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Abstract. Many problems of low-level computer vision and image processing, such as denoising, deconvolu-
tion, tomographic reconstruction or superresolution, can be addressed by maximizing the posterior
distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making
problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed
by querying the SLM posterior covariance, unrelated to the density’s mode. We propose a scal-
able algorithmic framework, with which SLM posteriors over full, high-resolution images can be
approximated for the first time, solving a variational optimization problem which is convex if and
only if posterior mode finding is convex. These methods successfully drive the optimization of sam-
pling trajectories for real-world magnetic resonance imaging through Bayesian experimental design,
which has not been attempted before. Our methodology provides new insight into similarities and
differences between sparse reconstruction and approximate Bayesian inference, and has important
implications for compressive sensing of real-world images. Parts of this work have been presented at
conferences [M. Seeger, H. Nickisch, R. Pohmann, and B. Schölkopf, in Advances in Neural Infor-
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1. Introduction. Natural images have a sparse low-level statistical signature, represented
in the prior distribution of a sparse linear model (SLM). Imaging problems such as recon-
struction, denoising, or deconvolution can successfully be solved by maximizing their posterior
density (maximum a posteriori (MAP) estimation), a convex program for certain SLMs, for
which efficient solvers are available. The success of these techniques in modern imaging prac-
tice has somewhat shrouded their limited scope as Bayesian techniques: of all the information
in the posterior distribution, they make use of the density’s mode only.

Consider the problem of optimizing image acquisition, our major motivation in this work.
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Magnetic resonance images are reconstructed from Fourier samples. With scan time pro-
portional to the number of samples, a central question to ask is which sampling designs of
minimum size still lead to MAP reconstructions of diagnostically useful image quality? This is
not a direct reconstruction problem; the focus is on improving measurement designs to better
support subsequent reconstruction. Goal-directed acquisition optimization cannot sensibly be
addressed by MAP estimation, yet we show how to successfully drive it by Bayesian poste-
rior information beyond the mode. Advanced decision-making of this kind needs uncertainty
quantification (posterior covariance) rather than point estimation, requiring us to step out of
the sparse reconstruction scenario and approximate sparse Bayesian inference instead.

The Bayesian inference relaxation we focus on is not new [11, 23, 17], yet when it comes
to problem characterization or efficient algorithms, previous inference work lags far behind
standards established for MAP reconstruction. Our contributions range from theoretical char-
acterizations over novel scalable solvers to applications not previously attempted. The infer-
ence relaxation is shown to be a convex optimization problem if and only if this holds for
MAP estimation (section 3), a property not previously established for this or any other SLM
inference approximation. Moreover, we develop novel scalable double loop algorithms to solve
the variational problem orders of magnitude faster than previous methods we are aware of
(section 4). These algorithms expose an important link between variational Bayesian inference
and sparse MAP reconstruction, reducing the former to calling variants of the latter a few
times, interleaved by approximations of Gaussian covariance or principal components analysis
(PCA). By way of this reduction, the massive recent interest in MAP estimation can play
a role for variational Bayesian inference as well. To complement these similarities and clar-
ify confusion in the literature, we discuss computational and statistical differences of sparse
estimation and Bayesian inference in detail (section 5).

The ultimate motivation for novel developments presented here is sequential Bayesian
experimental design (section 6), applied to acquisition optimization for medical imaging. We
present a powerful variant of adaptive compressive sensing, which succeeds on real-world
image data where theoretical proposals for nonadaptive compressive sensing [9, 6, 10] fail
(section 6.1). Among our experimental results is part of the first successful study for Bayesian
sampling optimization of magnetic resonance imaging, learned and evaluated on real-world
image data (section 7.4).

An implementation of the algorithms presented here is publicly available, as part of the
glm-ie toolbox (section 4.6) available at http://mloss.org/software/view/269/.

2. Sparse Bayesian inference. Variational approximations. In a sparse linear model
(SLM), the image u ∈ R

n of n pixels is unknown, and m linear measurements y ∈ R
m are

given, where m� n in many situations of practical interest. The measurement model is

(2.1) y = Xu + ε, ε ∼ N(0, σ2I),

where X ∈ R
m×n is the design matrix and ε is Gaussian noise of variance σ2, implying the

Gaussian likelihood P (y|u) = N(y|Xu, σ2I). Natural images are characterized by histograms
of simple filter responses (derivatives, wavelet coefficients) exhibiting super-Gaussian (or
sparse) form: most coefficients are close to zero, while a small fraction have significant sizes [35,
28] (a precise definition of super-Gaussianity is given in section 2.1). Accordingly, SLMs have

http://mloss.org/software/view/269/
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super-Gaussian prior distributions P (u). The MAP estimator ûMAP := argmaxu [logP (y|u)+
logP (u)] can outperform maximum likelihood ûML := argmaxu logP (y|u) when u represents
an image.

In this paper, we focus on priors of the form P (u) ∝ ∏q
i=1 ti(si), where s = Bu. The

potential functions ti(·) are positive and bounded. The operator B ∈ R
q×n may contain

derivative filters or a wavelet transform. Both X and B have to be structured or sparse in
order for any SLM algorithm to be scalable. Laplace (or double exponential) potentials are
sparsity-enforcing:

(2.2) ti(si) = e−τi|si|, τi > 0.

For this particular prior and the Gaussian likelihood (2.1), MAP estimation corresponds to
a quadratic program, known as LASSO [37], for B = I. Note that log ti(si) is concave. In
general, if log-concavity holds for all model potentials, MAP estimation is a convex problem.
Another example of sparsity potentials are Student’s t:

(2.3) ti(si) = (1 + (τi/ν)s
2
i )

−(ν+1)/2, τi, ν > 0.

For these, log ti(si) is not concave, and MAP estimation is not (in general) a convex program.
Note that − log ti(si) is also known as a Lorentzian penalty function.

2.1. Variational lower bounds. Bayesian inference amounts to computing moments of
the posterior distribution

P (u|y) = Z−1N(y|Xu, σ2I)

q∏
i=1

ti(si), s = Bu,

Z =

∫
N(y|Xu, σ2I)

q∏
i=1

ti(si) du.

(2.4)

This is not analytically tractable in general for SLMs, due to two reasons coming together:
P (u|y) is highly coupled (X is not block-diagonal) and non-Gaussian. We focus on variational
approximations here, rooted in statistical physics. The log partition function logZ (also known
as log evidence or log marginal likelihood) is the prime target for variational methods [41].
Formally, the potentials ti(si) are replaced by Gaussian terms of parameterized width, the
posterior P (u|y) by a Gaussian approximation Q(u|y). The width parameters are adjusted
by fitting Q(u|y) to P (u|y), in what amounts to the variational optimization problem.

Our variational relaxation exploits the fact that all potentials ti(si) are (strongly) super-
Gaussian: there exists a bi ∈ R such that g̃i(si) := log ti(si) − bisi is even, and convex and

decreasing as a function of xi := s2i [23]. We write gi(xi) := g̃i(x
1/2
i ), xi ≥ 0, in what follows.

This implies that

(2.5) ti(si) = max
γi≥0

ebisi−s2i /(2γi)−hi(γi)/2, hi(γi) := max
xi≥0

(−xi/γi − 2gi(xi)).

A super-Gaussian ti(si) has tight Gaussian-form lower bounds of all widths (see Figure 1).
We replace ti(si) by these lower bounds in order to step from P (u|y) to the family of approx-

imations Q(u|y) ∝ P (y|u)ebT s− 1
2
sT (diag γ)−1s , where γ = (γi).



LARGE SCALE SPARSE BAYESIAN INFERENCE 169

← γ→

0 2 4 6 8
0

2

4

6

8

h(γ)

← γ→

0 2 4 6 8
1.4

1.6

1.8

2

h(γ)

← γ→

0 2 4 6 8
0

1

2

3

4
h(γ)

Figure 1. Super-Gaussian distributions admit tight Gaussian-form lower bounds of any width γ. Left:
Laplace (2.2); middle: Bernoulli (2.6); right: Student’s t (2.3).

To establish (2.5), note that the extended-value function gi(xi) (assigning gi(xi) = ∞
for xi < 0) is a closed proper convex function and thus can be represented by Fenchel
duality [26, sect. 12]: gi(xi) = supλi

xiλi − g∗i (λi), where the conjugate function g∗i (λi) =
supxi

xiλi−gi(xi) is closed convex as well. For xi ≥ 0 and λi > 0, we have that xiλi−gi(xi) ≥
xiλi − gi(0) → ∞ with xi → ∞, which implies that g∗i (λi) = ∞ for λi > 0. Also,
g∗i (0) = − limxi→∞ gi(xi), so that −g∗i (0) < gi(xi) for any xi < ∞. Therefore, for any
xi ∈ [0,∞), gi(xi) = supλi<0 xiλi − g∗i (λi). Reparameterizing γi := −1/(2λi), we have that
gi(xi) = maxγi≥0−xi/(2γi)− g∗i (−1/(2γi)) (note that in order to accommodate gi(0) in gen-
eral, we have to allow for γi = 0). Finally, hi(γi) := 2g∗i (−1/(2γi)).

The class of super-Gaussian potentials is large. All scale mixtures (mixtures of zero-
mean Gaussians ti(si) = Eγi [N(si|0, γi)]) are super-Gaussian, and hi(γi) can be written in
terms of the density for γi [23]. Both Laplace (2.2) and Student’s t potentials (2.3) are super-
Gaussian, with hi(γi) given in Appendix A.6. Bernoulli potentials, used as binary classification
likelihoods,

(2.6) ti(si) =
(
1 + e−yiτisi

)−1
, yi ∈ {±1}, τi > 0,

are super-Gaussian, with bi = yiτi/2 [17, sect. 3.B]. While the corresponding hi(γi) cannot
be determined analytically, this is not required in our algorithms, which can be implemented

based on gi(xi) and its derivatives only. Finally, if the t
(l)
i (si) are super-Gaussian, so is the

positive mixture
∑L

l=1 αlt
(l)
i (si), αl > 0, because the logsumexp function x 	→ log 1T exp(x)

[4, sect. 3.1.5] is strictly convex on R
L and increasing in each argument, and the log-mixture

is the concatenation of logsumexp with (log t
(l)
i (si)+ logαl)l, the latter convex and decreasing

for xi = s2i > 0 in each component [4, sect. 3.2.4].
A natural criterion for fitting Q(u|y) to P (u|y) is obtained by plugging these bounds into

the partition function Z of (2.4):

(2.7) Z ≥ e−h(γ)/2

∫
N(y|Xu, σ2I)eb

T s− 1
2
sTΓ−1s du, h(γ) :=

q∑
i=1

hi(γi),
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where Γ := diag γ and s = Bu. The right-hand side is a Gaussian integral and can be
evaluated easily. The variational problem is to maximize this lower bound w.r.t. the variational
parameters γ 
 0 (γi ≥ 0 for all i = 1, . . . , q), with the aim of tightening the approximation
to logZ. This criterion can be interpreted as a divergence function: if the family of all Q(u|y)
contained the true posterior P (u|y), the latter would maximize the bound.

This relaxation has frequently been used before [11, 23, 17] on inference problems of
moderate size. In the following, we provide results that extend its scope to large scale imaging
problems of interest here. In the next section, we characterize the convexity of the underlying
optimization problem precisely. In section 4, we provide a new class of algorithms for solving
this problem orders of magnitude faster than previously used techniques.

3. Convexity properties of variational inference. In this section, we characterize the
variational optimization problem of maximizing the right-hand side of (2.7). We show that it
is a convex problem if and only if all potentials ti(si) are log-concave, which is equivalent to
MAP estimation being convex for the same model.

We start by converting the lower bound (2.7) into a more amenable form. The Gaussian
posterior Q(u|y) has the covariance matrix

(3.1) CovQ[u|y] = A−1, A := σ−2XTX +BTΓ−1B, Γ = diag γ.

We have that∫
P (y|u)ebT s− 1

2
sTΓ−1s du = |2πA−1|1/2 max

u
P (y|u)ebT s− 1

2
sTΓ−1s , s = Bu,

since maxu Q(u|y) = |2πA−1|−1/2
∫
Q(u|y) du. We find that Z ≥ C1e

−φ(γ)/2, where

(3.2) φ(γ) := log |A|+ h(γ) + min
u
R(u,γ), R := σ−2‖y −Xu‖2 + sTΓ−1s − 2bT s,

and C1 = (2π)(n−m)/2σ−m. The variational problem is minγ�0 φ(γ), and the Gaussian pos-
terior approximation is Q(u|y) with the final parameters γ plugged in. We will also write
φ(u,γ) := log |A|+ h(γ) +R(u,γ), so that φ(γ) = minu φ(u,γ).

