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Abstract

Cardiac motion artifacts frequently reduce the interpretability of coronary computed tomography angiogra-
phy (CCTA) images and potentially lead to misinterpretations or preclude the diagnosis of coronary artery
disease (CAD). In this paper, a novel motion compensation approach dealing with Coronary Motion esti-
mation by Patch Analysis in CT data (CoMPACT) is presented. First, the required data for supervised
learning is generated by the Coronary Motion Forward Artifact model for CT data (CoMoFACT) which
introduces simulated motion to 19 artifact-free clinical CT cases with step-and-shoot acquisition proto-
col. Second, convolutional neural networks (CNNs) are trained to estimate underlying 2D motion vectors
from 2.5D image patches based on the coronary artifact appearance. In a phantom study with computer-
simulated vessels, CNNs predict the motion direction and the motion magnitude with average test accuracies
of 13.37◦ ± 1.21◦ and 0.77 ± 0.09 mm, respectively. On clinical data with simulated motion, average test
accuracies of 34.85◦± 2.09◦ and 1.86± 0.11 mm are achieved, whereby the precision of the motion direction
prediction increases with the motion magnitude. The trained CNNs are integrated into an iterative motion
compensation pipeline which includes distance-weighted motion vector extrapolation. Alternating motion
estimation and compensation in twelve clinical cases with real cardiac motion artifacts leads to significantly
reduced artifact levels, especially in image data with severe artifacts. In four observer studies, mean artifact
levels of 3.08± 0.24 without MC and 2.28± 0.29 with CoMPACT MC are rated in a five point Likert scale.
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1. Introduction

Non-invasive coronary computed tomography an-
giography (CCTA) has become a preferred tech-
nique for the detection and diagnosis of coronary
artery disease (CAD) (Budoff et al., 2017; Foy et al.,
2017; Camargo et al., 2017; Liu et al., 2017), but the
temporal resolution of CCTA images is restricted
by the angular range required for reconstruction
and the system rotation time. Despite the appli-
cation of dual source CT systems (Petersilka et al.,
2008) and ECG-gated acquisition, cardiac motion
frequently leads to artifacts in the reconstructed
CT image volumes which hamper reliable evalua-
tion (Ghekiere et al., 2017).

Several software-based solutions for motion ar-
tifact detection, quantification and reduction have
been developed in the last few years. A selection
of related papers is listed and compared in Table 1.

Motion vector field (MVF) estimation and subse-
quent motion compensated reconstruction (MCR)
are the key components of most motion compen-
sation (MC) algorithms. A variety of MCR meth-
ods including motion compensated iterative recon-
struction (Isola et al., 2010), motion compensated
filtered back-projection (MC-FBP) (Schäfer et al.,
2006; van Stevendaal et al., 2008) and backproject-
then-warp (BPW) strategies (Bhagalia et al., 2012;
Brendel et al., 2014) are known. We assigned the
algorithms in Table 1 into registration-based, PAR-
based (partial angle reconstruction), metric-based
and image-based approaches.

Registration-based: Motion estimation by
3-D/3-D registration of multiple heart phases has
shown great results in the reduction of moderate
and severe motion artifacts (van Stevendaal et al.,
2008; Isola et al., 2010; Bhagalia et al., 2012; Tang
et al., 2012) but requires an extended temporal
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Table 1: Literature survey in the research field of coronary motion artifacts in CCTA images. Papers are clustered into
artifact reduction approaches, artifact detection/quantification approaches and approaches from our group which are based on
synthetically motion-perturbed data generated with the Coronary Motion Forward Artifact model for CT data (CoMoFACT).
In this manuscript, a method for Coronary Motion estimation by Patch Analysis in CT data (CoMPACT) is introduced.

Paper Purpose Approach Data Constraints Keywords

Symbols
H: hand-crafted
D: data-driven
Γ: required angular
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PAR partial angle reconstruction
MC-FBP motion compensated filtered back-projection
MC-IR motion compensated iterative reconstruction
BPW backproject-then-warp
ME motion estimation
TRIM temporal resolution improvement method
MAM motion artifact measure

van Stevendaal et al. (2008) X X X H X model-based surface reg.; MC-FBP
Isola et al. (2010) X X X H X multi-phase elatic image reg.; MC-IR
Bhagalia et al. (2012) X X X H X X centerline reg.; subphasic warp and add; BPW
Tang et al. (2012) X X X H X multi-phase image reg.; alternating ME and MC-FBP
Grass et al. (2016) X X X X H X vesselness filtering; opposite PAR reg.
Kim et al. (2018) X X X X X H X linear PAR reg.; metric-based MVF refinement
Schöndube et al. (2011) X X H X iterative PAR; histogram constraint; TRIM
Rohkohl et al. (2013) X X X H X X iterative MAM optimization
Hahn et al. (2017) X X X X H X X PAR; MAM optimization; BPW
Jung et al. (2018) X X D X X X cross-phase style transfer; image-to-image translation

