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Optimization of k-Space Trajectories for Compressed
Sensing by Bayesian Experimental Design

Matthias Seeger,1* Hannes Nickisch,2 Rolf Pohmann,2 and Bernhard Schölkopf2

The optimization of k-space sampling for nonlinear sparse
MRI reconstruction is phrased as a Bayesian experimental
design problem. Bayesian inference is approximated by a novel
relaxation to standard signal processing primitives, resulting
in an efficient optimization algorithm for Cartesian and spi-
ral trajectories. On clinical resolution brain image data from
a Siemens 3T scanner, automatically optimized trajectories
lead to significantly improved images, compared to stan-
dard low-pass, equispaced, or variable density randomized
designs. Insights into the nonlinear design optimization prob-
lem for MRI are given. Magn Reson Med 63:116–126, 2010.
© 2009 Wiley-Liss, Inc.
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Modern MRI applications demand high imaging speed,
especially when dynamic processes are observed, be it
in cardiac examinations, angiography, or Functional MRI
studies at high temporal resolutions. This need for rapid
scanning can be dealt with by alternative encoding strate-
gies, making use of multiple receiver coils (1–3) in order to
parallelize the imaging process to some extent.

While parallel MRI exploits redundancies between sev-
eral receiver channels, imaging speed can also be increased
by taking advantage of redundancies in the signal itself,
which allows for reconstruction of the image from only
a part of k-space in the first place. For example, k-space
measurements show approximately Hermitian symmetry,
which is exploited in partial Fourier acquisition techniques
(4). Far beyond these simple symmetries, images form a
statistically tightly constrained signal class. Fast, efficient
digital image and video compression techniques are rou-
tinely used today, and the principles underlying them
hold much promise for undersampled high-resolution MRI
reconstruction (5–8), if this process is understood in terms
of nonlinear statistical estimation. These proposals are
now known as compressed sensing or sparse reconstruc-
tion since they exploit the statistical sparsity of images,
a robust low-level characteristic, which leads to nonlin-
ear yet conservative and well-characterized interpolation
behavior (5). Compressed sensing is increasingly used for
MRI problems, such as dynamic (9) and spectroscopic
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imaging (10), as well as for spiral (11) and radial undersam-
pling (12,13). Typically, scan time reductions by a factor of
2 or more can be achieved without losses in spatial reso-
lution or sensitivity. Sparse statistics of images or image
series originate from the structure of their pixel repre-
sentations, an important instance of which is spatial or
temporal redundancy, which has been used to speed up
MRI acquisition (14–17).

Two problems arise in practical applications of com-
pressed sensing: how to reconstruct an image from a fixed
undersampling design and how to choose the design in
the first place. While a large amount of work was done for
the former, we are not aware of much practically relevant
progress for the latter. It is the undersampling design opti-
mization problem for sparse MR image reconstruction that
we focus on in this paper. Although there is substantial
prior work on k-space optimization (18–20), this has been
done for linear reconstruction, neglecting image sparsity.
As we demonstrate here, it pays substantially to match the
k-space trajectory to the sparse reconstruction technique.
Nonlinear design optimization requires novel approaches.
Established concepts such as the point spread function, tai-
lored to linear reconstruction, do not capture the inherent
dependence of sparse (nonlinear) estimation algorithms on
the acquired signal. The latter cannot improve upon the
Nyquist limit uniformly, but only for statistically sparse
signals, and successful nonlinear k-space optimization
has to take this dependence into account (the transform
point spread function proposed in Lusting et al. (8) is
signal independent as well and will not be useful to opti-
mize k-space coverage for sparse reconstruction either). We
phrase k-space optimization as a problem of experimental
design and propose an algorithm based on Bayesian infer-
ence, where statistical sparsity characteristics of images are
incorporated by way of a prior distribution. The application
of this procedure to high-resolution MR images becomes
feasible only with a novel inference algorithm we pro-
pose here. We apply our approach to the optimization
of Cartesian and spiral trajectories, achieving a scan time
reduction of a factor larger than 2 in either case compared
to Nyquist-spaced sampling. Our framework is generic and
can in principle be applied to arbitrary trajectory classes,
to multislice design optimization, and to designs with mul-
tiple receiver coils. We describe its computational and
implementation requirements in detail. Properties of mea-
surement designs for nonlinear sparse reconstruction have
been evaluated empirically in Marseille et al. (6) for Carte-
sian trajectories, and in Wajer (7; Section 6) for radial
and spiral trajectories. They focus on nonconvex image
reconstruction and search for good designs by undirected
random exploration, which is unlikely to cover the design
space properly. In contrast, we employ the full Bayesian
posterior in order to direct our search in a powerful and

© 2009 Wiley-Liss, Inc. 116



Bayesian Optimization of k-Space Trajectories 117

easily configurable manner. We are not aware of previ-
ous applications of (Bayesian) experimental design to this
problem.

THEORY

In this section, we develop a Bayesian experimental design
framework for the optimization of k-space trajectories
specifically for sparse nonlinear image reconstruction. Our
method is based on a novel approximate Bayesian inference
algorithm, which solves a convex optimization problem
and can be scaled up to full high-resolution MR images.