It is instructive to compare this variational inference problem with MAP estimation:

min
u
−2 log P (u|y) = min

u
σ−2‖y −Xu‖2 − 2

∑
i

log ti(si) + C2

= min
u,γ�0

h(γ) +R(u,γ) + C2,
(3.3)

where C2 is a constant. The difference between these problems rests on the log |A| term,
present in φ(γ) yet absent in MAP. Ultimately, this observation is the key to the characteriza-
tion provided in this section and to the scalable solvers developed in the subsequent section.
Its full relevance will be clarified in section 5.

3.1. Convexity results. In this section, we prove that φ(γ) is convex if all potentials ti(si)
are log-concave, with this condition being necessary in general. We address each term in (3.2)
separately.



LARGE SCALE SPARSE BAYESIAN INFERENCE 171

Theorem 3.1. Let X ∈ R
m×n, B ∈ R

q×n be arbitrary matrices, and let

Ã(d) := σ−2XTX +BT (diagd)B, d � 0,

so that Ã(d) is positive definite for all d � 0.
(1) Let fi(γi) be twice continuously differentiable functions into R+ so that log fi(γi) are

convex for all i and γi. Then, γ 	→ log |Ã(f(γ))| is convex. Especially, γ 	→ log |A| is
convex.

(2) Let fi(πi) ≥ 0 be concave functions. Then, π 	→ log |Ã(f(π))| is concave. Especially,
γ−1 	→ log |A| is concave.

(3) Let fi(γi) ≥ 0 be concave functions. Then, γ 	→ 1T (log f(γ)) + log |Ã(f(γ)−1)| is
concave. Especially, γ 	→ 1T (log γ) + log |A| is concave.

(4) Let Q(u|y) be the approximate posterior with covariance matrix given by (3.1). Then,
for all i,

VarQ[si|y] = δTi BA−1BTδi ≤ γi.
A proof is provided in Appendix A.1. Instantiating part (1) with fi(γi) = γ−1

i , we see that

γ 	→ log |A| is convex. Other valid examples are fi(γi) = γ−βi
i , βi > 0. For fi(γi) = eγi , we

obtain the convexity of γ 	→ log |Ã(exp(γ))|, generalizing the logsumexp function to matrix
values. Parts (2) and (3) will be required in section 4.2. Finally, part (4) gives a precise
characterization of γi as sparsity parameter, regulating the variance of si.

Theorem 3.2. The function

γ 	→ φ(γ)− h(γ) = log |A|+min
u

(
σ−2‖y −Xu‖2 + sTΓ−1s − 2bT s

)
is convex for γ � 0, where s = Bu.

Proof. The convexity of log |A| has been shown in Theorem 3.1(1). σ−2‖y−Xu‖2−2bT s
is convex in u, and (u,γ) 	→ sTΓ−1s is jointly convex, since the quadratic-over-linear function
(si, γi) 	→ s2i /γi is jointly convex for γi > 0 [4, sect. 3.1.5]. Therefore, minu R(u,γ) is convex
for γ � 0 [4, sect. 3.2.5].

To put this result into context, note that

φ(γ)− h(γ) = −2 log
∫
P (y|u)ebT s− 1

2
sTΓ−1s du, s = Bu,

is the negative log partition function of a Gaussian with natural parameters γ−1: it is well
known that γ−1 	→ φ(γ) − h(γ) is a concave function [41]. However, γ−1 	→ h(γ) is convex
for a model with super-Gaussian potentials (recall that hi(γi) = 2g∗i (−1/(2γi)), where g∗i (·)
is convex as a dual function of gi(·)), which means that in general γ−1 	→ φ(γ) need not be
convex or concave. The convexity of this negative log partition function w.r.t. γ seems specific
to the Gaussian case.

Given Theorem 3.2, if all hi(γi) are convex, the whole variational problem minγ�0 φ is
convex. With the following theorem, we characterize this case precisely.

Theorem 3.3. Consider a model with Gaussian likelihood (2.1) and a prior P (u) ∝∏q
i=1 ti(si),

s = Bu, so that all ti(si) are strongly super-Gaussian, meaning that g̃i(si) = log ti(si)− bisi
is even, and gi(xi) = g̃i(x

1/2
i ) is strictly convex and decreasing for xi > 0.
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(1) If g̃i(si) is concave and twice continuously differentiable for si > 0, then hi(γi) is
convex. On the other hand, if g̃′′i (si) > 0 for some si > 0, then hi(γi) is not convex at
some γi > 0.

(2) If all g̃i(si) are concave and twice continuously differentiable for si > 0, then the
variational problem minγ�0 φ is a convex optimization problem. On the other hand, if
g̃′′i (si) > 0 for some i and si > 0, then h(γ) is not convex, and there exist some X,
B, and y such that φ(γ) is not a convex function.

The proof is given in Appendix A.2. Our theorem provides a complete characterization
of convexity for the variational inference relaxation of section 2, which is the same as for
MAP estimation. Log-concavity of all potentials is sufficient, and necessary in general, for the
convexity of either. We are not aware of a comparable equivalence having been established
for any other nontrivial approximate inference method for continuous variable models.

We close this section with some examples. For Laplacians (2.2), hi(γi) = τ2i γi (see Ap-
pendix A.6). For SLMs with these potentials, MAP estimation is a convex quadratic program.
Our result implies that variational inference is a convex problem as well, albeit with a differ-
entiable criterion. Bernoulli potentials (2.6) are log-concave. MAP estimation for generalized
linear models with these potentials is known as penalized logistic regression, a convex prob-
lem typically solved by the iteratively reweighted least squares (IRLS) algorithm. Variational
inference for this model is also a convex problem, and our algorithms introduced in section 4
make use of IRLS as well. Finally, Student’s t potentials (2.3) are not log-concave, and hi(γi)
is neither convex nor concave (see Appendix A.6). Neither MAP estimation nor variational
inference is convex in this case.

Convexity of an algorithm is desirable for many reasons. No restarting is needed to avoid
local minima. Typically, the result is robust to small perturbations of the data. These stability
properties become all the more important in the context of sequential experimental design (see
section 6), or when Bayesian model selection1 is used. However, the convexity of φ(γ) does
not necessarily imply that the minimum point can be found efficiently. In the next section,
we propose a class of algorithms that solve the variational problem for very large instances,
by decoupling the criterion (3.2) in a novel way.

4. Scalable inference algorithms. In this section, we propose novel algorithms for solving
the variational inference problem minγ φ in a scalable way. Our algorithms can be used
whether φ(γ) is convex or not; they are guaranteed to converge to a stationary point. All
efforts are reduced to well-known, scalable algorithms of signal reconstruction and numerical
mathematics, with little extra technology required, and no additional heuristics or step size
parameters to be tuned.

We begin with the special case of log-concave potentials ti(si), such as Laplace (2.2) or
Bernoulli (2.6), extending our framework to full generality in section 4.1. The variational infer-
ence problem is convex in this case (Theorem 3.3). Previous algorithms for solving minγ φ(γ)
[11, 23] are of the coordinate descent type, minimizing φ w.r.t. one γi at a time. Unfortu-
nately, such algorithms cannot be scaled up to imaging problems of interest here. An update
of γi depends on the marginal posterior Q(si|y), whose computation requires the solution of a

1Model selection (or hyperparameter learning) is not discussed in this paper. It can be implemented easily
by maximizing the lower bound −φ(γ)/2 + logC1 ≤ logZ w.r.t. hyperparameters.
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linear system with matrix A ∈ R
n×n. At the projected scale, neither A nor a decomposition

thereof can be maintained; systems have to be solved iteratively. Now, each of the q potentials
has to be visited at least once, typically several times. With q, n, and m in the hundred thou-
sands, it is certainly infeasible to solve O(q) linear systems. In contrast, the algorithms we
develop here often converge after fewer than a hundred systems have been solved. We could
also feed φ(γ) and its gradient ∇γφ into an off-the-shelf gradient-based optimizer. However,
as already noted in section 3, φ(γ) is the sum of a standard penalized least squares (MAP)
part and a highly coupled, computationally difficult term. The algorithms we propose take
account of this decomposition, decoupling the troublesome term in inner loop standard form
problems which can be solved by any of a large number of specialized algorithms not appli-
cable to minγ φ(γ). The expensive part of ∇γφ has to be computed only a few times for our
algorithms to converge.

We make use of a powerful idea known as double loop or concave-convex algorithms. Spe-
cial cases of such algorithms are frequently used in machine learning, computer vision, and
statistics: the expectation-maximization (EM) algorithm [8], variational mean field Bayesian
inference [1], or concave-convex procedures for discrete approximate inference [48], among
many others. The idea is to tangentially upper bound φ by decoupled functions φz which are
much simpler to minimize than φ itself: algorithms iterate between refitting φz to φ and min-
imizing φz . For example, in the EM algorithm for maximizing a log marginal likelihood, these
stages correspond to an “E step” and an “M step”: while the criterion could well be minimized
directly (at the expense of one “E step” per criterion evaluation), “M step” minimizations are
much easier to do.

As noted in section 3, if the variational criterion (3.2) lacked the log |A| part, it would
correspond to a penalized least squares MAP objective (3.3), and simple efficient algorithms
would apply. As discussed in section 4.4, evaluating log |A| or its gradient is computationally
challenging. Crucially, this term satisfies a concavity property. As shown in section 4.2,
Fenchel duality implies that log |A| ≤ zT

1 (γ
−1) − g∗1(z1). For any fixed z1 � 0, the upper

bound is tangentially tight, convex in γ, and decouples additively. If log |A| is replaced by this
upper bound, the resulting objective φz1(u,γ) := zT

1 (γ
−1)+h(γ)+R(u,γ)− g∗1 (z1) is of the

same decoupled penalized least squares form as a MAP criterion (3.3). This decomposition
suggests a double loop algorithm for solving minγ φ(γ). In inner loop minimizations, we
solve minu,γ�0 φz1 for fixed z1 � 0, and in interjacent outer loop updates, we refit z1 ←
argminφz1(u,γ).

The MAP estimation objective (3.3) and φz1(u,γ) have a similar form. Specifically, recall

that −2gi(xi) = minγi≥0 xi/γi + hi(γi), where gi(xi) = g̃i(x
1/2
i ) and g̃i(si) = log ti(si) − bisi.

The inner loop problem is

(4.1) min
u,γ�0

φz1(u,γ) = min
u
σ−2‖y −Xu‖2 − 2

∑q

i=1

(
gi(z1,i + s2i ) + bisi

)
,

where s = Bu. This is a smoothed version of the MAP estimation problem, which would
be obtained for z1,i = 0. However, z1,i > 0 in our approximate inference algorithm at all
times (see section 4.2). Upon inner loop convergence to u∗, γ∗,i = −1/[2(dgi/dxi)|xi=z1,i+s2∗,i

],

where s∗ = Bu∗. Note that in order to run the algorithm, the analytic form of hi(γi) need

not be known. For Laplace potentials (2.2), the inner loop penalizer is 2
∑

i τi

√
z1,i + s2i , and
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γ∗,i =
√
z1,i + s2∗,i/τi.

Importantly, the inner loop problem (4.1) is of the same simple penalized least squares
form as MAP estimation, and any of the wide range of recent efficient solvers can be plugged
into our method. For example, the iteratively reweighted least squares (IRLS) algorithm [14],
a variant of the Newton–Raphson method, can be used (details are given in section 4.3).
Each Newton step requires the solution of a linear system with a matrix of the same form
as A (3.1), and the convergence rate of IRLS is quadratic. It follows from the derivation of
(3.2) that once an inner loop has converged to (u∗,γ∗), the minimizer u∗ is the mean of the
approximate posterior Q(u|y) for γ∗.

The rationale behind our algorithms lies in decoupling the variational criterion φ via a
Fenchel duality upper bound, thereby matching algorithmic scheduling to the computational
complexity structure of φ. To appreciate this point, note that in an off-the-shelf optimizer
applied to minγ�0 φ(γ), both φ(γ) and the gradient ∇γφ have to be computed frequently. In
this respect, the log |A| coupling term proves by far more computationally challenging than
the rest (see section 4.4). This obvious computational difference between parts of φ(γ) is not
exploited in standard gradient-based algorithms: they require all of ∇γφ in each iteration, and
all of φ(γ) in every single line search step. As discussed in section 4.4, computing log |A| to
high accuracy is not feasible for models of interest here, and most off-the-shelf optimizers with
fast convergence rates are very hard to run with such approximately computed criteria. In
our algorithm, the critical part is identified and decoupled, and resulting inner loop problems
can be solved by robust and efficient standard code, requiring a minimal effort of adaptation.
The bound φz1 has to be refitted only once per outer loop iteration: z1 ← ∇γ−1 log |A| (see
section 4.2), the computation of which constitutes the most demanding part of ∇γφ. Fenchel
duality bounding2 is used to minimize the number of these costly steps (further advantages are
noted at the end of section 4.4). Resulting double loop algorithms are simple to implement
based on efficient penalized least squares reconstruction code, taking full advantage of the
very well researched state of the art for this setup.