Šprem et al. (2017) X X D X X X coronary artery calcification; deep learning
Ma et al. (2018) X X X H X X fold overlap ratio; low-intensity region score

Elss et al. (2018b) X X D X X X CoMoFACT; deep learning
Elss et al. (2018a) X X D X X X CoMoFACT; deep learning
Lossau et al. (2019) X X X D X X X CoMoFACT; deep learning
This manuscript X X X D X X X CoMoFACT; deep learning; CoMPACT

scan range which corresponds to increased radia-
tion doses. In (Grass et al., 2016) a series of CT
image volumes with reduced angular range of 75◦

is reconstructed at the angular positions −120◦,
−60◦, +60◦ and +120◦ around a selected center
phase. The resulting partial angle volumes are
post-processed by first combining high frequencies
from the partial scans with low frequencies from
a central full scan and subsequent vessel feature
enhancement according to (Wiemker et al., 2013).
Elastic image registration of diametrically opposed
partial scans as described by Kim et al. (2015)
yields dense MVFs which are integrated into
MC-FBP. By this procedure, Grass et al. (2016)
reduced the required angular scan range to 315◦

plus fan angle of the reconstruction field of view.

PAR-based: The increased temporal resolution of
PARs are exploited in several MC methods (Grass
et al., 2016; Hahn et al., 2017; Kim et al., 2018).
Schöndube et al. (2011) introduced the temporal
resolution improvement method based on an itera-
tive PAR with an additional histogram constraint.

Metric-based: An initial metric-based approach
dealing with MVF estimation by iterative min-
imization of handcrafted motion artifact mea-
sures (MAM) has been presented by Rohkohl
et al. (2013). This method was extended in

(Hahn et al., 2017) by introducing a novel motion
model parametrization and application of estimated
MVFs to PARs. Kim et al. (2018) proposed a
combination of these approaches by first estimating
linear motion using registration of PARs and sub-
sequent MVF refinement by information potential
minimization.

Image-based: Image-to-image translation us-
ing deep residual convolutional neural networks
(CNNs) allows for artifact suppression without con-
sideration of the corresponding projection data
(Jung et al., 2018). However, these approaches are
essentially restricted by the information content of
the motion perturbed input patches.

So far, most MC approaches are rule-based, i.e.
they exploit hand-crafted features for MVF deter-
mination. Machine learning holds the promise to
solve tasks of any complexity (Hornik et al., 1989),
but requires either appropriate manually labeled
or synthesized data. Forward models may help
to circumvent time-consuming and possibly noise-
affected hand-labeling processes with the benefit of
reproducibility. Coronary motion artifacts do man-
ifest in typical patterns containing intensity un-
dershoots and arc-shaped blurring due to the CT
reconstruction geometry which can be realistically
simulated by the Coronary Motion Forward Arti-
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Figure 1: Constant linear motion is introduced to phantom vessel trees using the CoMoFACT. Depending on the relation of
motion direction, reconstruction direction and coronary orientation, motion artifacts of different appearance occur. In case
of motion in direction of the coronary artery, artifacts are hardly visible due to blurring within the vessel (left box, bottom
row). The forward projected coronary artery mask depicted in the center is split into two scanning shots. Patch-based motion
prediction models have to be robust regarding related stack transition artifacts.

fact model for CT data (CoMoFACT) from Elss
et al. (2018b) and Lossau et al. (2019). This pre-
liminary work has demonstrated that CNNs trained
on synthesized data are applicable for motion arti-
fact recognition and quantification in clinical prac-
tice, i.e. CNNs are capable of identifying coronary
motion artifact patterns. Phantom studies further-
more revealed that the relation between angular re-
construction range and motion direction is crucial
for the artifact appearance (Elss et al., 2018a).

This paper addresses the question of how well
motion estimation can be performed from a single
reconstructed CT image patch based on the coro-
nary artifact appearance. Furthermore, potential
and limitations of single-phase, image-based mo-
tion estimation using CNNs for MC in clinical prac-
tice are investigated. An initial feasibility study
for axial motion estimation in coronary artery seg-
ments which are aligned along the scanners z-axis
has been presented in (Elss et al., 2018a). Building
on this work, the Coronary Motion estimation by
Patch Analysis in CT data (CoMPACT) method is
introduced here. We extended the model from Elss
et al. (2018a) for application on coronary artery seg-
ments with arbitrary orientations and adapted the
network architecture, accordingly. Furthermore,
learned motion vector prediction networks are inte-
grated into a novel iterative motion compensation
pipeline which enables reduction of severe artifacts
in dose efficient short scan data. The following steps
are applied to build and test the proposed motion
compensation method, whereby the main contribu-
tions of this work are 2. and 3., i.e. the deep-
learning-based motion estimation approach and the
motion compensation pipeline:

1. The CoMoFACT presented by Lossau et al.
(2019) enables introduction of simulated and
hence controlled motion to artifact-free cardiac
CT data. By restricting the trajectories of the
CoMoFACT to constant linear motion in the
axial plane, 19 000 pairs of motion perturbed
image patches and underlying 2D motion vec-
tors are generated from 19 clinical cases with
excellent image quality (see Section 3.1).