Sparsity Statistics of MR Images: Convex Reconstruction

The Nyquist theorem fundamentally limits sampling
designs without any assumptions on the signal. However,
the majority of possible bitmaps do not constitute valid MR
images, which are statistically tightly constrained. On a low
level, images exhibit sparsity: coefficients in linear trans-
form spaces have super-Gaussian distributions (peaked,
heavy-tailed) (21), whose low entropies are mainly respon-
sible for the high compression rates achieved by modern
schemes such as Joint Photographic Experts Group (JPEG).
Sparsity is a robust property of nonsynthetic images, com-
ing from structure (edges, smooth areas, textures) which is
not present in noise.

Sparsity can be used in order to reconstruct MR images
from measurements far below the Nyquist limit. Let u ∈
C

n represent the unknown MR image to be reconstructed,
where n is the number of pixels. MR measurements y are
modeled as

y = Xu + ε ∈ C
m, �(ε), �(ε) ∼ N (0, σ 2I),

where ε accounts for measurement errors, and w = �(w ) +
i�(w ) ∈ C, �(w ), �(w ) ∈ R. The design matrix X ∈ C

m×n

contains Fourier filters at certain k-space points, and m is
the number of k-space measurements taken. In standard
linear reconstruction, we maximize the Gaussian likeli-
hood P(y|u) = N (Xu, σ 2I) as a function of the bitmap u,
with no preference for sparse signals. This maximum like-
lihood estimator can be improved upon by taking signal
class knowledge into account, in form of a prior probabil-
ity distribution P(u) over bitmaps. The prior is a preference
weighting factor, unrelated to the measured data, which
assigns high density to bitmaps exhibiting sparsity (such
as MR images). Combining these terms by Bayes’ rule, we
have

P(u|y) ∝ P(y|u)P(u).

P(u|y) is the Bayesian posterior distribution, the canonical
combination of measurement data and prior knowledge by
rules of probability. Both prior and posterior are distribu-
tions over bitmaps, representing our knowledge about the
image before and after measurements have been obtained.
In sparse reconstruction techniques, the posterior is opti-
mized, instead of the likelihood alone. The most prominent
algorithm, the MAP (maximum a posteriori) estimator,
finds the mode of the posterior:

ûMAP := argminu[− log P(y|u) − log P(u)]. [1]

The super-Gaussian prior distribution P(u) employed in
this paper can be written as product of Laplace poten-
tials, depending on linear projections of u: multiscale
wavelet coefficients and horizontal and vertical first deriva-
tives. For this prior, the MAP estimator coincides with the
method used in Lustig et al. (8), apart from our placing addi-
tional Laplace potentials on the coefficients of �(u) (13).
Details are given in the Appendix (Sparse Linear Model).
The MAP reconstruction process, which is nonlinear due to
the non-Gaussian prior P(u), is illustrated in Lustig et al. (8,
Fig. 2). As opposed to the maximum likelihood estimator,
ûMAP cannot be found by a single linear system but requires
iterative computation. It is the unique minimizer of a con-
vex criterion, and efficient MAP algorithms are available
(22,23). We refer to P(y, u) as sparse linear model due to
the linearity of measurements and the sparsity enforced by
the prior.

Bayesian k-Space Optimization

Within a class of measurement designs X of equal cost,
which of them leads to the most successful sparse MAP
reconstruction of MR images? While this question has been
addressed satisfactorily for linear reconstruction, by the
concept of point spread functions, we are not aware of
a theory for the nonlinear sparse counterpart that is con-
vincing in practice. Properties of nonlinear reconstruction
are fundamentally signal dependent, and to our knowl-
edge, no theory at present captures the signal class of
high-resolution MR images properly.

We develop a variant of Bayesian sequential experimen-
tal design (or Bayesian active learning) in this section in
order to optimize k-space sampling automatically from
data, specifically for subsequent sparse MAP reconstruc-
tion. The key idea is to monitor the posterior distribution
P(u|y), the Bayesian representation of remaining uncer-
tainty in the image reconstruction, as the design X is
sequentially extended by new trajectory interleaves. In
each round, among many potential extension candidates,
we select one that leads to the largest expected reduction
in posterior uncertainty.

Sampling trajectories in most MRI sequences are com-
posed of smooth elements, such as spiral or radial inter-
leaves, or Cartesian phase encodes. Our design algorithm
operates on a candidate set C = {X*} of such elements
and appends one element to the design X in each round.
It is outlined in Fig. 1. The design score (or criterion) is
the information gain, quantifying the amount of reduc-
tion in posterior entropy due to the measurement of an
additional phase encode X*. More precisely, it quantifies
the difference in uncertainty between the present state of
knowledge P(u|y) and the refined state P(u|y, ỹ*) after a
novel measurement ỹ* at X*. A natural measure for the
amount of uncertainty in a distribution P(u) is the (differ-
ential) entropy H[P(u)] = − ∫

P(u) log P(u) du (24), based
on which the information gain is defined as

S(X*; P(u|y)) := H[P(u|y)] − EP(ỹ*|y)[H[P(u|y, ỹ*)]], [2]

where EP(u)[. . .] denotes
∫

(. . .)P(u) du. The expectation over
the posterior P(ỹ*|y) = EP(u|y)[N (ỹ*|X*u, σ 2I)] is required,
since the outcome ỹ* for a candidate X* is unknown at scor-
ing time. Neither the posterior P(u|y) nor the score values
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Require: Candidate set C of elements (interleaves,
phase encodes). Initial design X, measurement y,
corresponding posterior P(u|y).
repeat

(1) Compute score values S(X*; P(u|y)) for all
candidate elements X* ∈ C.

(2) Append winning candidate X* to X , and
remove it from C.

(3) Acquire measurement y* corresponding to X*,
append it to y.