4.1. The general case. In this section, we generalize the double loop algorithm along two
directions. First, if potentials log ti(si) are not log-concave, the inner loop problems (4.1) are
not convex in general (Theorem 3.3), yet a simple variant can be used to remedy this defect.
Second, as detailed in section 4.2, there are different ways of decoupling log |A|, giving rise
to different algorithms. In this section, we concentrate on developing these variants; their
practical differences and the implications thereof are elaborated on in section 5.

If ti(si) is not log-concave, then hi(γi) is not convex in general (Theorem 3.3). In this
case, we can write hi(γi) = h∩,i(γi) + h∪,i(γi), where h∩,i is concave and nondecreasing and
h∪,i is convex. Such a decomposition is not unique and has to be chosen for each hi at hand.
In hindsight, h∩,i should be chosen as small as possible (for example, h∩,i ≡ 0 if ti(si) is log-
concave, as in the case treated above), and if IRLS is to be used for inner loop minimizations
(see section 4.3), h∪,i should be twice continuously differentiable. For Student’s t potentials

2Note that Fenchel duality bounding is also used in difference-of-convex programming, a general framework
to address nonconvex, typically nonsmooth optimization problems in a double loop fashion. In our application,
φ(γ) is smooth in general and convex in many applications (see section 3): our reasons for applying bound
minimization are different.
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(2.3), such a decomposition is given in Appendix A.6. We define h∩(γ) =
∑

i h∩,i(γi), h∪(γ) =∑
i h∪,i(γi) and modify outer loop updates by applying a second Fenchel duality bounding

operation, h∩(γ) ≤ z̃T
2 γ − g̃∗2(z̃2), resulting in a variant of the inner loop criterion (4.1). If

h∩,i is differentiable, the outer loop update is z̃2 ← h′∩,i(γi); otherwise any element from the
subgradient can be chosen (note that z̃2 ≥ 0, as h∩,i is nondecreasing). Moreover, as shown
in section 4.2, Fenchel duality can be employed in order to bound log |A| in two different
ways, one employed above, and the other being log |A| ≤ zT

2 γ − 1T (log γ) − g∗2(z2), z2 
 0.
Combining these bounds (by adding z̃2 to z2), we obtain

φ(γ,u) ≤ φz(u,γ) := zT
1 (γ

−1) + zT
2 γ − zT

3 (log γ) + h∪(γ) +R(u,γ)− g∗(z),

where z3,i ∈ {0, 1} and g∗(z) collects the offsets of all Fenchel duality bounds. Note that zj 
 0
for j = 1, 2, 3, and for each i, either z1,i > 0 and z3,i = 0, or z1,i = 0 and z2,i > 0, z3,i = 1. We
have that

φz(u) := min
γ�0

φz(u,γ) = σ−2‖y −Xu‖2 + 2
∑q

i=1
h∗i (si)− 2bT s,

h∗i (si) :=
1

2
min
γi≥0

z1,i + s2i
γi

+ z2,iγi − z3,i log γi + h∪,i(γi), s = Bu.
(4.2)

Note that h∗i (si) is convex as the minimum (over γi ≥ 0) of a jointly convex argument [4,
sect. 3.2.5]. The inner loop minimization problem minu(minγ φz) is of penalized least squares
form and can be solved with the same array of efficient algorithms applicable to the special
case (4.1). An application of the second-order IRLS method is detailed in section 4.3. A
schema for the full variational inference algorithm is given in Algorithm 1.

Algorithm 1. Double loop variational inference algorithm.
repeat
if first outer loop iteration then

Initialize bound φz . u = 0.
else

Outer loop update: Refit upper bound φz to φ (tangent at γ).
Requires marginal variances ẑ = diag−1(BA−1BT ) (section 4.4).
Initialize u = u∗ (previous solution).

end if
repeat

Newton (IRLS) iteration to minimize minγ�0 φz (4.2) w.r.t. u.
Entails solving a linear system (by linear conjugate gradients) and line search (sec-
tion 4.3).

until u∗ = argminu(minγ�0 φz) converged
Update γ = argminγ�0 φz(u∗, ·).

until outer loop converged

The algorithms are specialized to the ti(si) through h
∗
i (si) and its derivatives. The impor-

tant special case of log-concave ti(si) has been detailed above. For Student’s t potentials (2.3),
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a decomposition is detailed in Appendix A.6. In this case, the overall problem minγ�0 φ(γ)
is not convex, yet our double loop algorithm iterates over standard-form convex inner loop
problems. Finally, for log-concave ti(si) and z2,i �= 0 (type B bounding, section 4.2), our
algorithm can be implemented generically, as detailed in Appendix A.5.

We close this section by establishing some characteristics of these algorithms. First, we
found it useful to initialize them with constant z1 and/or z2 of small size, and with u = 0.
Moreover, each subsequent inner loop minimization is started with u = u∗ from the last
round. The development of our algorithms is inspired by the sparse estimation method of
[43]; relationships to this method are discussed in section 5. Our algorithms are globally
convergent; a stationary point of φ(γ) is found from any starting point γ � 0 (recall from
Theorem 3.3 that for log-concave potentials, this stationary point is a global solution). This
is detailed in [43]. Intuitively, at the beginning of each outer loop iteration, φz and φ have
the same tangent plane at γ, so that each inner loop minimization significantly decreases φ
unless ∇γφ = 0. Note that this convergence proof requires that outer loop updates are done
exactly; this point is elaborated on at the end of section 4.4.

Our variational inference algorithms differ from previous methods3 in that models that
are orders of magnitude larger can successfully be addressed. They apply to the particular
variational relaxation introduced in section 3, whose relationship to other inference approxi-
mations is detailed in [29]. While most previous relaxations attain scalability through many
factorization assumptions concerning the approximate posterior, Q(u|y) in our method is
fully coupled, sharing its conditional independence graph with the true posterior P (u|y).

4.2. Bounding log |A|. We need to upper bound log |A| by a term which is convex
and decoupling in γ. This can be done in two different ways using Fenchel duality, giving
rise to bounds with different characteristics. Details for the development here are given in
Appendix A.4.

Recall our assumption that A � 0 for each γ � 0. If π = γ−1, then π 	→ log |Ã(π)| =
log |A| is concave for π � 0 (Theorem 3.1(2) with f ≡ id). Moreover, log |Ã(π)| is increasing
and unbounded in each component of π (Theorem 5.1). Fenchel duality [26, sect. 12] implies
that log |Ã(π)| = minz1�0 z

T
1 π − g∗1(z1) for π � 0; thus log |A| = minz1�0 z

T
1 (γ

−1)− g∗1(z1)
for γ � 0. Therefore, log |A| ≤ zT

1 (γ
−1)− g∗1(z1). For fixed γ � 0, this is an equality for

z1,∗ = ∇γ−1 log |A| = ẑ := (VarQ[si|y]) = diag−1
(
BA−1BT

) � 0,

and g∗1(z1,∗) = zT
1,∗(γ

−1)− log |A|. This is called bounding type A in what follows.

On the other hand, γ 	→ 1T (log γ) + log |A| is concave for γ � 0 (Theorem 3.1(3) with
f ≡ id). Employing Fenchel duality once more, we have that log |A| ≤ zT

2 γ − 1T (log γ) −
g∗2(z2), z2 
 0. For any fixed γ, equality is attained at z2,∗ = γ−1 ◦ (1 − γ−1 ◦ ẑ), and
g∗2(z2,∗) = zT

2,∗γ − log |A| − 1T (log γ) at this point. This is referred to as bounding type B.
In general, type A bounding is tighter for γi away from zero, while type B bounding is

tighter for γi close to zero (see Figure 2); implications of this point are discussed in section 5.
Whatever bounding type we use, refitting the corresponding upper bound to log |A| requires

3This comment holds for approximate inference methods. For sparse estimation, large scale algorithms are
available (see section 5).
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Figure 2. Comparison of type A and B upper bounds on log(1 + 2/γ).

the computation of ẑ = (VarQ[si|y]): all marginal variances of the Gaussian distribution
Q(s|y). In general, computing Gaussian marginal variances is a hard numerical problem,
which is discussed in more detail in section 4.4.

4.3. The inner loop optimization. The inner loop minimization problem is given by (4.2),
and its special case (4.1) for log-concave potentials and log |A| bounding type A is given by
h∗i (si) = −gi(z1,i + s2i ). This problem is of standard penalized least squares form, and a large
number of recent algorithms [12, 3, 46] can be applied with little customization effort. In this
section, we provide details about how to apply the IRLS algorithm [14], a special case of the
Newton–Raphson method.

We describe a single IRLS step here, starting from u. Let r := Xu−y denote the residual
vector. If θi := (h∗i )

′(si)− bi, ρi := (h∗i )
′′(si), then

∇u(φz/2) = σ−2XTr +BTθ, ∇∇u(φz/2) = σ−2XTX +BT (diagρ)B.

Note that ρi ≥ 0 by the convexity of h∗i . The Newton search direction is

d := −(σ−2XTX +BT (diag ρ)B)−1(σ−2XT r +BTθ).

The computation of d requires us to solve a system with a matrix of the same form as A, a
reweighted least squares problem otherwise used to compute the means in a Gaussian model of
the structure of Q(u|y). We solve these systems approximately by the preconditioned linear
conjugate gradients (LCG) algorithm [13]. The cost per iteration of LCG is dominated by
matrix-vector multiplications (MVMs) with XTX, B, and BT . A line search along d can
be run in negligible time. If f(t) := φz(u + td)/2, then f ′(t) = σ−2((Xd)T r + t‖Xd‖2) +
(Bd)Tθ(t), where θ(t) is the gradient at s(t) = s + tBd. With (Xd)T r, ‖Xd‖2, and Bd
precomputed, f(t) and f ′(t) can be evaluated in O(q) without any further MVMs. The line
search is started with t0 = 1. Finally, once u∗ = argminu φz(u) is found, γ is explicitly
updated as argminφz(u∗, ·). Note that at this point, u∗ = EQ[u|y], which follows from the
derivation at the beginning of section 3.
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4.4. Estimation of Gaussian variances. Variational inference does require marginal vari-
ances ẑ = diag−1(BA−1BT ) = (VarQ[si|y]) of the Gaussian Q(s|y) (see section 4.2), which
are much harder to approximate than means. In this section, we discuss a general method for
(co)variance approximation. Empirically, the performance of our double loop algorithms is
remarkably robust in light of substantial overall variance approximation errors; some insights
into this finding are given below.

Marginal posterior variances have to be computed in any approximate Bayesian inference
method, although they are not required in typical sparse point estimation techniques (see
section 5). Our double loop algorithms reduce approximate inference to point estimation and
Gaussian (co)variance approximation. Not only do they expose the latter as the missing link
between sparse estimation and variational inference, but their main rationale is that Gaussian
variances have to be computed only a few times, while off-the-shelf variational optimizers
query them for every single criterion evaluation.

Marginal variance approximations have been proposed for sparsely connected Gaussian
Markov random fields (MRFs), iterating over embedded spanning tree models [42] or exploiting
rapid correlation decay in models with homogeneous prior [20]. In applications of interest
here, A neither is sparse nor has useful graphical model structure. Committing to a low-
rank approximation of the covariance A−1 [20, 27], an optimal choice in terms of preserving
variances is principal components analysis (PCA), based on the smallest eigenvalues (resp.,
eigenvectors) vectors of A (resp., the largest of A−1). The Lanczos algorithm [13] provides
a scalable approximation to PCA and was employed for variance estimation in [27]. After k
iterations, we have an orthonormal basis Qk ∈ R

n×k, within which extremal eigenvectors of A
are rapidly well approximated (due to the nearly linear spectral decay of typical A matrices
(Figure 6, upper panel), both largest and smallest eigenvalues are obtained). AsQT

kAQk = Tk

is tridiagonal, the Lanczos variance approximation ẑk = diag−1(BQkT
−1
k QT

kB
T ) can be

computed efficiently. Importantly, ẑk,i ≤ ẑk+1,i ≤ ẑi for all k and i. Namely, if Qk = [q1 . . . qk]
and Tk has main diagonal (αl) and subdiagonal (βl), let (el) and (dl) be the main diagonal and
subdiagonal of the bidiagonal Cholesky factor Lk of Tk. Then, dk−1 = βk−1/ek−1, ek = (αk −
d2k−1)

1/2, with d0 = 0. If Vk := BQkL
−T
k , we have Vk = [v1 . . . vk], vk = (Bqk−dk−1vk−1)/ek.

Finally, ẑk = ẑk−1 + v2
k (with ẑ0 = 0).

Unfortunately, the Lanczos algorithm is much harder to run in practice than LCG, and
its cost grows superlinearly in k. A promising variant of selectively reorthogonalized Lanczos
[24] is given in [2], where contributions from undesired parts of the spectrum (A’s largest
eigenvalues in our case) are filtered out by replacing A with polynomials of itself. Recently,
randomized PCA approaches have become popular [15], although their relevance for variance
approximation is unclear. Nevertheless, for large scale problems of interest, standard Lanczos
can be run for k � n iterations only, at which point most of the ẑk,i are severely under-
estimated (see section 7.3). Since Gaussian variances are essential for variational Bayesian
inference, but scalable, uniformly accurate variance estimators are not known, robustness to
variance approximations errors is critical for any large scale approximate inference algorithm.