2. Based on the synthetically motion perturbed
data, CNNs are trained to estimate underlying
2D motion vectors from 2.5D image patches.
First, a phantom study is performed as starting
point for motion vector estimation in a well-
controlled scenario without variation in back-
ground intensities, contrast agent density or
noise level. Finally, CNNs are trained for the
more difficult task of motion vector estimation
on clinical data (see Section 3.2).

3. The trained CNNs are integrated into an itera-
tive motion compensation pipeline which uses
alternating MVF estimation and MC-FBP.
The MVF estimation step includes distance-
weighted extrapolation of motion vectors pre-
dicted along the approximate coronary center-
lines (see Section 3.3).

4. CoMPACT MC is tested on twelve clinical
cases with real artifacts and compared to the
registration-based MC approach from Grass
et al. (2016) in order to evaluate generaliza-
tion capabilities of the trained CNNs regard-
ing non-synthetic artifacts and the feasibility of
patch-based motion estimation in clinical prac-
tice (see Section 4.2).
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2. Material

The CoMoFACT from Lossau et al. (2019) uses
artifact-free CCTA cases with step-and-shoot ac-
quisition protocol as reference point for the mo-
tion introduction process. In addition to the re-
constructed CT image volumes which determine the
no motion state, the corresponding coronary artery
trees and the raw projection data are required. The
restriction to step-and-shoot cases offers the advan-
tage to generate artifacts in a well-controlled situa-
tion without table movement or multi-cycle recon-
struction. Phantom as well as patient data stud-
ies are performed. Section 2.1 details collection
and pre-processing of the clinical reference data.
The design of the computer-simulated vessels is de-
scribed in Section 2.2. Twelve additional clinical
cases with real motion-perturbation are collected
in order to test the transferability to non-synthetic
artifacts (see Section 2.3).

2.1. Clinical reference data without artifacts

Slice-by-slice visual inspection is performed to
gather contrast-enhanced cardiac CT data sets
which exhibit no coronary motion artifacts in the
reconstructed CT image volume. In total, 19
prospectively ECG-triggered clinical data sets from
different patients are collected. A 256-slice CT
scanner (Brilliance iCT, Philips Healthcare, Cleve-
land, OH, USA) with a gantry rotation speed of
0.272 sec per turn was used for the acquisition of
these reference cases. The mean heart rates HRmean

ranged from 45.2 bpm to 68.9 bpm. Cardiac CT im-
age volumes are reconstructed at the mid-diastolic
quiescent phase by aperture-weighted cardiac re-
construction (AWCR) (van Stevendaal et al., 2007).
The center of the cardiac gating window hereafter
called the reference cardiac phase r is chosen be-
tween 70% and 80% R-R interval, respectively. The
coronary artery tree of each case is segmented using
the Comprehensive Cardiac Analysis Software (In-
telliSpace Portal 9.0, Philips Healthcare, Cleveland,
OH, USA) delivering a set of centerline points ~c ∈ C
with associated information on the lumen contour.
Centerline points with a minimum vessel diameter
of 1.5 millimeters are utilized for data generation.

2.2. Phantom reference data without artifacts

From each clinical reference case, one binary
phantom mask is extracted which contains the seg-
mented lumen contour of the entire vessel tree (see
Figure 1). Ray-driven forward projection (Bippus

et al., 2011) and subsequent high-pass filtering de-
livers the projection data required for application
of the CoMoFACT. The projection geometry, the
ECG-data and the coronary centerline points are
adopted from the corresponding clinical data set.

The phantom study allows one to identify the
limits of deep-learning-based motion estimation in
a well-controlled scenario without variation in back-
ground intensities, contrast agent density or noise
level and focuses on variations in the vessel struc-
ture comprising different orientations, curvatures,
radii and bifurcations.

2.3. Clinical test data with real artifacts
Twelve additional clinical cases which belong to

different patients and exhibit real motion artifacts
at the coronary arteries are collected for testing pur-
poses. Acquisition is performed by a Brilliance iCT
scanner using the same scan protocol as in the ref-
erence data. The mean heart rates of the patients
HRmean ranged from 57.9 bpm to 83.0 bpm.

3. Methods

CNNs are trained for motion vector estimation
in coronary image patches. The required data for
supervised learning is generated using an adapted
version of the CoMoFACT for simulated motion in-
troduction. Subsection 3.1 details the data genera-
tion process including synthetic motion vector field
(MVF) creation and patch sampling. Data augmen-
tation and data separation strategies as well as the
supervised learning setups are described in Section
3.2. Finally, the trained CNNs are integrated into
an iterative motion compensation pipeline which in-
cludes distance-weighted extrapolation of the pre-
dicted motion vectors (see Section 3.3).

