robustness. This effect is more pronounced for the organs
subjected to contrast.

Further research should address how to best couple image denoising and segmentation instead of developing
them in a completely independent manner and which factors contribute to dose robustness the most. The
proposed approach may also be extended with models segmenting lesions, which we expect to be less robust.
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7 Dice scores calculated for different dose levels. The first column (a) corresponds to nnunet-
abdmn, the second (b) - to swin-unetr-base. Four rows correspond to the four organs: the liver,
the pancreas, the right kidney and the gallbladder.

List of Tables

1 Taxonomy of segmentation models included into the study.
2 Differences between segmentation masks calculated for the corresponding 20% and 100% dose

level CT scans. The difference is measured with the Dice score and the Hausdorff distance (95
percentile). The median and the median absolute deviation is calculated across all CT images
for a given pair of a model and denoising method.

15


	Introduction
	Related Work
	Materials and Methods
	Low Dose Simulation
	Semantic segmentation
	CT denoising
	Data
	Evaluation

	Results
	Discussion
	Robustness of the TotalSegmentator approach
	Robustness across labels
	Contrast factor
	Outliers
	Failure dynamics
	Limitations

	Conclusion