What do the Lanczos variance approximation errors imply for our double loop algorithms?
First, the global convergence proof of section 4.1 requires exact variances ẑ; it may be com-
promised if ẑk is used instead. This problem is analyzed in [31]: the convergence proof
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remains valid with the PCA approximation, which, however, is different from the Lanczos4

approximation. Empirically, we have not encountered convergence problems so far.
Surprisingly, while ẑk is much smaller than ẑ in practice, there is little indication of

substantial negative impact on performance. This important robustness property is analyzed
in section 7.3 for an SLM with Laplace potentials. The underestimation bias has systematic
structure (Figure 6, middle and lower panel): moderately small ẑi are damped most strongly,
while large ẑi are approximated accurately. This happens because the largest coefficients
ẑi depend most strongly on the largest covariance eigenvectors, which are shaped in early
Lanczos iterations. This particular error structure has statistical consequences. Recalling the
inner loop penalty for Laplacians (2.2) h∗i (si) = τi(ẑi+ s

2
i )

1/2, the smaller ẑi is, the stronger it
enforces sparsity. If ẑi is underestimated, the penalty on si is stronger than intended, yet this
strengthening does not happen uniformly. Coefficients si deemed most relevant with exact
variance computation (largest ẑi) are least affected (as ẑk,i ≈ ẑi for those), while already
subdominant ones (smaller ẑi) are suppressed even more strongly (as ẑk,i � ẑi). At least
in our experience so far (with sparse linear models), this selective variance underestimation
effect seems benign or even somewhat beneficial.

4.5. Extension to group potentials. There is substantial recent interest in methods in-
corporating sparse group penalization, meaning that a number of latent coefficients (such as
the column of a matrix or the incoming edge weights for a graph) are penalized jointly [47, 40].
Our algorithms are easily generalized to models with potentials of the form ti(‖si‖), with si
a subvector of s and ‖ · ‖ the Euclidean norm, if ti(·) is even and super-Gaussian. Such group
potentials are frequently used in practice. The isotropic total variation penalty is the sum
of ‖(dxi, dyi)‖, dxi, dyi differences along coordinate axes. It corresponds to group Laplace
potentials. In our magnetic resonance imaging (MRI) application (section 7.4), we deal with
complex-valued u and s. Each entry is treated as element in R

2, and potentials are placed
on |si| = ‖(�si,�si)‖. Note that with ti on ‖si‖, the single parameter γi is shared by the
coefficients si.

The generalization of our algorithms to group potentials is almost automatic. For example,
if all si have the same dimensionality, Γ−1 is replaced by Γ−1 ⊗ I in the definition of A, and
ẑ is replaced by (I ⊗ 1T ) diag−1(BA−1BT ) in section 4.2. Moreover, xi = s2i is replaced
by xi = ‖si‖2, whereas the definition of gi(xi) remains the same. Apart from these simple
replacements, only IRLS inner loop iterations have to be modified (at no extra cost), as
detailed in Appendix A.7.

4.6. Publicly available code: The glm-ieglm-ieglm-ie toolbox. Algorithms and techniques presented
in this paper are implemented5 as part of the generalized linear model inference and estimation
toolbox (glm-ie), maintained as mloss.org project at http://mloss.org/software/view/269/.
The code runs with both MATLAB 7 and the free Octave 3.2. It comprises algorithms
for MAP (penalized least squares) estimation and variational inference in generalized linear
models (section 4), along with Lanczos code for Gaussian variances (section 4.4).

4While Lanczos can be used to compute the PCA approximation (fixed number L of smallest eigenval-
ues/eigenvectors of A), this is rather wasteful.

5Our experiments in section 7 use different C++ and Fortran code, which differs from glm-ie mainly by
being somewhat faster on large problems.

http://mloss.org/software/view/269/
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The generic design of the glm-ie toolbox allows for a range of applications, as illustrated by
a number of example programs included in the package. Many super-Gaussian potentials ti(si)
are included, and others can easily be added by the user. In particular, the toolbox contains
a range of solvers for MAP and inner loop problems, from IRLS (or truncated Newton; see
section 4.3) over conjugate gradients to quasi-Newton, as well as a range of commonly used
operators for constructing X and B matrices.

5. Sparse estimation and sparse Bayesian inference. In this section, we contrast ap-
proximate Bayesian inference with point estimation for sparse linear models (SLMs): sparse
Bayesian inference versus sparse estimation. These problem classes serve distinct goals and
come with different algorithmic characteristics yet are frequently confused in the literature.
Briefly, the goal in sparse estimation is to eliminate variables not needed for the task at hand,
while sparse inference aims at quantifying uncertainty in decisions and dependencies between
components. While variable elimination is a boon for efficient computation, it cannot be relied
upon in sparse inference. Sensible uncertainty estimates like posterior covariance, at the heart
of decision-making problems such as Bayesian experimental design, are eliminated alongside.

We restrict ourselves to super-Gaussian SLM problems in terms of variables u and γ 
 0,
relating the sparse Bayesian inference relaxation minγ�0 φ(γ) with two sparse estimation
principles: maximum a posteriori (MAP) reconstruction (3.3) and automatic relevance de-
termination (ARD) [43], a sparse reconstruction method which inspired our algorithms. We
begin by establishing a key difference between these settings. Recall from Theorem 3.1(4)
that γi = 0 implies6 VarQ[si|y] = 0: si is eliminated, fixed at zero with absolute certainty.
Exact sparsity in γ does not happen for inference, while estimation methods are characterized
by fixing many γi to zero.

Theorem 5.1. Let X ∈ R
m×n, B ∈ R

q×n be matrices such that Ã(π) = σ−2XTX +
BT (diagπ)B � 0 for each π � 0 and no row of B is equal to 0T .

• The function log |Ã(π)| is increasing in each component πi, and is unbounded above.
For any sequence πt with ‖πt‖ → ∞ (t → ∞) and πt 
 ε1 for some ε > 0, we have
that log |Ã(πt)| → ∞ (t→∞).

• Assume that logP (u|y) is bounded above as a function of u. Recall the variational
criterion φ(γ) from (3.2). For any bounded sequence γt with (γt)i → 0 (t → ∞) for
some i ∈ {1, . . . , q}, we have that φ(γt)→∞.
In particular, any local minimum point γ∗ of the variational problem minγ�0 φ(γ)
must have positive components; i.e., γ∗ � 0.

A proof is given in Appendix A.3. log |A| acts as a barrier function for γ � 0. Any local
minimum point γ∗ of (3.2) is positive throughout, and VarQ[si|y] > 0 for all i = 1, . . . , q.
Coefficient elimination does not happen in variational Bayesian inference.

Consider MAP estimation (3.3) with even super-Gaussian potentials ti(si). Following
[25], a sufficient condition for sparsity is that − log ti(si) is concave for si > 0. In this case,
if rankX = m and rankB = n, then any local MAP solution u∗ is exactly sparse: no more
than m coefficients of s∗ = Bu∗ are nonzero. Examples are ti(si) = e−τi|si|p, p ∈ (0, 1],
including Laplace potentials (p = 1). Moreover, γ∗.i = 0 whenever s∗,i = 0 in this case (see
Appendix A.3). Local minimum points of SLM MAP estimation are substantially exactly

6While the proof of Theorem 3.1(4) holds for γ � 0, VarQ[si|y] is a continuous function of γ.
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Figure 3. Different roles of Gaussian functions (width γi) in sparse estimation versus sparse inference.
Left: sparse estimation (ARD). Gaussian functions are normalized, and there is incentive to drive γi → 0.
Right: variational inference for Laplace potentials (2.2). Gaussian functions are lower bounds of ti(si), and
their mass vanishes as γi → 0. There is no incentive to eliminate γi.

sparse, with matching sparsity patterns of s∗ = Bu∗ and γ∗.
A powerful sparse estimation method, automatic relevance determination (ARD) [43], has

inspired our approximate inference algorithms developed above. The ARD criterion φARD is
(3.2) with h(γ) = 1T (log γ), obtained as the zero-temperature limit (ν → 0) of variational
inference with Student’s t potentials (2.3). The function hi(γi) is given in Appendix A.6, and
hi(γi) → log γi (ν → 0) if additive constants independent of γi are dropped.7 ARD can also
be seen as marginal likelihood maximization: φARD(γ) = −2 log

∫
P (y|u)N(s|0,Γ) du up to

an additive constant. Sparsity penalization is implied by the fact that the prior N(s|0,Γ)
is normalized (see Figure 3, left). The ARD problem is not convex. A provably convergent
double loop ARD algorithm is obtained by employing bounding type B (section 4.2); along
lines similar to those in section 4.1 we obtain

min
γ�0

φARD(γ) = min
z2�0

(
min
u
σ−2‖y −Xu‖2 + 2

q∑
i=1

z
1/2
2,i |si|

)
− g∗2(z2).

The inner problem is �1 penalized least squares estimation, a reweighted variant of MAP
reconstruction for Laplace potentials. Its solutions s∗ = Bu∗ are exactly sparse, along with

corresponding γ∗ (since γ∗,i = z
−1/2
2,i |s∗,i|). ARD is enforcing sparsity more aggressively than

Laplace (�1) MAP reconstruction [44]. The log |A| barrier function is counterbalanced by
h(γ) = 1T (log γ) = log |Γ|. If B = I, then

log |A|+ log |Γ| = log |I + σ−2XΓXT | → 0 (γ → 0).

The conceptual difference between ARD and our variational inference relaxation is illustrated
in Figure 3. In sparse inference, Gaussian functions e−s2i /(2γi)−hi(γi)/2 lower bound ti(si).
Their mass vanishes as γi → 0, driving φ(γ) →∞. For ARD, Gaussian functions N(si|0, γi)
are normalized, and γi → 0 is encouraged.

7Note that the term dropped (Ci in Appendix A.6) becomes unbounded as ν → 0. Removing it is essential
to obtaining a well-defined problem.
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At this point, the roles of different bounding types introduced in section 4.2 become
transparent. log |A| is a barrier function for γ � 0 (Theorem 5.1), as is its type A bound
zT
1 (γ

−1) − g∗1(z1), z1 � 0 (see Figure 2). On the other hand, log |A| + 1T (log γ) is bounded
below, as is its type B bound zT

2 γ − g∗2(z2). These facts suggest that type A bounding
should be preferred for variational inference, while type B bounding is best suited for sparse
estimation. Indeed, experiments in section 7.1 show that for approximate inference with
Laplace potentials, type A bounding is by far the better choice, while for ARD, type B
bounding leads to the very efficient algorithm just sketched.

Sparse estimation methods eliminate a substantial fraction of γ’s coefficients, while varia-
tional inference methods do not zero any of them. This difference has important computational
and statistical implications. First, exact sparsity in γ is computationally beneficial. In this
regime, even coordinate descent algorithms can be scaled up to large problems [39]. Within
the ARD sparse estimation algorithm, variances ẑ ← diag−1(BA−1BT ) have to be computed,
but since ẑ is as sparse as γ, this is not a hard problem. Variational inference methods have to
cope without exact sparsity. The double loop algorithms of section 4 are scalable nevertheless,
reducing to numerical techniques whose performance does not depend on the sparsity of γ.

While exact sparsity in γ implies computational simplifications, it also rules out proper
model-based uncertainty quantification.8 If γi = 0, then VarQ[si|y] = 0. If Q(u|y) is under-
stood as representation of uncertainty, it asserts that there is no posterior variance in si at all:
si is eliminated with absolute certainty, along with all correlations between si and other sj.
Sparsity in γ is computationally useful only if most γi = 0. Q(u|y), a degenerate distribution
with mass only in the subspace corresponding to surviving coefficients, cannot be regarded
as approximation to a Bayesian posterior. As zero is just zero, even basic queries such as a
confidence ranking over eliminated coefficients cannot be based on a degenerate Q(u|y).

In particular, Bayesian experimental design (section 6), based on sparse inference methods
[36, 28, 32, 34], excels for a range of real-world scenarios (see section 7.4), but it cannot
sensibly be driven by sparse estimation technology. The latter is attempted in [18], employing
the sparse Bayesian learning estimator [38] in order to drive inference queries, an approach
which fails badly on real-world image data [32]. Started with a few initial measurements, it
identifies a very small subspace of noneliminated coefficients (as expected for sparse estimation
fed with little data), in which it essentially remains locked ever after. In order to sensibly
score a candidate X∗, we have to reason about what happens to all coefficients, which is not
possible based on a “posterior” Q(u|y) that rules out most of them with full certainty.