(4) Recompute novel posterior P(u|y).
until X has desired size and u desired quality.

FIG. 1. Bayesian design optimization algorithm.

S(X*; P(u|y)) can be computed in closed form, but have to
be approximated by novel techniques, which are detailed
in the following subsection.

Our algorithm provides a goal-directed way to optimize
k-space sampling. In each round, only a single new real
measurement is required, while the effective search space,
the set of all combinations of candidates, has exponential
size in the number of rounds. This characteristic sets it
apart from blindly randomized approaches, which explore
the search space in stochastic, nonadaptive patterns and

tend to use many more real measurements than rounds. In
practice, our algorithmic scheme has to be adjusted to con-
straints coming from the MR scanner setup. We come back
to this point in the Discussion. Our method is visualized
in Fig. 2.

Variational Approximate Inference

In order to compute design score values S(X*; P(u|y)), we
have to integrate over the posterior P(u|y). These com-
putations, referred to as Bayesian inference, cannot be
done exactly in the case of sparse linear models. We pro-
pose a novel method for sparse linear model approximate
inference, which scales up to high-resolution MR images
while being accurate enough to successfully drive nonlin-
ear design optimization. To the best of our knowledge, this
regimen could not be attained by previous sparse linear
model inference methods. The intractable posterior P(u|y)
is fitted by a gaussian distribution Q(u|y), with the aim of
closely approximating the posterior mean and covariance
matrix. The fitting amounts to a convex optimization prob-
lem with a unique solution, which is efficiently found by a
novel iterative algorithm.

Our approach makes use of a variational relaxation,
which has been used before (25–27). The posterior P(u|y)
is fitted with the closest Gaussian distribution Q(u|y) from

FIG. 2. Bayesian experimental design on sagittal head scan data (see Materials and Methods section) for spiral sequences. Scoring round
5 → 6 interleaves. a,b: Score values S(X *; Q(u|y)) for 256 candidates θ0 = k 2π/256, k = 0 : 255. (i): MAP reconstruction from X alone (five
arms). c-h: MAP reconstructions from different design extensions X ∪ X * (six arms). Shown are residuals |u* − utrue| for reconstructions u*,
L2 error lower left. Top scorer (d) gives best reconstruction after extension due to most information gained. Nontrivial score curve witnesses
signal dependence of design optimization problem.
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a large approximation family. Since integrations against
Gaussian densities are tractable even in high dimensions,
the replacement P(u|y) → Q(u|y) allows for design score
computations on a large scale. Our prior P(u) is a prod-
uct of super-Gaussian (Laplace) potentials, each of which
can be tightly lower bounded by Gaussian functions of any
variance (which amounts to the mathematical definition of
super-Gaussianity; see Fig. 3). We use this property in order
to choose the approximation family and to formulate the
variational problem. For the former, we start with P(u|y),
but replace each prior potential by a Gaussian lower bound
centered at zero. The variances γ = (γi) ∈ R

q
+ of these

replacements parameterize the Gaussian family members
Q(u|y; γ ). For the variational criterion φ(γ ), we apply the
same replacement to the log partition function

log P(y) = log
∫

P(y|u)P(u) du, [3]

the approximation target in most variational inference
methods (posterior moments, such as mean and covariance,
are obtained as derivatives of log P(y)) (28), leaving us with
a lower bound −φ(γ )/2 ≤ log P(y), which can be evalu-
ated as a gaussian integral. The larger the lower bound,
the tighter is the fit of Q(u|y) to P(u|y): 2φ(γ ) + log P(y) is
a convex upper bound to the Kullback-Leibler divergence
D[Q(u|y) ‖ P(u|y)], a standard measure for the difference
between two distributions (24).

We establish that the variational inference problem
minγ φ(γ ) is convex: there is a single best gaussian fit Q(u|y)
to P(u|y). Moreover, we propose a novel algorithm to find
the minimum point of φ orders of magnitude faster than
previous approaches we know of, rapid enough to address
the k-space optimization problem. Revisiting Fig. 1, we
obtain our method in practice by replacing P(u|y) →
Q(u|y), which is fitted before starting the design loop and
refitted to the extended posterior at the end of each round,
in step (4). Details about our inference algorithm are given
in the Appendix (Large-Scale Variational Inference). The
optimization is reduced to calling primitives of numeri-
cal computing a moderate number of times: reweighted
least squares estimation, and approximate eigendecompo-
sition. While the former is routinely used for linear and

FIG. 3. Super-Gaussian distributions (here: Laplace distributions,
see Appendix Sparse Linear Model) admit tight Gaussian-form lower
bounds of any variance γ .

nonlinear MRI reconstruction, the latter seems specific to
the inference problem and is required in order to approx-
imate posterior covariances. These are further reduced,
by standard algorithms of numerical mathematics to sig-
nal processing primitives such as fast discrete Fourier
transform or nonequispaced fast Fourier transform (NFFT).

Once P(u|y) is replaced by its closest gaussian fit Q(u|y),
the design score (2) can be computed in practice (step (1)
in Fig. 1). However, k-space optimization comes with large
candidate elements X* (the spiral interleaves used in our
study consist of 3216 k-space points), and if many candi-
dates are to be scored in each round, a naive computation
is too slow. We detail our score computation approach in
the Appendix (Large-Scale Variational Inference), making
use of approximate eigendecomposition once more.