3.1. Data generation
The CoMoFACT from Lossau et al. (2019) en-

ables the generation of CT image data with simu-
lated and hence controlled motion at the coronary
arteries. It is based on motion compensated filtered
back-projection (MC-FBP) (Schäfer et al., 2006)
taking artifact-free CT images and synthetic MVFs
as input. In the MC-FBP, the attenuation coeffi-
cient µ(~ν) of each voxel ~ν ∈ Ω in the field of view
Ω ⊂ R3 is calculated by:

µ(~ν) =

tend∫
tstart

wAWCR(t, ~ν+~d(t, ~ν)) pfilt(t, ~ν+~d(t, ~ν)) dt

(1)
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As part of the filtered back-projection, line-
integrals in pfilt are already re-binned to parallel
beam geometry and high-pass filtered with a ramp
filter. The projection data pfilt(t, ~ν) indicates the
filtered line-integral which passes through the voxel
~ν at time point t. It is multiplied by a weight-
ing function wAWCR which includes angular weight-
ing for gated reconstruction, pi-partner and aper-
ture weighting for normalization of redundant and
oblique rays according to (van Stevendaal et al.,
2007). As illustrated in Figure 2, line integrals
are spatially corrected with respect to the esti-
mated voxel displacement ~d(t, ~ν) at each time point
t within the acquisition period [tstart, tend]. Appli-
cation of the MC-FBP on CT data with excellent
quality using synthetic MVFs reverses the usual ef-
fect of motion compensation. Inconsistent projec-
tion data is created and motion artifacts are in-
duced in the reconstructed CT image volume.

Figure 2: In voxel-driven MC-FBP, line integrals are spa-
tially adapted with respect to the input MVF ~d(t, ~ν) which
contains the voxel displacements between a reference time t0
and the time ti each specific projection was acquired.

Synthetic MVF: In principle, arbitrary motion
trajectories can be simulated using this approach
by adjusting the synthetic MVF. For simplic-
ity, we restrict the model to constant linear mo-
tion. Therefore, minor adaptations of the sim-
ulated MVF from Lossau et al. (2019) are per-
formed. In our CoMoFACT variant, the displace-
ment ~d~c : [0%, 100%)× Ω→ R3 of each voxel ~ν at
time point tcc ∈ [0%, 100%) in millimeters is calcu-
lated by:

~d~c(tcc, ~ν) = s ·m~c(~ν) · ~δ~c(tcc, α) (2)

As described in Lossau et al. (2019), tcc is mea-
sured in percent cardiac cycle, s ∈ R+ denotes the
target motion strength and m~c : Ω → [0, 1] indi-
cates a weighting mask which limits the motion

to the area of the currently processed centerline
point ~c ∈ Ω. The motion direction is determined
by ~δ~c : [0%, 100%)× (−180◦, 180◦] which is adapted
to:

~δ~c(tcc, α) =
60bpm

HRmean
· ~ρ~c(α)

‖~ρ~c(α)‖2
(3)

·


−0.5 if tcc < r − 10%
(tcc−r)

20% if r − 10% ≤ tcc ≤ r + 10%

+0.5 if tcc > r + 10%

(4)

The parameter HRmean denotes the patient’s av-
erage heart rate during acquisition and r is the ref-
erence cardiac phase during AWCR. The motion
direction determined by ~ρ~c(α) is limited to the ax-
ial plane, i.e. the z-component is set to zero. The
x- and y-components of ~ρ~c(α) are defined in such a
way that α corresponds to the angle between mean
reconstruction direction of the currently processed
centerline point ~c and the motion direction (see Fig-
ure 3). The mean reconstruction direction is de-
fined by the gantry rotation angle γmean at the ref-
erence heart phase r and is constant for each voxel
reconstructed by the same circular scanning shoot.
It has to be noted, that the system rotation direc-
tion is consistent for all cases. This is important,
since the reverse rotational directions would lead to
a flipping of the artifact shapes.

Lossau et al. (2019) investigated the feasibility of
motion artifact recognition and quantification by
utilizing the parameter s for target value assign-
ment. As an extension of this work, our forward
model has one additional (angular) degree of free-
dom α, i.e. each MVF is now defined by the pa-
rameter tuple (s, α). The target motion strength s
scales the length of each displacement vector in the
MVF and therefore determines the motion magni-
tude. On the basis of the velocity measurements
at the coronary arteries by Vembar et al. (2003),
the target motion strength s is limited to the inter-
val [0, 10] in all experiments. The newly introduced
angle parameter α ∈ (−180◦, 180◦] determines the
in-plane motion direction. Both parameters s and
α are randomly sampled from uniform distributions
in the following experiments. The corresponding
Cartesian coordinates x = s cos(α) and y = s sin(α)
define the ground-truth labels for the supervised
learning task.