Finally, even if the goal is point reconstruction from given data, the sparse inference
posterior mean EQ[u|y] (obtained as byproduct u∗ in the double loop algorithm of section 4)
can be an important alternative to an exactly sparse estimator. For the former, EQ[s|y] =
Bu∗ is not sparse in general, and the degree to which coefficients are penalized (but not
eliminated) is determined by the choice of ti(si). To illustrate this point, we compare the
mean estimators for Laplace and Student’s t potentials (different ν > 2) in section 7.2. These
results demonstrate that, contrary to some folklore in signal and image processing, sparser

8Uncertainty quantification may also be obtained by running sparse estimation many times in a bootstrap-
ping fashion [21]. While such procedures cure some robustness issues of MAP estimation, they are probably
too costly to run in order to drive experimental design, where dependencies between variables are of interest.
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is not necessarily better for point reconstruction of real-world images. Enforcing sparsity too
strongly leads to fine details being smoothed out, which is not acceptable in medical imaging
(fine features are often diagnostically most relevant) or photography postprocessing (most
users strongly dislike unnaturally hard edges and oversmoothed areas).

Sparse estimation methodology has seen impressive advancements toward what it is in-
tended to do: solving a given overparameterized reconstruction problem by eliminating non-
essential variables. However, it is ill-suited for addressing decision-making scenarios driven by
Bayesian inference. For the latter, a useful (nondegenerate) posterior approximation has to
be obtained without relying on computational benefits of exact sparsity. We show how this
can be done by reducing variational inference to numerical techniques (LCG and Lanczos)
which can be scaled up to large problems without exact variable sparsity.

6. Bayesian experimental design. In this section, we show how to optimize the image ac-
quisition matrix X by way of Bayesian sequential experimental design (also known as Bayesian
active learning), maximizing the expected amount of information gained. Unrelated to the
output of point reconstruction methods, information gain scores depend on the posterior co-
variance matrix Cov[u|y] over full images u, which within our large scale variational inference
framework is approximated by the Lanczos algorithm.

In each round, a part X∗ ∈ R
d×n is appended to the design X, and a new (partial)

measurement y∗ is appended to y. Candidates {X∗} are ranked by the information gain9 score
H[P (u|y)] − EP (y∗|y)[H[P (u|y,y∗)]], where P (u|y) and P (u|y,y∗) are posteriors for (X,y)
and (X ∪X∗,y ∪ y∗), respectively, and P (y∗|y) =

∫
N(y∗|X∗u, σ2I)P (u|y) du. Replacing

P (u|y) by its best Gaussian variational approximation Q(u|y) = N(u∗,A−1) and P (u|y,y∗)
by Q(u|y,y∗) ∝ N(y∗|X∗u, σ2I)Q(u|y), we obtain an approximate information gain score

(6.1) Δ(X∗) := − log |A|+ log
∣∣A + σ−2XT

∗ X∗
∣∣ = log

∣∣I + σ−2X∗A−1XT
∗
∣∣ .

Note that Q(u|y,y∗) has the same variational parameters γ as Q(u|y), which simplifies and
robustifies score computations. Refitting of γ is done at the end of each round, once the score
maximizer X∗ is appended along with a new measurement y∗.

With N candidates of size d to be scored, a naive computation of (6.1) would require
N · d linear systems to be solved, which is not tractable (for example, N = 240, d = 512 in
section 7.4). We can make use of the Lanczos approximation once more (see section 4.4). If
QT

kAQk = Tk = LkL
T
k (Lk is bidiagonal, computed in O(k)), let V∗ := σ−1X∗QkL

−T
k ∈

R
d×k. Then, Δ(X∗) ≈ log |I+V∗V T∗ | = log |I+V T∗ V∗| (the latter is preferable if k < d), at a

total cost of k MVMs with X∗ and O(max{k, d}·min{k, d}2). Just as with marginal variances,
Lanczos approximations of Δ(X∗) are underestimates, nondecreasing in k. The impact of
Lanczos approximation errors on design decisions is analyzed in [31]. While absolute score
values are much too small, decisions depend only on the ranking among the highest-scoring
candidates X∗, which often is faithfully reproduced even for k � n. To understand this
point, note that Δ(X∗) measures the alignment of X∗ with the directions of largest variance
in Q(u|y). For example, the single best unit-norm filter x∗ ∈ R

n is given by the maximal
eigenvector of CovQ[u|y] = A−1, which is obtained by a few Lanczos iterations.

9H[P (u)] = EP [− logP (u)] is the (differential) entropy, measuring the amount of uncertainty in P (u). For
a Gaussian, H[N(μ,Σ)] = 1

2
log |2πeΣ|.
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In the context of Bayesian experimental design, the convexity of our variational inference
relaxation (with log-concave potentials) is an important asset. In contrast to single image
reconstruction, which can be tuned by the user until a desired result is obtained, sequential
acquisition optimization is an autonomous process consisting of many individual steps (a real-
world example is given in section 7.4), each of which requires a variational refitting Q(u|y)→
Q(u|y,y∗). Within our framework, each of these has a unique solution which is found by a
very efficient algorithm. While we are not aware of Bayesian acquisition optimization being
realized at comparable scales with other inference approximations, this would be difficult to do
indeed. Different variational approximations are nonconvex problems coming with notorious
local minima issues. For Markov chain Monte Carlo methods, there are not even reliable
automatic tests of convergence. If approximate inference drives a multistep automated scheme
free of human expert interventions, properties like convexity and robustness gain relevance
normally overlooked in the literature.

6.1. Compressive sensing of natural images. The main application we address in sec-
tion 7.4, automatic acquisition optimization for magnetic resonance imaging, is an advanced
real-world instance of compressive sensing [6, 5]. Given that real-world images come with low
entropy super-Gaussian statistics, how can we tractably reconstruct them from a sample below
the Nyquist–Shannon limit? What do small successful designs X for natural images look like?
Recent celebrated results about recovery properties of convex sparse estimators [10, 6, 5] have
been interpreted as suggesting that up from a certain size, successful designs X may simply
be drawn blindly at random. Technically speaking, these results are about highly exactly
sparse signals (see section 5), yet advancements for image reconstruction are typically being
implied [6, 5]. In contrast, Bayesian experimental design is an adaptive approach, optimizing
X based on real-world training images. Our work is of the latter kind, as are [18, 32, 16] for
much smaller scales.

The question of whether a design X is useful for measuring images, can (and should) be
resolved empirically. Indeed, it takes no more than some reconstruction code and a range of
realistic images (natural photographs, MR images) to convince oneself that MAP estimation
from a subset of Fourier coefficients drawn uniformly at random (say, at 1/4 Nyquist) leads
to very poor results. This failure of blindly drawn designs is well established by now both for
natural images and MR images [32, 34, 19, 7], and it is not hard to motivate. In a nutshell,
the assumptions which current compressive sensing theory relies upon do not sensibly describe
realistic images. Marginal statistics of the latter are not exactly sparse but exhibit a power
law (super-Gaussian) decay. More important, their sparsity is highly structured, a fact which
is ignored in assumptions made by current compressive sensing theory, and therefore is not
reflected in recovery conditions (such as incoherence) or in designs X drawn uniformly at
random. Such designs fail for a number of reasons. First, they do not sample where the
image energy is [32, 7]. A more subtle problem is the inherent variability of independent
sampling in Fourier space: large gaps occur with high probability, which leads to serious
MAP reconstruction errors. These points are reinforced in [32, 34]. The former study finds
that for good reconstruction quality of real-world images, the choice ofX is far more important
than the type of reconstruction algorithm used.

In real-world imaging applications, adaptive approaches promise remedies for these prob-
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lems (other proposals in this direction are [18] and [16], which, however, have not successfully
been applied to real-world images). Instead of relying on simplistic signal assumptions, they
learn a design X from realistic image data. Bayesian experimental design provides a gen-
eral framework for adaptive design optimization, driven not by point reconstruction but by
predicting information gains through posterior covariance estimates.

7. Experiments. We begin with a set of experiments designed to explore aspects and
variants of our algorithms and to help us understand approximation errors. Our main ap-
plication concerns the optimization of sampling trajectories in magnetic resonance imaging
(MRI) sequences, with the aim of obtaining useful images faster than previously possible.

7.1. Type A versus type B bounding for Laplace potentials. Recall that the critical
coupling term log |A| in the variational criterion φ(γ) can be upper bounded in two different
ways, referred to as type A and type B in section 4.2. Type A is tight for moderate and large
γi, and type B is tight for small γi (section 5). In this section, we run our inference algorithm
with type A and type B bounding, respectively, comparing the speed of convergence. The
setup (SLM with Laplace potentials) is as detailed in section 7.4, with a design X of 64 phase
encodes (1/4 Nyquist). Results are given in Figure 4, averaged over 7 different slices from
sg88 (256 × 256 pixels, n = 131072).
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Figure 4. Comparison of bounding types A, B for SLM with Laplace potentials. Shown are φ(γ)
criterion values (left) and �2 errors of posterior mean estimates (not MAP, as in section 7.4), at the
end of each outer loop iteration, starting from the second (right).

In this case, the bounding type strongly influences the algorithm’s progress. While two
outer loop iterations suffice for convergence with type A, convergence is not attained even
after 20 outer loop steps with type B. More inner loop steps are done for type A (30 in first
outer loop iteration, 3–4 afterwards) than for type B (5–6 in first outer loop iteration, 3–4
afterwards). The double loop strategy, to make substantial progress with far less expensive
inner loop updates, works for type A, but not for type B bounding. These results indicate that
bounding type A should be preferred for SLM variational inference, certainly with Laplace
potentials. Another indication comes from comparing inner loop penalties h∗i (si). For type
A, h∗i (si) = τi(z1,i+ s

2
i )

1/2 is sparsity-enforcing for small z1,i, retaining an important property
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of φ(γ), while for type B, h∗i (si) does not enforce sparsity at all (see Appendix A.6).

7.2. Student’s t potentials. In this section, we compare SLM variational inference with
Student’s t (2.3) potentials to the Laplace setup of section 7.1. Student’s t potentials are
not log-concave, so neither MAP estimation nor variational inference is a convex problem.
Student’s t potentials enforce sparsity more strongly than Laplacians do, which is often claimed
to be more useful for image reconstruction. Their parameters are ν (degrees of freedom,
regulating sparsity) and α = ν/τ (scale). We compare Laplace and Student’s t potentials of
same variance (the latter has a variance for ν > 2 only): αa = 2(ν − 2)/τ2a , where τa is the
Laplace parameter, αr or αi, respectively. The model setup is the same as in section 7.1, using
slice 8 of sg88 only. Result are given in Figure 5.
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Figure 5. Comparison of SLM with Student’s t and Laplace potentials (type A bounding). Shown
are potential density functions (upper left) and �2 errors of posterior mean estimates (upper right), over
8 outer loop iterations. Lower row: posterior mean reconstructions (|u∗,i|) after 8 outer loop iterations:
ν = 2.1; ground truth; ν = 2.01; ν = 2.001.

Compared to the Laplace setup, reconstruction errors for Student’s t SLMs are worse
across all values of ν. While ν = 2.1 outperforms larger values, the reconstruction error
grows with iterations for ν = 2.01, ν = 2.001. This is not a problem of sluggish convergence:
φ(γ) decreases rapidly10 in this case. A glance at the mean reconstructions (|u∗,i|) (Figure 5,
lower row) indicates what happens. For ν = 2.01, 2.001, image sparsity is clearly enforced
too strongly, leading to fine features being smoothed out. The reconstruction for ν = 2.001

10For Student’s t potentials (as opposed to Laplacians), type A and type B bounding behave very similarly
in these experiments.
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is merely a caricature of the real image complexity and is rather useless as the output of a
medical imaging procedure. When it comes to real-world image reconstruction, more sparsity
does not necessarily lead to better results.

7.3. Inaccurate Lanczos variance estimates. The difficulty of large scale Gaussian vari-
ance approximation is discussed in section 4.4. In this section, we analyse errors of the Lanczos
variance approximation that we employ in our experiments. We downsampled our MRI data
to 64 × 64 to allow for ground truth exact variance computations. The setup is the same as
above (Laplacians, type A bounding), with X consisting of 30 phase encodes. Starting with a
single common outer loop iteration, we compare different ways of updating z1: exact variance
computations versus Lanczos approximations of different size k. Results are given in Figure 6
(upper and middle rows).
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Figure 6. Lanczos approximations of Gaussian variances, at beginning of second outer loop iteration.
For 64 × 64 data (upper left), spectral decay of inverse covariance matrix A is roughly linear (upper
middle). �2 reconstruction error of posterior mean estimate after subsequent outer loop iterations for
exact variance computation versus k = 250, 500, 750, 1500 Lanczos steps (upper right). Middle row:
relative accuracy ẑi 	→ ẑk,i/ẑi at beginning of second outer loop iteration, separately for “a” potentials
(on wavelet coefficients; red), “r” potentials (on derivatives; blue), and “i” potentials (on �(u); green);
see section 7.4. Lower row: relative accuracy ẑi 	→ ẑk,i/ẑi at beginning of second outer loop iteration
for full size setup (256× 256), k = 500, 750, 1500 (ground truth ẑi determined by separate LCG runs).
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The spectrum of A at the beginning of the second outer loop iteration shows a roughly
linear decay. Lanczos approximation errors are rather large (middle row). Interestingly, the
algorithm does not work better with exact variance computations (judged by the development
of posterior mean reconstruction errors, upper right). We offer a heuristic explanation in
section 4.4. A clear structure in the relative errors emerges from the middle row: the largest
(and also smallest) true values ẑi are approximated rather accurately, while smaller true entries
are strongly damped. The role of sparsity potentials ti(si), or of γi within the variational
approximation, is to shrink coefficients selectively. The structure of Lanczos variance errors
serves to strengthen this effect. We repeated the relative error estimation for the full-scale
setup used in the previous sections and below (256×256); ground truth values ẑi were obtained
by separate conjugate gradients runs. The results (shown in the lower row) exhibit the same
structure, although relative errors are larger in general.