MATERIALS AND METHODS

We consider design problems for Cartesian and spiral
sequences. In either case, we extract or interpolate mea-
surements corresponding to desired trajectories from scan-
ner data recorded on an equispaced grid (Magnetron Trio
Scanner, Siemens Medical Solutions, Erlangen, Germany;
turbo spin echo (TSE) sequence, 23 echos per excitation,
train of 120◦ refocusing pulses, each phase encoded dif-
ferently, 1 × 1 × 4 mm3; different echo times [TEs] and
orientations, see Fig. 5). Reconstructions û are validated by
the L2 distance ‖utrue − |û|‖, utrue being the absolute value
of the complete data reconstruction. We use sparse MAP
reconstruction in general (Ei), with code as used in Lustig et
al. (8), comparing against linear reconstruction (zero filling
with density compensation) (29, ch. 13.2.4) for Cartesian
undersampling.

Cartesian Trajectories

In the Cartesian setup, we select individual k-space lines
from 256 equispaced candidates (with d = 256 samples
per line), the complete dataset corresponding to a stan-
dard Nyquist-sampled image acquisition. Multiplications
with X , X* correspond to equispaced discrete Fourier trans-
forms, for which we use fastest Fourier transform in the
West (FFTW) (http://www.fftw.org/).

All designs compared here start with the 32 lines clos-
est to the origin, which leaves 224 lines to choose from.
Based on these low-frequency data, we estimate a phase
map and postmultiply X in order to correct for phase noise,
as in Lustig et al. (8). Phase mapping helps sparse recon-
struction and is vital for Bayesian design optimization (see
Discussion). For the equispaced designs eq, the remain-
ing space is covered with Nshot − 32 equispaced lines. The
low-pass designs ct occupy lines densely from the center
outwards. Random designs rd are drawn according to the
heavy-tailed variable density used in Lustig et al. (8) (we
modified their density to accommodate the smaller central
slab), which accounts for the nonuniform spectral distribu-
tion of (MR) images specifically (1/f spectral decay). Lines
are drawn without replacement. In accordance with Lustig
et al. (8), we noted that drawing lines uniformly at random
results in poor reconstructions (not shown). Our Bayesian
design optimization technique makes use of the remaining
224 lines as candidate set C. The optimization is done on



120 Seeger et al.

FIG. 4. Results for Cartesian undersampling, on sagittal slice (TSE, TE = 92 ms). All designs contain 32 central lines. Equispaced [eq];
low-pass [ct]; random with variable density [rd]; optimized by our Bayesian technique [op], on same slice. Shown are L2 distances to utrue.
Left: Nonlinear (MAP) reconstruction. Right: Linear (ZFDC) reconstruction.

a single slice (TSE, TE = 92 ms, sagittal orientation; Fig. 4,
left), featuring many details, while we present test recon-
struction results on a wide range of different data, unknown
during design optimization.

Spiral Trajectories

Interleaved outgoing Archimedian spirals employ trajec-
tories k(t) ∝ θ (t)ei2π [θ (t)+θ0], θ (0) = 0, where the gradient
g(t) ∝ dk/dt grows to maximum strength at the slew
rate, and then stays there (29, ch. 17.6). Sampling along
an interleave (azimuthal direction) respects the Nyquist
limit. The number of revolutions Nr per interleave and
the number of interleaves Nshot determine the radial spac-
ing, with scan time proportional to Nshot. We use Nr = 8,
resulting in 3216 samples per interleave. Radial Nyquist
spacing is attained for Nshot ≥ 16. Candidates are inter-
leaves, parameterized by the offset angle: X* = X*(θ0),
with d = 3216 rows. Samples do not lie on a regular grid:
nonequispaced Fast Fourier transform is used to multi-
ply with X , X* (NFFT with Kaiser-Bessel kernel (29, ch.

13.2); http://www.user.tu-chemnitz.de/∼potts/nfft). Our
experiments are idealized, in that spiral sampling is simu-
lated by NFFT interpolation from data acquired on a grid.

We compare MAP reconstruction under a number of
design choices: equispaced (eq), uniformly drawn at ran-
dom (rd), and optimized (op). Angles lie in [0, 2π) in the
first and in [0, π) in the second setting. All designs con-
tain θ0 = 0. In addition, eq uses θ0 = j(kπ/Nshot), j = 1, . . . ,
Nshot − 1; for rd, we draw Nshot − 1 angles uniformly at ran-
dom from C = (kπ/256)[1:255], averaging results over 10
repetitions; for op, we start from the single interleave θ0 = 0
and use the candidate set C. Here, k ∈ {1, 2}, depending on
the setting. For k = 2, setups with Nshot = 8 halve the scan
time, compared to Nyquist spacing. Designs are optimized
on a single slice (Fig. 4, left), featuring many details.

In the first setting (k = 2), the near-Hermitian symme-
try of data means that eq is at a disadvantage for even
Nshot. In order to correct for this fact, and to test the rele-
vance of u being close to real-valued (after phase mapping
and subtraction), we restrict angles to [0, π ) in a second
setting (k = 1). By interpolating non-Cartesian sampling,

FIG. 5. Results for Cartesian undersampling, on range of data unknown during design optimization: TSE scans, different TEs (TE = 11 ms,
TE = 92 ms) and orientations (sagittal, axial). Design choices as in Fig. 5. Shown are L2 distances to utrue, averaged over five slices and four
different subjects. Left: Reconstruction test errors for different datasets (TE, orientation). Error bars for variable density random [rd] w.r.t. 10
repetitions. Right: Reconstruction test errors, averaged over five slices, for designs of 127 lines. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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FIG. 6. MAP reconstructions for Cartesian undersampling, sagittal data (TSE, TE = 88 ms, unknown during design optimization), at Nshot =
64 phase encodes (red: 32 initial center lines; blue: 32 additional encodes according to design choices). Upper row: Full images. White
window: Location of blow-up. Middle row: Residuals (difference to utrue), location of phase encodes (k-space columns). Lower row: Blow-
ups. MAP ct: Apparent lower resolution, fine structures smoothed out. MAP rd: Erroneous dark structure (upper left). MAP op: Satisfying
level of details at 1/4 of Nyquist rate, considerably more detail and less blurring than for the other undersampled designs.

we ignore characteristic errors of spiral acquisition in prac-
tice, which may diminish the impact of our findings (see
Discussion).