Patch sampling: The extended CoMoFACT en-
ables the generation of multiple motion-perturbed
CT image volumes with controlled motion level and
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Figure 3: The x-y plane of an example centerline point is illustrated in phantom (top) and clinical (bottom) mode for varying
parameter settings (s, α). For better visualization, the patches of size 60 × 60 pixels are illustrated as circles. Depending on
the motion angle α, distinct blurring artifacts occur. Orthogonal motion (α = ±90◦) leads to the most severe banana-shaped
artifacts while parallel motion (α = 0◦ or α = 180◦) causes bird-shaped blurring. In the clinical data, visibility of blurring
artifacts and intensity undershoots are strongly influenced by surrounding background intensities, i.e. artifact types are visually
more difficult to distinguish.

motion direction at a specific coronary centerline
point ~c. For each centerline point ~c and param-
eter setting (s, α), one 2.5D image patch I2.5D is
sampled as input data for supervised learning. As

illustrated in Figure 3, γmean defines the relation be-
tween the static patient coordinate system and the
rotated patch coordinate system. Each 2.5D patch
contains three orthogonal image slices of size 60×60
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Notation: , BN =  batch normalization, ReLU = Rectified Linear Unit
kernel size, stride
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Figure 4: The orthogonal planes of each 2.5D input patch are processed separately in an individual path. Information about
in-plane artifact pattern are finally fused in a dense layer with two output neurons to predict x̂ and ŷ. The network comprises
523 346 learned weights.

pixels with an image resolution of 0.4 × 0.4 mm2

per pixel, the so-called x-y plane, x-z plane and y-
z plane. The centerline point ~c defines the patch
center and the patch orientation is contingent on
the angular reconstruction range. The z-axis corre-
sponds to the scanner’s z-axis, while the x-y plane is
spanned by two orthogonal vectors which are con-
structed with respect to the mean reconstruction
direction of the centerline point, i.e. a rotation of
the coordinate system by γmean about the z-axis
is performed. By this procedure, the information
about the angular reconstruction range is embed-
ded in the patch orientation.

In both studies, phantom and patient data, the
CoMoFACT with subsequent patch sampling is ap-
plied 1000 times per reference case, thus, delivering
a total amount of 19 000 samples as database for su-
pervised learning. The artifact appearance with re-
spect to the relation between motion direction and
vessel orientation is illustrated in Figure 1. Figure
3 shows distinct blurring artifacts depending on an-
gular reconstruction range and motion direction.

3.2. Supervised Learning

Based on the synthetically motion perturbed
data, CNNs are trained for patch-based motion es-
timation. The networks take one image patch I2.5D

as input and deliver the predicted predominant mo-
tion vector (x̂, ŷ) as output. Due to the patch simi-
larity of adjacent centerline points, the data is case-
wise separated for training, validation and testing
with a ratio of 11 : 4 : 4 to avoid a bias. By
this procedure, robustness of the trained networks

is evaluated with regard to unknown variations in
the vessel geometry and background intensity.

Data augmentation: The data basis during net-
work training is extended by online data augmen-
tation. Inherent symmetry properties of motion ar-
tifacts are exploited for random mirroring of each
axis in the input patches. The target labels x, y are
adapted accordingly. This procedure increases the
amount of vessel geometry variations in the phan-
tom study and background variations in the pa-
tient data study. Additionally, translation is per-
formed as label-preserving augmentation strategy.
The patch center is randomly shifted in a range of
[−10, 10] voxels in x, y and z direction in order to
build translation invariance into the networks. This
allows deviation between extracted and actual cen-
terline positions. During testing and validation, no
mirroring and no translation is performed.

Learning setup: Multiple patch sampling strate-
gies (2D, 2.5D and 3D), network architectures and
hyperparameter settings were tested by extensive
cross-validation. Best generalization capabilities
are achieved by the CNN visualized in Figure 4
which is employed in all subsequent experiments.
The x-y plane, the x-z plane and the y-z plane are
processed separately in an eight-layer ResNet (He
et al., 2016). No weight sharing between the paths
is performed since each plane exhibits individual,
characteristic motion artifact pattern. The outputs
of the global average pooling are concatenated and
information are merged in a final dense layer with
linear activation function and two output neurons
to predict x̂ and ŷ.
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The learning process is driven by the squared er-
ror l = (x− x̂)2 + (y− ŷ)2. The stochastic gradient
descent solver Adam (Kingma, Diederik and Ba,
Jimmy) with an initial learning rate of 0.01, a mini-
batch size of 32 and a momentum of 0.8 is used for
network optimization. Training is performed over
45 epochs while the learning rate halves after every
15th epoch. L2 regularization with a weight of 0.001
is used. Network training from scratch is performed
on the phantom and the clinical data, separately.
Furthermore, weight initialization based on previ-
ous phantom studies and subsequent fine-tuning on
clinical data is investigated. This is motivated by
the recent success of transfer learning approaches
(Long et al., 2015; Zeiler and Fergus, 2014) and
comparable with learning to recognize digits before
learning to read house numbers.
Bagging approach: Three ensembles of five

CNNs each are learned using the aforementioned
network design and hyper-parameter setting by the
following bagging approach:

1. Four validation cases and four test cases are
randomly sampled.

2. Network training is performed based on the re-
maining eleven clinical cases.

3. After every epoch of the learning process the
generalization capability is examined by means
of the validation set.

4. The model with the lowest mean euclidean er-
ror ε̄x,y on the validation set during 45 epochs
of training is selected for calculation of the test
metrics.