Both our experiments and our heuristic explanation are given for SLM inference, we
do not expect them to generalize to other models. Within the same model and problem
class, the impact of Lanczos approximations on final design outcomes is analyzed in [31]. As
noted in section 4.4, understanding the real impact of Lanczos (or PCA) approximations on
approximate inference and decision-making is an important topic for future research.

7.4. Sampling optimization for magnetic resonance imaging. Magnetic resonance imag-
ing (MRI) [45] is among the most important medical imaging modalities. Without applying
any harmful ionizing radiation, a wide range of parameters, from basic anatomy to blood
flow, brain function, or metabolite distribution, can be visualized. Image slices are recon-
structed from coefficients sampled along smooth trajectories in Fourier space (phase encodes).
In Cartesian MRI, phase encodes are dense columns or rows in discrete Fourier space. The
most serious limiting factor11 is long scan time, which is proportional to the number of phase
encodes acquired. MRI is a prime candidate for compressive sensing (section 6.1) in practice
[19, 34]: if images of diagnostic quality can be reconstructed from an undersampled design,
time is saved at no additional hardware costs or risks to patients.

In this section, we address the problem of MRI sampling optimization: which smallest
subset of phase encodes results in MAP reconstructions of useful quality? To be clear, we do
not use approximate Bayesian technology to improve reconstruction from fixed designs (see
section 5) but aim to optimize the design X itself, so as to best support subsequent standard
MAP reconstruction on real-world images. As discussed in sections 5 and 6.1, the focus for
most work on compressive sensing is on the reconstruction algorithm; the question of how
to choose X is typically not addressed (exceptions include [18, 16]). We follow the adaptive
Bayesian experimental design scenario described in section 6, where {X∗} are phase encodes
(columns in Fourier space) and u the unknown (complex-valued) image. Implementing this
proposal requires the approximation of dominating posterior covariance directions for a large
scale non-Gaussian SLM (n = 131072), which to our knowledge has not been attempted
before. Results shown below are part of a larger study [34] on human brain data acquired
with a Siemens 3T scanner (TSE, 23 echos/exc, 120◦ refocusing pulses, 1× 1× 4mm3 voxels,

11Patient movement (blood flow, heartbeat, thorax) is strongly detrimental to image quality, which necessi-
tates uncomfortable measures such as breath-hold or fixation. In dynamic MRI, temporal resolution is limited
by scan time.
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resolution 256 × 256). Note that for Nyquist dense acquisition, resolution is dictated by the
number of phase encodes, 256 in this setting. We employ two datasets, sg92 and sg88, here
(sagittal orientation, echo time ≈90ms).

We use an SLM with Laplace potentials (2.2). In MRI, u, y, X, and s = Bu are
naturally complex-valued, and we make use of the group potential extension discussed in
section 4.5 (coding C as R

2). The vector s is composed of multiscale wavelet coefficients
sa, first derivatives (horizontal and vertical) sr, and the imaginary part si = �(u). An
MVM with X requires a fast Fourier transform, while an MVM with B costs only O(n).
Laplace scale parameters were τa = 0.07, τr = 0.04, τi = 0.1). The algorithms described
above were run with n = 131072, q = 261632, candidate size d = 512, and m = d · Ncol,
where Ncol is the number of phase encodes in X. We compare different ways of constructing
designs X, all of which start with the central 32 columns (lowest horizontal frequencies):
Bayesian sequential optimization, with all remaining 224 columns as candidates (op); filling
the grid from the center outwards (ct; such low-pass designs are typically used with linear
MRI reconstruction); covering the grid with equidistant columns (eq); and drawing encodes
at random (without replacement), using the variable-density sampling approach of [19] (rd).
The latter is motivated by compressive sensing theory (see section 6.1), yet is substantially
refined compared to naive independent and identically distributed sampling.12 Results for
sparse MAP reconstruction of the most difficult slice in sg92 are shown in Figure 7 (the error
metric is �2 distance ‖|u∗| − |utrue|‖, where utrue is the complete data reconstruction).

Obtained with the same standard sparse reconstruction method (convex �1 MAP estima-
tion), results for fixed Ncol differ “only” in terms of the composition ofX (recall that scan time
grows in proportion to Ncol). Designs chosen by our Bayesian technique substantially outper-
form all other choices. These results, along with [32, 34], are in stark contrast to claims that
independent random sampling is a good way to choose designs for sub-Nyquist reconstruction
of real-world images. The improvement of Bayesian optimized over randomly drawn designs
is larger for smaller Ncol. In fact, variable-density sampling does worse than conventional
low-pass designs below 1/2 Nyquist. Similar findings are obtained in [32] for different natural
images. In the regime far below the Nyquist limit, it is all the more important to judiciously
optimize the design, using criteria informed by realistic image data in the first place.

A larger range of results is given in [34]. Even at 1/4 Nyquist, designs optimized by
our method lead to images where most relevant details are preserved. In Figure 7, testing
and design optimization is done on the same dataset. The generalization capability of our
optimized designs is tested in this larger study, where they are applied to a range of data from
different subjects, different contrasts, and different orientations, achieving improvements on
these test sets comparable to what is shown in Figure 7. Finally, we have concentrated on
single image slice optimization in our experiments. In realistic MRI experiments, a number
of neighboring slices are acquired in an interleaved fashion. Strong statistical dependencies
between slices can be exploited, both in reconstruction and joint design optimization, by
combining our framework with structured graphical model message passing [30].

12Results for drawing phase encodes uniformly at random are much worse than the alternatives show, even
if started with the same central 32 columns. Reconstructions become even worse when Fourier coefficients are
drawn uniformly at random.



190 MATTHIAS W. SEEGER AND HANNES NICKISCH

70 80 90 100 110 120 130 140 150 160
1.8

2

3

4

5

7.5

10

12

N
col

, Number of columns

L 2 r
ec

on
st

ru
ct

io
n 

er
ro

r

 

 

MAP−eq
MAP−ct
MAP−rd
MAP−op

Figure 7. Results for Cartesian undersampling with different measurement designs, on sagittal slice (TSE,
TE = 92ms). All designs contain 32 central columns. Equispaced [eq]; low-pass [ct]; random with variable
density [rd]; (averaged over 10 repetitions); optimized by our Bayesian technique [op]. Shown are �2 distances
to utrue for MAP reconstruction with the Laplace SLM. Designs are optimized on the same data.

8. Discussion. In this paper, we introduce scalable algorithms for approximate Bayesian
inference in SLMs, complementing the large body of work on point estimation for these mod-
els. If the Bayesian posterior is not simply used as a criterion to be optimized, but as a global
picture of uncertainty in a reconstruction problem, advanced decision-making problems such
as model calibration, feature relevance ranking, or Bayesian experimental design can be ad-
dressed. We settle a longstanding question for continuous-variable variational Bayesian infer-
ence, proving that the relaxation of interest here [17, 23, 11] has the same convexity profile as
MAP estimation. Our double loop algorithms are scalable by reduction to common computa-
tional problems: penalized least squares optimization and Gaussian covariance estimation (or
PCA). The large and growing body of work for the latter, both in theory and algorithms, is
put to novel use in our methods. Moreover, the reductions offer valuable insight into similar-
ities and differences between sparse estimation and approximate Bayesian inference, as does
our focus on decision-making problems beyond point reconstruction.

We apply our algorithms to the design optimization problem of improving sampling tra-
jectories for MRI. To the best of our knowledge, this has not been attempted before in the
context of sparse nonlinear reconstruction. Ours is the first approximate Bayesian framework
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for adaptive compressive sensing that scales up to and succeeds on full high-resolution real-
world images. Results here are part of a larger MRI study [34], where designs optimized by
our Bayesian technique are found to significantly and robustly improve sparse image recon-
struction on a wide range of test datasets for measurements far below the Nyquist limit.

In future work, we will address advanced joint design scenarios, such as MRI sampling
optimization for multiple image slices, three-dimensional MRI, and parallel MRI with array
coils. Our technique can be sped up along many directions, from algorithmic improvements
(advanced algorithms for inner loop optimization, modern Lanczos variants) to parallel com-
putation on graphics hardware. An important future goal, currently out of reach, is supporting
real-time MRI applications by automatic on-line sampling optimization.

Appendix. Details and proofs.

A.1. Proof of Theorem 3.1. In this section, we provide a proof of Theorem 3.1, whose
statement is reproduced for convenience. Let X ∈ R

m×n, B ∈ R
q×n be arbitrary matrices,

and let
Ã(d) := σ−2XTX +BT (diagd)B, d � 0,

so that Ã(d) is positive definite for all d � 0.
(1) Let fi(γi) be twice continuously differentiable functions into R+ so that log fi(γi) are

convex for all i and γi. Then, γ 	→ log |Ã(f(γ))| is convex. Especially, γ 	→ log |A| is
convex.

(2) Let fi(πi) ≥ 0 be concave functions. Then, π 	→ log |Ã(f(π))| is concave. Especially,
γ−1 	→ log |A| is concave.

(3) Let fi(γi) ≥ 0 be concave functions. Then, γ 	→ 1T (log f(γ)) + log |Ã(f(γ)−1)| is
concave. Especially, γ 	→ 1T (log γ) + log |A| is concave.

(4) Let Q(u|y) be the approximate posterior with covariance matrix given by (3.1). Then,
for all i, VarQ[si|y] = δTi BA−1BTδi ≤ γi.

For notational convenience, we absorb σ−2 into XTX by replacing X by σ−1X. We begin
with part (2). It is well known that π 	→ log |Ã(π)| is concave and nondecreasing for π � 0
[4, sect. 3.1.5]. Both properties carry over to the extended-value function.13 The statement
follows from the concatenation rules of [4, sect. 3.2.4].

We continue with part (1). Write Ã = Ã(f(γ)), ψ1 := log |Ã|, Γ = diag γ, and
f(Γ) = diag f(γ). First, γ 	→ ψ1 is the composition of twice continuously differentiable
mappings, therefore twice continuously differentiable itself. Now, dψ1 = trSf ′(Γ)(dΓ),
where S := BÃ

−1
BT ; moreover, d2ψ1 = − trSf ′(Γ)(dΓ)Sf ′(Γ)(dΓ) + trSf ′′(Γ)(dΓ)2 =

tr(dΓ)S(dΓ)E1, where E1 := f ′′(Γ)−f ′(Γ)Sf ′(Γ). Since S 
 0, we have S = VV T for some
matrix V, and d2ψ1 = tr((dΓ)V)TE1(dΓ)V. Now, if E1 
 0, then for γ(t) = γ + t(Δγ), we
have ψ′′

1 (0) = trNTE1N ≥ 0 for any Δγ, where N := (diagΔγ)V, so that ψ1 is convex.
The log-convexity of fi(γi) implies that fi(γi)f

′′
i (γi) ≥ (f ′i(γi))

2 for all γi so that

E1 = f(Γ)−1(f(Γ)f ′′(Γ)) − f ′(Γ)Sf ′(Γ) 
 f(Γ)−1(f ′(Γ))2 − f ′(Γ)Sf ′(Γ)
= f ′(Γ)

(
f(Γ)−1 − S

)
f ′(Γ).

13In general, we extend convex continuous functions f(π) on π � 0 by f(π) = limd↘π f(d), π � 0, and by
f(π) = ∞ elsewhere.
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Therefore, it remains to show that f(Γ)−1 − S 
 0. We use the identity

(A.1) vTM−1v = max
x

2vTx − xTMx,

which holds whenever M � 0. For any r ∈ R
q,

rTBÃ
−1

BTr = max
x

2rTBx − xT
(
XTX +BT f(Γ)B

)
x ≤ max

k=Bx
2rTk − kT f(Γ)k,

using (A.1) and xTXTXx = ‖Xx‖2 ≥ 0. Therefore, rTSr ≤ maxk 2rTk − kTf(Γ)k =
rT f(Γ)−1r, using (A.1) once more, which implies f(Γ)−1 −S 
 0. This completes the proof
of part (1). Since A = Ã(γ−1), we can employ this argument with fi(γi) = γ−1

i and r = δi
in order to establish part (4).