RESULTS

Cartesian Sequences

Reconstruction error results are given in Fig. 4 (tested
on slice used for design optimization) and Fig. 5 (tested
on wide range of other data, unknown during design
optimization). If nonlinear MAP reconstruction is used
for undersampled reconstruction, the optimized designs
clearly outperform all other choices, especially with fewer
lines (the left end, 64 lines, is 1/4 of the Nyquist rate). Low-
pass designs outperform variable density random designs
with few lines, while the latter improves from about 1/2 the
Nyquist rate. In contrast, if linear reconstruction is used
(Fig. 4, right), only low-pass designs lead to acceptable
reconstructions.

Importantly, the dominating part of improvements of
optimized over other designs considered here general-
izes to data never seen during optimization, as shown in
Fig. 5. This is the case even for axial orientations, depicting
details different from the single sagittal slice the design was
optimized on. As seen in the right panel, the improvements

are consistent across TEs, orientations, and subjects, and
their size scales with the reconstruction difficulty of the
test slice.

MAP reconstructions for Cartesian sagittal data (TSE,
TE = 88 ms, unknown during design optimization) are
shown in Fig. 6, for axial data (TSE, TE = 92 ms) in
Fig. 7, comparing different designs of 64 lines (1/4 Nyquist;
scan time reduction by factor of 4). The superior quality of
reconstructions for the optimized design is evident.

Spiral Sequences

MAP reconstruction errors for spiral undersampling are
given in Fig. 8. The left column shows performance on
the data the angles were optimized over, while in the right
column, we test generalization behavior on a range of dif-
ferent data. The lower row corresponds to the first setting,
with offset angles θ0 ∈ [0, 2π ). As expected, eq for even
Nshot does poorly due to the almost-Hermitian symmetry
of the data, while performing comparably to op for odd
Nshot. In the second setting (θ0 ∈ [0, π ), upper row), eq and
op perform similarly from Nshot = 7, with op outperform-
ing eq for smaller designs. In comparison, drawing offset
angles at random leads to much worse MAP reconstruc-
tions in either setting. As for Cartesian undersampling, the
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FIG. 7. MAP reconstructions for Cartesian undersampling, axial data (TSE, TE = 11 ms, unknown during design optimization), at Nshot = 64
phase encodes (red: 32 initial center lines; blue: 32 additional encodes according to design choices). Upper row: Full images. White window:
Location of blow-up. Middle row: Residuals (difference to utrue), location of phase encodes (k-space columns). Lower row: Blow-ups. MAP
ct: Apparent lower resolution than MAP rd, MAP op. Both MAP ct and MAP rd have tendency to fill in dark area. MAP op retains high contrast
there. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

performance on different datasets, unknown at optimiza-
tion time, is comparable to the behavior on the training set,
except that eq does substantially worse on axial than on
sagittal scans.

DISCUSSION

We have highlighted the importance of k-space sampling
optimization tailored specifically to novel nonlinear sparse
reconstruction algorithms, and have proposed a Bayesian
experimental design framework, scaled up to this applica-
tion for the first time. Our experimental results for Cartesian
undersampling show that sparse reconstruction quality
depends strongly on the sampling design chosen, with
phase encodes optimized by our Bayesian technique out-
performing other commonly used undersampling schemes,
such as low-pass or variable density random designs (8).
With optimized sampling, high-quality reconstructions are
obtained if only half of all lines are measured, and use-
ful images can be reconstructed at 1/4 of the Nyquist rate
(Figs. 6 and 7). The behavior of undersampling designs is
very different for linear reconstruction, where only low-
pass measurements lead to good reconstructions (Fig. 4,
right), indicating that linear design optimization con-
cepts, such as the point spread function, play a dimin-
ished role for nonlinear reconstruction and that sampling

optimization has to be matched to the reconstruction
modality. The improvement of optimized over other design
choices is most pronounced for fewer number of lines
acquired. Importantly, even though designs are optimized
on a single slice of data, a large part of these improvements
generalizes to different datasets in our study, featuring
other slice positions, subjects, TEs, and even orientations
(Fig. 5). Our results indicate that Bayesian design opti-
mization can be used offline, adjusting trajectories on data
acquired under controlled circumstances, and final opti-
mized designs can be used for future scans. Our framework
embodies the idea of adaptive optimization. The sampling
design is adjusted based on a representative dataset (called
training set), and if adequate measures for complexity
control are in place (Bayesian sparsity prior, proper repre-
sentation of posterior mass, sequential scheme of uncov-
ering information only if asked for), good performance
on the training set (Fig. 4) tends to imply good perfor-
mance on independent test sets (Fig. 5), thus successful
generalization to similar future tasks.