5. Steps 1.-4. are performed five times in total.
6. Mean and standard deviation of each test met-

ric over the five splits are calculated.
7. Steps 5.-6. are performed for the phantom data

and the clinical data with and without network
initialization based on the learned weights from
the phantom study (using the same separations
in training, validation and testing for compa-
rability).

3.3. Motion compensation pipeline

CNNs trained on the clinical database become
the main component of the following motion com-
pensation pipeline. A cardiac CT image volume
with corresponding set of approximate centerline
positions C ⊂ R3 and the raw projection data are
required as input. By patch sampling and subse-
quent application of the trained CNNs, a set of mo-

tion vectors ~̂d~c ∈ R3 for ~c ∈ C is predicted along the

centerline. The estimated motion vectors (x̂, ŷ, 0)

are back rotated in ~̂d~c by −γmean about the z-axis
and specify the displacement in the static patient
coordinate system. For MC-FBP, these sparse mo-
tion information are transformed into a dense mo-

tion vector field ~̂d(tcc, ~ν) : [0%, 100%) × Ω → R3

by distance-weighted extrapolation (see Figure 5).
The estimated voxel displacements are calculated
by:

~̂d(tcc, ~ν) = mC(~ν)
60bpm

HRmean

·

0 if ~ν /∈ Θτ (C)∑
~c∈C : ~c∈Θτ ({~ν})

w(~ν,~c) ~̂d~c if ~ν ∈ Θτ (C)

·


0.5 if tcc < r − 10%
(r−tcc)

20% if r − 10% ≤ tcc ≤ r + 10%

−0.5 if tcc > r + 10%

(5)

w(~ν,~c) =
g(~c− ~ν)∑

~ci∈C : ~ci∈Θτ ({~ν})
g(~ci − ~ν)

(6)

The bounding volume of a set A ⊂ R3 is defined
as Θτ (A) = {~ν | ∃~υ ∈ A : ‖~ν − ~υ‖ < τ}. The dis-
tance weighting is performed using a 3D Gaussian

kernel g(~c − ~ν) = exp(−‖~c− ~ν‖2 /(2σ2))/
√

2πσ2
3

with σ = 8 (in millimeters). Beside MV extrap-
olation, the distance weighting also leads to MVF
smoothing. The weighting mask mC : R3 7→ [0, 1]
is generated by dilation of each centerline point in
C with a kernel radius of 15 mm and subsequent
uniform filtering with a kernel radius of 6.2 mm ac-
cording to Lossau et al. (2019). In order to yield
a smooth transition to zero, the bounding volume
radius τ is set to 21.2 mm in the following experi-
ments. The MVF extrapolation in equation (5) is
performed shot-wise, i.e. for each circular acqui-
sition, as motion across different scanning shots is
usually not smooth.

Iterative MC: In order to increase the robustness
of the MV estimation, an ensemble of five CNNs
(see bagging approach in Section 3.2) is utilized
for gradual approximation in an iterative fashion.
An additional input parameter kmax is introduced
which indicates the number of alternating MV esti-
mation and MC-FBP steps. Algorithm 1 provides
the pseudo code of the iterative CoMPACT MC
pipeline.

As an extension, alternative stopping criteria in-
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Figure 5: For each voxel ~ν ∈ Θτ (C) in the centerline bound-
ing volume highlighted in gray, a motion vector is calculated
by scattered data extrapolation. Distance weighting of ad-
jacent centerline points ~c ∈ Θτ ({~ν}) is performed according
to the equations (5) and (6).

Input: image volume IΩ
0 , raw projection data

p, approximate centerline C, number
iterations kmax

Output: improved image volume IΩ
kmax

set ~̂d~c = ~0 for ~c ∈ C;
for k = 1, 2, .., kmax do

for ~c ∈ C do
I2.5D = sample

(
IΩ
k−1,~c

)
;

~̂d~c += ensemble
(
I2.5D

)
;

end

calculate ~̂d(tcc, ~ν) according to (5);

IΩ
k = MC-FBP

(
p, ~̂d(tcc, ~ν)

)
;

end
Algorithm 1: Iterative MC in CCTA images us-
ing patch-based motion estimation.

stead of a fixed number of iterations are conceiv-
able. Termination with respect to the convergence
behavior or exploitation of the artifact level quan-
tification networks from Lossau et al. (2019) are
possible solutions. The proposed CoMPACT MC
pipeline can be either applied on the full coronary
artery tree, on individual segments or on a single
centerline point. In case of |C| = 1 and accurate

motion estimation, the dense MVF ~̂d(tcc, ~ν) equals

to ~d−1
~c (tcc, ~ν). The duration and the robustness re-

garding outliers can be regulated by the density of
centerline points.