We continue with part (3). Write Ã = Ã(f(γ)−1) and ψ2 := 1T (log f(γ)) + log |Ã|.
Assume for now that XTX � 0. Let B = (BT

<q b̃)
T (so that b̃T is the last row of B), and

define Ã<q = XTX +BT
<qf(Γ<q)

−1B<q, where f(γ<q) = (fi(γi))i<q ∈ R
q−1
+ . We make use

of the well-known determinant identity |I + vvT | = 1 + vTv. Namely,

log fq(γq) + log
∣∣∣Ã<q + fq(γq)

−1b̃b̃T
∣∣∣

= log fq(γq) + log
∣∣∣Ã<q

∣∣∣+ log
∣∣∣I + fq(γq)

−1(Ã<q)
−1b̃b̃T

∣∣∣
= log

∣∣∣Ã<q

∣∣∣+ log fq(γq) + log
(
1 + fq(γq)

−1b̃T (Ã<q)
−1b̃

)
= log

∣∣∣Ã<q

∣∣∣+ log
(
fq(γq) + b̃T (Ã<q)

−1b̃
)
.

(A.2)

Since the extended-value function log(·) (assigning −∞ to arguments ≤ 0) is concave and
nondecreasing, the concatenation rules of [4, sect. 3.2.4] imply the concavity of the final
term in (A.2) whenever fq(γq) + b̃T (Ã<q)

−1b̃ is concave. We will use induction on q, the
dimensionality of γ. For q = 1, ψ2 is given by (A.2) with Ã<1 = XTX, and its concavity
follows from the concavity of f1(γ1). For q > 1, (A.2) implies

ψ2 = 1T (log f(γ<q)) + log |Ã<q|+ log
(
fq(γq) + b̃T (Ã<q)

−1b̃
)
.

Both the sum of the first two terms and fq(γq) are concave by assumption, so that the concavity
of ψ2 is implied by the concavity of γ 	→ b̃T (Ã<q)

−1b̃. Using (A.1), we have

b̃T (Ã<q)
−1b̃ = max

x
2b̃Tx − xT Ã<qx = max

x
2b̃Tx − ‖Xx‖2 − vT f(Γ<q)

−1v

with v := B<qx. Now, (x,f) 	→ 2b̃Tx−‖Xx‖2 − vT (diag f)−1v is jointly concave for f � 0

(see proof of Theorem 3.2), so that κ(f) := b̃T Ã<q(f
−1)−1b̃ is concave for f � 0 [4, sect. 3.2.5]

(recall that Ã<q(f
−1) = XTX + BT

<q(diag f
−1)B<q). To finish the argument, we plug in

f := f(γ<q) and use the concatenation theorems of [4, sect. 3.2.4]. What remains to be shown
in this context is that κ(f) is nondecreasing in each argument. Pick any i ∈ {1, . . . , q}, f � 0,
and any Δ > 0. Then,

κ(f +Δδi) = b̃T
(
Ã<q(f

−1)− Δ

fi(fi +Δ)
bib

T
i

)−1

b̃ ≥ b̃T Ã<q(f
−1)−1b̃ = κ(f),
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where bi = BTδi. This concludes the proof of part (3), under the assumption that XTX
is invertible. If XTX is singular, define ψε

2 as above, but with XTX → XTX + εI. We
saw that ψε

2 is concave for any ε > 0. For any γ � 0 such that ψ2(γ) > −∞, ψε
2 converges

uniformly to ψ2 on a closed environment of γ (ψ2 and all ψε
2 are continuous), so that ψ2 is

concave at γ. This completes the proof of part (3).

A.2. Proof of Theorem 3.3. In this section, we provide the proof of Theorem 3.3, whose
statement is reproduced for convenience. Consider a model with Gaussian likelihood (2.1) and
a prior P (u) ∝ ∏q

i=1 ti(si), s = Bu, so that all ti(si) are strongly super-Gaussian, meaning

that g̃i(si) = log ti(si) − bisi is even, and gi(xi) = g̃i(x
1/2
i ) is strictly convex and decreasing

for xi > 0.
(1) If g̃i(si) is concave and twice continuously differentiable for si > 0, then hi(γi) is

convex. On the other hand, if g̃′′i (si) > 0 for some si > 0, then hi(γi) is not convex at
some γi > 0.

(2) If all g̃i(si) are concave and twice continuously differentiable for si > 0, then the
variational problem minγ�0 φ is a convex optimization problem. On the other hand, if
g̃′′i (si) > 0 for some i and si > 0, then h(γ) is not convex, and there exist some X,
B, and y such that φ(γ) is not a convex function.

We begin with part (1), focusing on a single potential i and dropping its index. Since b �= 0
is dealt with separately, assume that t(s) is even: log t(s) = g̃(s) = g(s2) = g(x), where x = s2.
If f(x, γ) := −x/γ − 2g(x) and f̃(s, γ) := −s2/γ − 2g̃(s), then h(γ) = maxx≥0 f(x, γ), and
f(x, γ) = f̃(x1/2, γ). It suffices to consider s ≥ 0. Denote x∗ = x∗(γ) := argmaxx≥0 f(x, γ)
(which is unique, since g(x) is strictly convex). If γ0 := sup{γ | f(x, γ) ≤ −2g(0) for all x}
(γ0 = 0 for an empty set), then

• x∗ = 0, h(γ) = −2g(0) for γ ∈ (0, γ0];
• x∗ > 0, h(γ) is strictly increasing for γ > γ0.

Namely, if γ0 < γ1 < γ2, then x∗(γ1) > 0 by definition of γ0, and h(γ1) = −x∗(γ1)/γ1 −
2g(x∗(γ1)) < −x∗(γ1)/γ2 − 2g(x∗(γ1)) ≤ −x∗(γ2)/γ2 − 2g(x∗(γ2)) = h(γ2). Note that γ0 > 0
if and only if limε↘0 g

′(ε) is finite. It suffices to show that h is convex at all γ > γ0, where
x∗ = s2∗ > 0.

We use the notation f̃s = ∂f̃/(∂s), and functions are evaluated at (x∗ = s2∗, γ) unless oth-
erwise noted. Now, f̃s = −2s∗/γ−2g̃s(s∗) = 0 so that g̃s(s∗) = −s∗/γ. Next, g(x) is twice con-
tinuously differentiable, and x∗ = s2∗ at γ. Therefore, fx = ∂f/(∂x) is continuously differen-
tiable. Moreover, gx,x(x) > 0 by the strict convexity of g(x). By the implicit function theorem,
x∗(γ) is continuously differentiable at γ, and since h(γ) = f(x∗(γ), γ), h′(γ) exists. Moreover,
0 = (d/dγ)fx(x∗(γ), γ) = fx,γ + fx,x · (dx∗)/(dγ) so that (dx∗)/(dγ) = γ−2/(2gx,x(x∗)) > 0:
x∗(γ) is increasing. From fx = 0, we have that h′(γ) = fγ = s2∗/γ2 = (g̃s(s∗))2, since
g̃s(s∗) = −s∗/γ. Now, g̃s(s) is nonincreasing by the concavity of g̃(s), and g̃s(s∗) < 0 so that
s∗ 	→ h′(γ) is nondecreasing. Since s2∗ = x∗ is increasing in γ, so is s∗. Therefore, γ 	→ h′(γ)
is nondecreasing, which means that h(γ) is convex for γ > γ0.

The concavity of g̃(s) is necessary. Suppose that g̃s,s(s̃) > 0 for some s̃ > 0. If x̃ = s̃1/2,
g(x) is differentiable at x̃, and if γ̃ = −1/(2g′(x̃)), then s∗(γ̃) = s̃. But if g̃s,s(s∗) > 0 at γ̃,
then s∗ 	→ h′(γ) is decreasing at s∗ = s̃, and, just as above, γ 	→ h′(γ) is decreasing at γ̃, so
that h is not convex at γ̃. This concludes the proof of part (1).
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Part (2) is a direct consequence of part (1) and Theorem 3.2. For the final statement,
suppose that h′i(γi) is decreasing at γi = γ̃i. Pick the other coefficients in γ̃ � 0 arbitrary, and
choosem = n = 1, y = 0, X = X, B = δi so that φ(γ)−h(γ) = r(γi) := log(1+X2γi)−log γi,
ignoring additive constants. Consider φ̃(t) = φ(γ̃+tδi). Since r

′(γ̃i) = X2/(1+X2γ̃i)−1/γ̃i →
0 for X →∞, φ̃′(t) is decreasing at t = 0 for large enough X, and φ is not convex at γ̃.

A.3. Proof of Theorem 5.1. In this section, we provides proofs related to section 5. We
begin with Theorem 5.1, whose statement is reproduced for convenience. Let X ∈ R

m×n,
B ∈ R

q×n be matrices such that Ã(π) = σ−2XTX +BT (diagπ)B � 0 for each π � 0 and
no row of B is equal to 0T .

• The function log |Ã(π)| is increasing in each component πi, and is unbounded above.
For any sequence πt with ‖πt‖ → ∞ (t → ∞) and πt 
 ε1 for some ε > 0, we have
that log |Ã(πt)| → ∞ (t→∞).

• Assume that logP (u|y) is bounded above as a function of u. Recall the variational
criterion φ(γ) from (3.2). For any bounded sequence γt with (γt)i → 0 (t → ∞) for
some i ∈ {1, . . . , q}, we have that φ(γt)→∞.
In particular, any local minimum point γ∗ of the variational problem minγ�0 φ(γ)
must have positive components; i.e., γ∗ � 0.

For the first part, fix any π � 0, any i ∈ {1, . . . , q}, and any Δ > 0. If bi = BTδi �= 0,
then, using the determinant identity previously employed in Appendix A.1, we have

log |Ã(π +Δδi)| = log |Ã(π)|+ log
∣∣∣I +ΔÃ(π)−1bib

T
i

∣∣∣
= log |Ã(π)|+ log(1 + ΔbTi Ã(π)−1bi) > log |Ã(π)|,

since bTi Ã(π)−1bi > 0 and log(1 + x) > 0 for x > 0. Therefore, log |Ã(π)| is increasing in
each component. Moreover, we have that log |Ã(π +Δδi)| → ∞ (Δ → ∞), since log(1 + x)
is unbounded above for x → ∞. If πt is a sequence with ‖πt‖ → ∞ and πt 
 ε1, there
must be some i ∈ {1, . . . , q} such that (πt)i → ∞. If π̃t := ε1 + ((πt)i − ε)δi 
 πt, then
log |Ã(πt)| ≥ log |Ã(π̃t)| → ∞ (t→∞).

For the second part, recall that

φ(γ) = log |A|+ h(γ) + min
u

{
R(u,γ) = σ−2‖y −Xu‖2 + sTΓ−1s − 2bTs

}
,

− 2 log P (u|y) = min
γ�0

h(γ) +R(u,γ) + C2, s = Bu,

for some constant C2. If γt is a bounded sequence such that (γt)i → 0 (t → ∞) for some
i ∈ {1, . . . , q}, then log |A(γt)| = log |Ã(γ−1

t )| → ∞. Suppose that φ(γt) remains bounded
above. Let ut = argminu R(u,γt). Then, φ(γt) − log |A(γt)| = h(γt) + R(ut,γt) → −∞, so
that −2 log P (ut|y)− C2 ≤ h(γt) + R(ut,γt)→ −∞, in contradiction to the boundedness of
the log posterior. This concludes the proof.

Next, assume we run MAP estimation (3.3) with even super-Gaussian potentials ti(si),
so that |si| 	→ − log ti(si) = −g̃i(si) is concave. As argued in section 5, any local minimum
point s∗ = Bu∗ is exactly sparse. We show that the corresponding γ∗ has the same sparsity
pattern: γ∗,i = 0 whenever s∗,i = 0. Dropping the index, since γ∗ ∈ argminγ≥0 s

2∗/γ + h(γ),
we have to show that h(γ) > h(0) for all γ > 0 (or, in terms of Appendix A.2, that γ0 = 0).
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Fix γ > 0, and recall that h(γ) = maxs≥0{f̃(s, γ) = −s2/γ − 2g̃(s)} ≥ −2g̃(0) = h(0).
Now, f̃(s, γ) = −2g̃(s) + O(s2), s ↘ 0, where −2g̃(s) is concave, nondecreasing, and not
constant. Therefore, lims↘0 ∂f̃/(∂s) ∈ (0,∞], and f̃(s̃, γ) > f̃(0, γ) for some s̃ > 0, so that
h(γ) ≥ f̃(s̃, γ) > h(0).