Our framework is not limited to Cartesian sampling,
as demonstrated by our application to spiral k-space
optimization. However, our findings are preliminary in
this case: spiral sampling was interpolated from data
acquired on a Cartesian grid, and only the offset angles of
dense Archimedian interleaves were optimized (instead of
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FIG. 8. Results for MAP reconstruction, spiral undersampling of offset angles θ0. Left column: Reconstruction errors on sagittal slice (see
Fig. 4 left), on which op is optimized. Right column: Reconstruction errors on different data (averaged over five slices, four subjects each,
see Fig. 5). Upper row: Offset angles from [0, π ). Lower row: Offset angles from [0, 2π ). Design choices: Equispaced [eq]; uniform at random
[rd] (averaged over 10 repetitions); optimized by our Bayesian technique [op].

considering variable-density spiral interleaves as well).
In this setting, designs optimized by our technique show
comparable performance to spacing offset angles equally,
while a randomization of these angles performs much
worse.

In Bayesian design optimization, statistical information
is extracted from one or few representative images used
during training and represented in the posterior distribu-
tion, which serves as oracle to steer further acquisitions
along informative directions. Confirmed in further exper-
iments (not shown), it is essential to optimize the design
on MRI data for real-world subjects or controlled objects
of similar statistical complexity; simple phantoms do not
suffice. While the latter are useful to analyze linear recon-
struction, they cannot play the same role for nonlinear
sparse reconstruction. Modern theory proves that overly
simple signals (such as piecewise constant phantoms) are
reconstructed perfectly from undersampled measurements,
almost independently of the design used for acquisition
(30,31). This advantage of sparse reconstruction per se,
for almost any design, does not carry over to real-world
images such as photographs (32) or clinical resolution MR
images (our results here). The relevance of design optimiza-
tion grows with the signal complexity and is dominatingly
present for MR images of diagnostically useful content and
resolution.

Variable density phase encoding sampling does not per-
form well at 1/4 of the Nyquist rate (Figs. 6 and 7), if the
density of Lustig et al. (8) is used. For a different density
with lighter tails (more concentrated on low frequencies),
reconstructions are better at that rate but are significantly
worse at rates approaching 1/2 or more (results not shown).
In practice, this drawback can be alleviated by modify-
ing the density as the number of encodes grows. From our
experience, a second major problem with variable density
design sampling comes from the independent nature of the
process: the inherent variability of independent sampling
leads to uncontrolled gaps in k-space, which tend to hurt
image reconstruction substantially. Neither of these prob-
lematic aspects is highlighted in Lustig et al. (8) or in much
of the recent compressed sensing theory, where incoher-
ence of a design is solely focused on. A clear outcome
from our experiments here is that while incoherence plays
a role for nonlinear reconstruction, its benefits are easily
outweighted by neglecting other design properties. Once
design sampling distributions have to be modified with the
number of encodes and dependencies to previously drawn
encodes have to be observed, the problem of choosing such
a scheme is equivalent to the design optimization prob-
lem, for which we propose a data-driven alternative to trial
and error here, showing how to partly automate a labori-
ous process that in general has to be repeated from scratch
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for every new configuration of scanner setup and available
signal prior knowledge.

Further issues will have to be addressed in a fully
practical application of our method. We extracted (or inter-
polated) undersampling trajectories from data acquired on
a complete Cartesian grid, which may be realistic for Carte-
sian undersampling but neglects practical inaccuracies
specific to non-Cartesian trajectories. Moreover, in multi-
echo sequences, the ordering of phase encodes matters.
For an immobile training subject/object, our sequential
method can be implemented by nested acquisitions: run-
ning a novel (partial) scan whenever X is extended by
a new interleave, dropping the data acquired previously.
With further attendance to implementation and commod-
ity hardware parallelization, the time between these scans
will be on the order of a minute. Gradient and transmit or
receive coil imperfections (or sensitivities), as well as dis-
tortions from eddy currents, may imply constraints for the
design, so that fewer candidates may be available in each
round. Such adjustments to reality will be simplified by
the inherent configurability of our Bayesian method, where
likelihood and prior encode forward model and known
signal properties.

The near-Hermitian symmetry of measurements is an
important instance of prior knowledge, incorporated into
our technique by placing sparsity potentials on the imag-
inary part �(u). This leads to marked improvements for
sparse reconstruction and is essential for Bayesian k-space
optimization to work well. In addition, phase mapping
and subtraction is required. Phase contributions substan-
tially weaken image sparsity statistics, thereby eroding the
basis sparse reconstruction stands upon. In the presence
of unusual phase errors, specialized phase-mapping tech-
niques should be used instead. In future work, we aim to
integrate phase mapping into our framework.

In light of the absence of a conclusive nonlinear k-space
sampling theory and the well-known complexity of non-
linear optimal design, our approach has to be seen in the
context of other realizable strategies. Designs can opti-
mized by blind (or heuristic) trial-and-error exploration
(6), which in general is much more demanding in terms
of human expert and MRI scan time than our approach.
Well-founded approaches fall in two classes: artificially
simplified problems are solved optimally, or adaptive opti-
mization on representative real datasets is used. We have
commented above on recent advances in the first class for
extremely sparse, unstructured signals (30,31), but these
results empirically seem to carry little relevance for real-
world signals. Our method falls in the second class, as an
instance of nonlinear sequential experimental design (33,
34), where real-world signals are addressed directly and for
which few practically relevant performance guarantees are
available.