4. Experiments and Results

The Microsoft Cognitive Toolkit (CNTK v2.5+,
Microsoft Research, Redmond, WA, USA) is used
as deep learning framework. In Section 4.1, net-
works accuracies are analyzed based on synthetic
motion artifacts. Qualitative performance evalua-
tion of the proposed CoMPACT MC pipeline based
on real motion artifacts, observer studies and a run-
time analysis are provided in Section 4.2.

4.1. Quantitative analysis on synthetic artifacts

The following error metrics are introduced for
network evaluation:

εx,y =
√

(x− x̂)2 + (y − ŷ)2,

ε◦ = |◦ − ◦̂| , for ◦ ∈ {s, x, y},
εα = min(|α− α̂| , 360◦ − |α− α̂|)

Table 2 summarizes the results on the testing
subsets. As expected, more accurate MV predic-
tion is achieved during the phantom study. Fine-
tuning shows a slight advantage over network op-
timization from scratch. However, during qualita-
tive performance evaluation of the proposed CoM-
PACT MC pipeline based on real motion artifacts,
networks trained from scratch yield better results
than fine-tuned ones. The fine-tuned networks de-
liver too conservative in clinical practice, i.e. they
seldom venture predictions far from the mean ~0 also
in the presence of severe artifacts. This could be
explained by possible overfitting on the synthetic
artifacts. For this reason, the following quantita-
tive error analysis and qualitative experiments are
performed based on the bagging ensemble of the
five networks trained on the clinical data without
fine-tuning.

Figure 6 illustrates the correlation between the
accuracy of the predicted motion direction and the
introduced motion strength s. High angle errors
εα correlate with low s values, i.e. most accurate
prediction of the motion direction is feasible for im-
age patches with severe motion artifacts. Figure 7
shows the mean confusion matrix of the target mo-
tion strength s. The CNNs in the network ensem-
ble frequently deliver too conservative predictions.
Especially high motion levels tend to be underesti-
mated. This network behavior supports the itera-
tive MC scheme. Furthermore, a weakness in the
differentiation of low motion levels s ∈ [0, 3] is ob-
servable, which is also difficult for a human observer
(see Figure 3).
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Table 2: Error metrics on the test cases with synthetic artifacts during the phantom study and the patient data study with and

without fine-tuning (FT). The baseline corresponds to the mean ground truth MV ( ~̂d~c = ~0) determined in the CoMoFACT.

εx,y εs εx εy εα

Baseline 5.00 5.00 3.24 3.24 NaN∗

Phantom 1.10± 0.12 0.77± 0.09 0.72± 0.05 0.66± 0.11 13.37◦ ± 1.21◦

Clinical (no FT) 2.92± 0.13 1.89± 0.07 1.75± 0.10 1.96± 0.07 35.66◦ ± 1.57◦

Clinical (with FT) 2.87± 0.16 1.86± 0.11 1.71± 0.08 1.93± 0.13 34.85◦ ± 2.09◦

∗ The angle error εα is 90.00◦ for arbitrary constant ~̂d~c 6= ~0

Figure 6: Bar plot of mean and median angle error evaluated
for subsets determined by the selected s ranges.

4.2. Qualitative analysis on real artifacts

Local MC: In the first experiment, we investi-
gate how well motion estimation and subsequent
compensation can be done from a single 2.5D im-
age patch, i.e. in case of |C| = 1. Centerline points
for 24 test patches are manually selected from the
twelve clinical test cases described in Section 2.3
at vessel segments of varying position, orientation
and artifact level. In Figure 8, the corresponding
x-y planes of size 60 × 60 pixels are visualized be-
fore and after k ∈ {1, 3, 10} iterations of CoMPACT
MC. For comparison, the registration-based MC ap-
proach from Grass et al. (2016) is considered which
exploits the entire 3D image field of view (FOV).

The CoMPACT MC shows gradual improvement
of the image quality in a multitude of test cases (e.g.
in Figure 8c,h,i,k) and sensible convergence prop-
erties (except for Figure 8m). Is has to be noted,
that the registration-based approach also fails in
the patch of Figure 8m. Indeed, our pipeline has
an advantage over the registration-based approach
in several patches, like for instance in Figure 8d,p,t.
The networks are robust regarding slight shifts be-
tween patch center and vessel position (see Figure
8b,e). The main weakness of our method is the

Figure 7: Confusion matrix of the target motion strength s.

restricted motion model complexity. We assume
constant linear motion in the axial plane which is
spatially constant in a local neighborhood. In some
cases, these assumptions do not seem to be fulfilled,
e.g. in the presence of more complex motion trajec-
tories like turning motion (see Figure 8v) and spa-
tially varying predominant motion directions (see
Figure 8i,m,q). Nevertheless, the CoMPACT MC
is remarkably successful in view of the little infor-
mation content obtained from a single 2.5D image
patch.