A.4. Details for bounding log |A|. In this section, we provide details concerning the
log |A| bounds discussed in section 4.2. Recall that Ã(π) = σ−2XTX+BT (diagπ)B for π �
0. Define the extended-value extension g1(π) = limd↘π log |Ã(d)|, π 
 0, and g1(π) = −∞
elsewhere (note that log |Ã(π)| is continuous). Since g1 is lower semicontinuous, and concave
for π � 0 (Theorem 3.1(2)), it is a closed proper concave function. Fenchel duality [26, sect. 12]
implies that g1(π) = infz1 z

T
1 π − g∗1(z1), where g∗1(z1) = infπ zT

1 π − g1(π) is closed concave
as well. As g1(π) is unbounded above as ‖π‖ → ∞ (Theorem 5.1), zT

1 π−g1(π) is unbounded
below whenever z1,i ≤ 0 for any i, and g∗1(z1) = −∞ in this case. Moreover, for any π � 0, the
corresponding minimizer z1,∗ is given in section 4.2, so that g1(π) = minz1�0 z

T
1 π − g∗1(z1).

Second, define the extended-value extension g2(γ) = limd↘γ 1
T (log d)+log |Ã(d)|, γ 
 0,

and g2(γ) = −∞ elsewhere (note that 1T (logπ) + log |Ã(π)| is continuous). Since g2 is
lower semicontinuous, and concave for γ � 0 (Theorem 3.1(3)), it is a closed proper concave
function. Fenchel duality [26, sect. 12] implies that g2(γ) = infz2 z

T
2 γ−g∗2(z2), where g∗2(z2) =

infγ z
T
2 γ − g2(γ) is closed concave as well. Since zT

2 γ − g2(γ) is unbounded below whenever
z2,i < 0 for any i, we see that g∗2(z2) = −∞ in this case. For any γ � 0, the corresponding
minimizer z2,∗ is given in section 4.2, so that g2(γ) = minz2�0 z

T
2 γ − g∗2(z2).

A.5. Implicit computation of hi and h∗
i . Recall from sections 4 and 4.3 that our al-

gorithms can be run whenever h∗i (si) and its derivatives can be evaluated. For log-concave
potentials, these evaluations can be done generically, even if no closed form for hi(γi) is
available. We focus on a single potential i and drop its index. As noted in section 4, if
z2 = z3 = 0, then h∗(s) = −g(z1 + s2). With p := z1 + s2, we have that θ = −2g′(p)s − b,
ρ = −4g′′(p)s2 − 2g′(p). With a view to Appendix A.7, θ̃ = −2g′(p), p = z1 + ‖s‖2, and
κ = 2[g′′(p)]1/2.

If z2 �= 0 (and t(s) is log-concave), we have to employ scalar convex minimization. We
require h∗(s) = 1

2 minγ k(x, γ), k := (z1 + x)/γ + z2γ − z3 log γ + h(γ), x = s2, as well as
θ = (h∗)′(s) and ρ = (h∗)′′(s). Let γ∗ = argmin k(x, γ). Assuming for now that h and its
derivatives are available, γ∗ is found by univariate Newton minimization, where γ2kγ = −(z1+
x)− z3γ + γ2(z2 + h′(γ)), γ3kγ,γ = 2(z1 + x) + γz3 + γ3h′′(γ). Now, kγ = 0 (always evaluated
at (x, γ∗)), so that θ = (h∗)′(s) = s/γ∗. Moreover, 0 = (d/ds)kγ = ks,γ + kγ,γ · (dγ∗)/(ds), so
that ρ = (h∗)′′(s) = γ−1∗ (1 − sγ−1∗ (dγ∗)/(ds)) = γ−1∗ (1 − 2x/(γ3∗kγ,γ(x, γ∗))). With a view to
Appendix A.7, θ̃ = 1/γ∗ and κ = [2/(γ4∗kγ,γ(x, γ∗))]1/2 (note that θ̃ ≥ ρ).

By Fenchel duality, h(γ) = −minx l(x, γ), l := x/γ + 2g(x), where g(x) is strictly convex
and decreasing. We need methods to evaluate g(x) and its first and second derivatives (note
that g′′(x) > 0). The minimizer x∗ = x∗(γ) is found by convex minimization once more,
started from the last recently found x∗ for this potential. Note that x∗ = 0 if and only if γ ≤
γ0 := −1/(2g′(0)) (where γ0 = 0 if g′(x)→ −∞ as x→ 0), which has to be checked up front.
Given x∗, we have that γh(γ) = −x∗ − 2γg(x∗). Since lx = 0 for γ > γ0 (always evaluated at
(x∗, γ)), we have that γ2h′(γ) = −γ2lγ = x∗ (this holds even if lx > 0 and x∗ = 0). Moreover,
if x∗ > 0 (for γ > γ0), then (d/dγ)lx(x∗, γ) = 0, so that (dx∗)/(dγ) = γ−2/(2g′′(x∗)), and
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γ3h′′(γ) = (2γg′′(x∗))−1 − 2x∗. If x∗ = 0 and lx > 0, then x∗(γ̃) = 0 for γ̃ close to γ, so
that h′′(γ) = 0. A critical case is x∗ = 0 and lx = 0, which happens for γ = γ0 > 0: h′′(γ)
does not exist at this point in general. This is not a problem for our code, since we employ a
robust Newton/bisection search for γ∗. If γ > γ∗, but is very close, then (dx∗)/(dγ) ≈ ξ0/γ
with ξ0 := −g′(0)/g′′(0), and therefore x∗(γ) ≈

∫ γ
γ0
ξ0/t dt = ξ0(log γ − log γ0). We use

γ2h′(γ) = x∗ ≈ ξ0(log γ − log γ0) and γ
3h′′(γ) ≈ ξ0 − 2x∗ in this case.

A.6. Details for specific potentials. Our algorithms are configured by the dual functions
hi(γi) for each non-Gaussian ti(si), and the inner loops require h∗i (si) and its derivatives (see
(4.2), and recall that for each i, either z1,i > 0 and z3,i = 0, or z1,i = 0 and z2,i > 0, z3,i = 1).
In this section, we show how these are computed for the potentials used in this paper. We
use the notation of Appendix A.5, focus on a single potential i, and drop its index.

Laplace potentials. These are t(s) = exp(−τ |s|), τ > 0, so that g(x) = τx1/2. We have
that h(γ) = h∪(γ) = τ2γ, so that k(x, γ) = (z1 + x)/γ + (z2 + τ2)γ − z3 log γ. The stationary
equation for γ∗ is (z2 + τ2)γ2 − z3γ − (z1 + x) = 0. If z3 = 0 (bounding type A), this is
just a special case of Appendix A.5. With p := z1 + x, q := (z2 + τ2)1/2, we have that
γ∗ = p1/2/q, h∗(s) = qp1/2, and θ = (h∗)′(s) = qp−1/2s, ρ = (h∗)′′(s) = qz1p

−3/2. With a view
to Appendix A.7, θ̃ = qp−1/2 and κ = [qp−3/2]1/2.

If z3 = 1 (bounding type B), note that z1 = 0, z2 > 0. Let q := 2(z2 + τ2), p :=
(1 + 2qx)1/2. Then, γ∗ = (p + 1)/q, and k(x, γ∗) = p − log(p + 1) + log q after some algebra,
so that h∗(s) = 1

2(p − log(p + 1) + log q). With dp/(ds) = 2qp−1s, we have θ = qs/(p + 1),

ρ = q/(p(p + 1)). With a view to Appendix A.7, θ̃ = q/(p + 1). Using p2 − 1 = 2xq, some
algebra gives κ = (2/p)1/2q/(p+ 1) = (2/p)1/2 θ̃.

Student’s t potentials. These are t(s) = (1 + (τ/ν)x)−(ν+1)/2, ν > 0, τ > 0. If α := ν/τ ,
the critical point of Appendix A.2 is γ0 := α/(ν+1), and h(γ) = [α/γ+(ν+1) log γ+C]I{γ≥γ0}
with C := −(ν + 1)(log γ0 + 1). h(γ) is not convex. We choose a decomposition such that
h∪(γ) is convex and twice continuously differentiable, ensuring that h∗(s) is continuously
differentiable and the inner loop optimization runs smoothly. Since h(γ) does not have a
second derivative at γ0, neither has h∩(γ):

h∩(γ) =
{

(ν + 1− z3) log γ | γ ≥ γ0,
(2(ν + 1)− z3) log γ − a(γ − γ0)− b | γ < γ0,

h∪(γ) =
{
α/γ +C | γ ≥ γ0,
−2(ν + 1) log γ + a(γ − γ0) + b | γ < γ0,

where b := (ν + 1) log γ0, a := (ν + 1)/γ0. Here, the −z3 log γ term of k(x, γ) is folded into
h∩(γ).

We follow Appendix A.5 in determining h∗(s) and its derivatives, but solve for γ∗ directly.
Note that z2 > 0 even if z3 = 0 (bounding type A), due to the Fenchel bound on h∩(γ).
We minimize k(x, γ) for γ ≥ γ0, γ < γ0, respectively, and pick the minimum. For γ ≥ γ0,
k(x, γ) = (z1 + α + x)/γ + z2γ + C, whose minimum point γ∗,1 := [(z1 + α + x)/z2]

1/2 is
a candidate if γ∗,1 ≥ γ0, with k(x, γ∗,1) = 2[z2(z1 + α + x)]1/2 + C. For γ < γ0, k(x, γ) =
(z1 + x)/γ + (z2 + a)γ − 2(ν + 1) log γ + b− aγ0, with minimum point γ∗,2 := [ν + 1 + ((ν +
1)2 + (z2 + a)(z1 + x))1/2]/(z2 + a) < γ0. If z2 ≤ a, then γ∗,2 ≥ γ0 (not a candidate).
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This can be tested up front. If c := (z2 + a)(z1 + x), d := ((ν + 1)2 + c)1/2 ≥ ν + 1,
then k(x, γ∗,2) = c/(ν + 1 + d) + d + (ν + 1)[2 log(z2 + a) − 2 log(ν + 1 + d) + log γ0] =
2d + (ν + 1)[2 log(z2 + a) − 2 log(ν + 1 + d) + log γ0 − 1]. Now, θ and ρ are computed as in
Appendix A.5 (h(γ) there is h∪(γ) here, and z3 = 0, since this is folded into h∩ here), where
γ3∗h′′∪(γ∗) = 2α for γ∗ ≥ γ0, and γ3∗h′′∪(γ∗) = 2(ν + 1)γ∗ for γ∗ < γ0.

Bernoulli potentials. These are t(s) = (1+e−yτs)−1 = eyτs/2(2 cosh v)−1, v := (yτ/2)x1/2

= (yτ/2)|s|. They are not even; b = yτ/2. While h(γ) is not known analytically, we can plug
these expressions into the generic setup of Appendix A.5. Namely, g(x) = − log(cosh v)−log 2,
so that g′(x) = −C(tanh v)/v, g′′(x) = (C/2)x−1((tanh v)/v + tanh2 v − 1), C := (yτ/2)2/2.
For x close to zero, we use tanh v = v − v3/3 + 2v5/15 + O(v7) for these computations.
Moreover, γ0 = 1/(2C) and ξ0 = 3/(2C).

A.7. Group potentials. An extension of our framework to group potentials ti(‖si‖) is
described in section 4.5. Recall the details about the IRLS algorithm from section 4.3. For
group potentials, the inner Hessian is not diagonal anymore. h∗i (si) becomes h∗i (‖si‖), and
xi = ‖si‖2. If θi, ρi are as in section 4.3, dsi → d‖si‖, and θ̃i := θi/‖si‖, we have that
∇sih

∗
i = θ̃isi, since ∇si‖si‖ = si/‖si‖. Therefore, the gradient θ is given by θi = θ̃isi.

Moreover,
∇∇sih

∗
i = θ̃iI − (θ̃i − ρi)‖si‖−2sis

T
i .

For simplicity of notation, assume that all si have the same dimensionality. From Ap-
pendix A.5, we see that θ̃i ≥ ρi. Let κi := (θ̃i− ρi)1/2/‖si‖, and let ŝ := ((diagκ)⊗ I)s. The
Hessian w.r.t. s is

H(s) = (diag θ̃)⊗ I −
∑
i

wiw
T
i , wi = (δiδ

T
i ⊗ I)ŝ.

If w is given by wi = ŝTi vi, then H(s)v = ((diag θ̃) ⊗ I)v − ((diagw) ⊗ I)ŝ. The system
matrix for the Newton direction is σ−2XTX +BTH(s)B. For numerical reasons, θ̃i and κi
should be computed directly rather than via θi, ρi.

If si ∈ R
2, we can avoid the subtraction in computing H(s)v and gain numerical stability.

Namely, ∇∇sih
∗
i = ρiI + κ2i

(‖si‖2I − sis
T
i

)
. Since ‖si‖2I − sis

T
i = Msi(Msi)

T , M =
δ2δ

T
1 − δ1δ

T
2 , if we redefine ŝ := ((diagκ)⊗ (δ2δ

T
1 − δ1δ

T
2 ))s, then

H(s)v = ((diag ρ)⊗ I)v + ((diagw)⊗ I)ŝ, w =
(
ŝT
i vi

)
.
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