Our approach to design optimization is sequential,
adapting measurements to largest remaining uncertainties
in the reconstruction of a single image. While we estab-
lished sound generalization behavior on unseen data in
our experiments, real-time MRI (9,29, ch. 11.4) may espe-
cially benefit from our sequential, signal-focused approach.
While our algorithm at present does not attain the high
frame rates required in these applications, algorithmic
simplifications, combined with massively parallel digital

computation, could allow our framework to be used in
the future in order to provide advanced data analysis and
decision support to an operator during a running MRI
diagnosis.

In future work, we will apply our methodology to real
non-Cartesian measurements. Moreover, we will address
the trajectory design problem across multiple neighbor-
ing slices, where sparsity statistics are modeled in three
dimensions and dependencies between measurements in
different slices are represented by a Markovian extension of
the sparse linear model. We also aim to explore design opti-
mization problems in the context of parallel MR imaging,
or for three-dimensional imaging with ultrashort repetition
times.

APPENDIX

Sparse Linear Model

The sparse linear model we use throughout the paper
comes with a Gaussian likelihood P(y|u) = N (Xu, σ 2I)
and a super-Gaussian image prior P(u) ∝ ∏q

i=1 ti(si). Here,
s = Bu ∈ C

q consists of linear filter responses, with B ∈
R

q×n: the image gradient (horizontal and vertical discrete
first derivatives; also called total variation coefficients), and
coefficients for an orthonormal multiscale wavelet trans-
form (Daubechies 4, recursion depth 6), a total of q ≈ 3 · n
Laplace potentials of the form

ti(si) = e−(τi/σ )|si |, τi > 0.

The Laplace distribution stands out among sparsity-
enforcing potentials, in that − log ti(si) = (τi/σ )|si | is con-
vex, so that the MAP estimator ûMAP can be computed
as a convex quadratic program (23). MAP estimation for
this sparse linear model exactly corresponds to the sparse
reconstruction method of Lustig et al. (8). In order to
enforce the fact that u is close to real-valued, we make
use of n additional Laplace potentials on �(si), as in Block
et al. (13), but not in Lustig et al. (8). Since si ∈ C is rep-
resented by (�(si), �(si)) ∈ R

2 internally, this amounts to a
simple extension of B.

Scale parameters τi are shared among all potentials of
the same kind, but we allow for different values in wavelet
coefficient, total variation, and imaginary part potentials.
While Bayesian inference is approximated over primary
parameters u, hyperparameters τi , σ 2 are estimated in gen-
eral. In our experiments, we optimized them on data not
used for comparisons and then fixed these values for all
subsequent sampling optimization and MAP reconstruc-
tion runs.

Large-Scale Variational Inference

Our variational inference algorithm falls in the class
of concave-convex, or difference-of-convex programming
methods. It is partly inspired by Wipf and Nagarajan (35).
The key idea is to replace φ by a surrogate upper bound φz,
whose minimization is much simpler but eventually leads
to the same minimum. A more detailed exposition is given
elsewhere (36,37). The algorithm is summarized in Fig. A1.

Super-Gaussian potentials can be tangentially lower
bounded by Gaussian functions at any width: ti(si) =
maxγi>0 e−(|si/σ |2/γi+hi (γi ))/2, where hi(γi) parameterizes the
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Require: Data X , y.
repeat

if inference started from scratch then
Initialize z ← 0.05 · 1, g*(z) ← 0, u ← 0.

else
Outer loop update:
Approximate eigendecomposition (Lanczos, k

steps): A ≈ Q�QH , Q = [qj ] ∈ C
n×k unitary.

z ←
k∑

j=1

λ−1
j |Bqj |2, g*(z) ← zT (γ −1) −

k∑
j=1

log λj .

Initialize u ← u* (previous minimizer).
end if
Inner loop: Minimize (A1) by IRLS algorithm, until

minimizer u* converges
Update γi ← (zi + (|s*,i|/σ )2)1/2/τi , s* = Bu*.

until outer loop converged

FIG. A1. Double loop variational inference algorithm.

height of the lower bound and depends on ti(si) (see Fig. 3).
If h(γ ) := ∑

i hi(γi), then h(γ ) = (τ2)Tγ , τ = (τi) for
Laplace potentials. Plugging this into (Eq. 3), we obtain
a tractable lower bound to the log partition function. Let
� = diagγ , and assume for now that BT�−1B is nonsin-
gular. If Q(u) := C−1e−(2σ 2)−1uH BT �−1Bu, the approximating
Gaussians are

Q(u|y) = N (u*, σ 2A−1) ∝ P(y|u)Q(u),

A := XH X +BT�−1B. Moreover, for Gaussians we have that∫
P(y|u)Q(u) du = |2πσ 2A−1|1/2 max

u
P(y|u)Q(u),

and some algebra leads to

φ(γ ) := −2 log
∫

P(y|u)Q(u) du = log |A| + h(γ )

+ min
u

R(u, γ ), R := σ−2(‖y − Xu‖2 + sH �−1s).

By a continuity argument, this equation holds for singu-
lar BT�−1B just as well. Now, (u, γ ) �→ R(u, γ ) is jointly
convex, so that γ �→ minu R is convex. Here, x �→ y anony-
mously refers to a function mapping x to y . It is proved in
Seeger and Nickisch (36) that γ �→ log |A| is convex as well.
Finally, beyond Laplace sites used in the application here,
it is shown in Seeger and Nickisch (36) that h(γ ) is con-
vex if all log ti(si) are concave: for general super-Gaussian
potentials ti(si), the variational inference problem minγ φ

is convex if this is the case for MAP estimation. To our
knowledge, no equivalent characterization has been given
for any other variational relaxation applicable to sparse
linear models.

A standard gradient-based optimization of φ(γ ) is too
expensive in general to be practical, and our second major
technical contribution consists of a novel scalable class of
solvers for minγ φ. The most problematic term is log |A|,
introducing strong couplings into φ(γ ), so that even ∇γ φ

is hard to compute. We provide a principled way to fit φ

by an upper bound φz, tangent at the present value γ , so
that φz lacks this coupling term and is much easier to min-
imize than φ itself. In the resulting double loop (or upper
bound) minimization algorithm, the major computational
difficulty of minimizing φ has to be faced only at the few
points where φz is refitted to φ (outer loop updates), but not
during the inner loop minimization of φz.

Since γ −1 �→ log |A| is concave, we have log |A| =
min{zi>0} zT (γ −1) − g*(z) by Legendre duality (38), so that
φ(γ ) ≤ minu φz(u, γ ) with

φz(u, γ ) := zT (γ −1) + (τ2)Tγ + R(u, γ ) − g*(z).

φz is jointly convex. For fixed u, the minimizer is γi =√
zi + (|si |/σ )2/τi . Plugging this in, we are left with

min
u

[
σ−2‖y − Xu‖2 + 2

q∑
i=1

τi

√
zi + (|si |/σ )2

]
, [A1]

a penalized least squares problem, which can be solved
very efficiently by the iteratively reweighted least squares
(IRLS) algorithm (39). Each IRLS iteration requires a sin-
gle linear system to be solved, with matrices of the same
size and form as A, a problem well studied in linear MRI
reconstruction. IRLS tends to converge after fewer than 30
iterations, forming the inner loop of our algorithm. The
minimizer u* coincides with the mean of Q(u|y). At IRLS
convergence, z and g*(z) are recomputed, so that φz is
tangent to φ at the current value of γ :

z ← ∇γ −1 log |A| = diag−1(BA−1BT ) = (VarQ[si |y]),
g*(z) ← zT (γ −1) − log |A|.

Our algorithm iterates between these outer loop updates
and IRLS inner loop minimizations until convergence,
which is typically attained after fewer than five outer loop
updates. These latter computations, which are particular to
approximate inference and not normally needed in recon-
struction algorithms, are substantially harder to compute
than least squares solutions. They can be approximated suf-
ficiently well using the Lanczos eigensolver algorithm (40):
A ≈ Q�QH , Q ∈ C

n×k unitary, k � n, where the largest and
smallest eigenvalues and eigenvectors of A feature in the
diagonal � and Q. Then,

z ≈ diag−1(BQ�−1QH BT ), log |A| ≈ log |�|.

While this approximation is not very accurate uniformly
over the zi (they are systematically underestimated), it
extracts enough information from A in order to drive our
inference algorithm. This notion is discussed in more detail
in Seeger and Nickisch (36). Intuitively, the Lanczos algo-
rithm extracts the dominating modes of Q(u|y) covariance
(largest eigenvectors of A−1), much like in principal com-
ponents analysis, and even for moderate k, these provide a
sufficient summary of dependencies. The Lanczos method
is related to the linear conjugate gradients (LCG) algorithm
used to solve least squares systems, but requires O(n k)
memory and a computational overhead which grows with
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k. The rationale of our double loop algorithm is that, by
bounding the log |A| coupling term, this difficult covari-
ance computation has to be done very few times only. Both
linear conjugate gradients and Lanczos reduce much of
their effort to repeated matrix-vector multiplications with
XH X (fast Fourier transform, or NFFT). Our algorithm is
summarized in Fig. A1.

Once Q(u|y) is fitted, design scores S(X*; Q(u|y)) are
computed by noting that H[Q(u|y)] = 1

2 log |2πeσ 2A−1|, so
that S(X*; Q(u|y)) = log |I + X*A−1XH

* |. Here, we approx-
imate P(u|y, ỹ*) by ∝ Q(u|y)P(ỹ*|u) without refitting the
variational parameters γ . If X* ∈ C

n×d , S(X*) could be com-
puted by solving d linear systems, but this is too slow to
be useful. Instead, we use the Lanczos approximate eigen-
decomposition once more: log |I + X*A−1XH

* | ≈ log |I +
V H

* V *|, V * := �−1/2QH XH
* ∈ C

k×d . If k < d, we compute
log |I + V *V H

* | instead. This approximation allows scor-
ing of many large candidates in each round. Moreover, the
score computation can readily be parallelized across dif-
ferent machines. We compared approximate score values
to true ones, on 64 × 64 images where the latter can be
computed. While the true values were strongly underesti-
mated in general (even the largest ones), the peaks of the
score curves were traced correctly by the approximations,
and the maximizers of the approximate curves fell within
dominating peaks of the exact score.

Approximate inference is used at different points in
Fig. 1: in the initial phase before the design loop and at the
end of each round. In our experiments, we used five outer
loop steps in the initial phase and a single outer loop step
between design extensions. We ran up to 30 inner loop IRLS
steps, with up to 750 linear conjugate gradients iterations
for each linear system (they often converged much faster).
To save time, we partitioned the IRLS steps in categories
“sloppy” and “convergence”. Sloppy steps use 150 linear
conjugate gradients iterations only, preceding convergence
steps. The Lanczos algorithm was run for k = 750 iterations
in general.
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