Global MC: In the second experiment, we in-
vestigate how well motion estimation and subse-
quent compensation can be done in clinical prac-
tice by application on the whole coronary artery
tree. The simultaneous consideration of various
centerline points also allows for spatially irregu-
lar predominant motion directions. Figure 9 shows
the multiplanar reformats of four vessels without
MC, after 10 iterations of CoMPACT MC and after
registration-based MC. In Figure 9a,c,d, the corre-
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Figure 8: The x-y planes of 24 image patches belonging to twelve different patients are visualized before (org) and after
k ∈ {1, 3, 10} steps of CoMPACT MC. For comparison, the registration-based MC (reg) is considered. Significantly reduced
artifact levels are observable in the majority of the test patches.

sponding centerlines were extracted from the out-
put image volume of the registration-based MC us-
ing the Comprehensive Cardiac Analysis Software.

The centerline in Figure 9b was determined based
on the original image volume as the registration-
based approach leads to increased artifact levels
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Figure 9: The multiplanar reformats of four vessels belonging to different patients and branches of the right coronary artery
(RCA) are visualized before (org) and after k = 10 iterations of CoMPACT MC. Corresponding cross-sectional image patches
which are perpendicular to the extracted centerline are given below for visual inspection. Furthermore, registration-based MC
(reg) is considered for comparison. Both MC approaches, the registration-based and the proposed CoMPACT MC, lead to
significant reduction of moderate and severe artifacts along the vessel.
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in the distal vessel segment. Significantly reduced
artifact levels after CoMPACT MC are observable
in all cases, also in the presence of noise (see Fig-
ure 9a) or bifurcations (see Figure 9d). In Figure
9c, moderate artifacts in the proximal RCA are re-
moved while the artifact-free mid and distal vessel
segments captured by the second scanning shot re-
main unchanged.
Observer studies: Four separate observer stud-

ies were performed to rate cross-sectional image
patches before MC, after k = 10 iterations of
CoMPACT MC and after registration-based MC.
Eight cross-sectional image patches are equidis-
tantly sampled along the RCA (as illustrated in
Figure 9) from eleven test cases resulting in a to-
tal number of 4 · 3 · 8 · 11 = 1056 labeled patches.
The twelfth clinical test case was omitted as stack
transition artifacts preclude the automatic coronary
artery tree segmentation by means of the Compre-
hensive Cardiac Analysis Software. Rating is per-
formed in a five point Likert scale (1: excellent,
2: good, 3: mixed, 4: strong artifact, 5: non-
diagnostic). Vessel segments are presented in ran-
dom order without indication of the underlying al-
gorithm (org/k = 10/reg) to the readers. It has
to be noted that the readers were no radiologists,
but research scientists with high level of expertise in
reading cardiac CT images. The resulting annota-
tions are summarized in Figure 10. Mean observer
scores of 3.08 ± 0.24, 2.28 ± 0.29 and 2.42 ± 0.23
are achieved on image volumes without MC, af-
ter k = 10 iterations of CoMPACT MC and after
registration-based MC. The performed experiments
demonstrate the generalization capabilities of the
trained neural networks on non-synthetic motion
artifacts and a reasonable convergence behavior of
the iterative MC scheme.
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Figure 10: Cross-sectional image patches before and after
MC are rated by four human observers in a five point Likert
scale (from 1: excellent to 5: non-diagnostic).

Run-time analysis: Table 3 provides the re-
sults of a five-fold run-time analysis performed on

a NVIDIA GeForce GTX 1080 Ti. In case of k = 1,
patch sampling is performed with respect to the
mean reconstruction direction and voxel positions
are cached for faster sampling in subsequent it-
erations (k > 1). Motion vector prediction by
means of the networks, i.e. ensemble application,
is the most time-efficient processing step, whereas
MVF extrapolation and MC-FBP are quite time-
consuming in the current implementation. Accel-
eration is possible by parallel processing of the in-
dividual scanning shots and restriction of the re-
construction region during MC-FBP to the cached
voxel positions required for patch sampling. Fur-
thermore, the run-time is controllable by adjusting
the number of iteration steps kmax and the center-
line point density along the vessel.

Table 3: Mean duration of the CoMPACT MC pipeline in
case of |C| = 1000 and a FOV of size 512× 512× 300 voxels.

Processing Step Duration [secs]

Patch Sampling k = 1 62.10± 3.61
k > 1 11.54± 0.27

Ensemble Application 4.86± 0.03
MVF Extrapolation 172.17± 0.87
MC-FBP 116.16± 0.16

Total (kmax = 10) 3196.44± 139.39

5. Discussion

We proposed the first single-phase motion es-
timation approach which works solely on recon-
structed image data. The designed motion model
which comprises linear trajectories in the axial
plane, reveals potential and limitations of image-
based motion estimation. Despite severe simpli-
fication of the actual, more complex heart mo-
tion, significant artifact reduction is achieved on
clinical test data. More complex trajectories (e.g.
turning motion) could be determined by perform-
ing constant linear motion estimation at multiple
time points. Areas around the ostia exhibit 3D ve-
locities with a noticeable contribution from the z-
component. In contrast, mid- and distal RCA and
mid-LCX segments have a dominant axial compo-
nent and velocities in these segments are typically
higher (Wang et al., 1999; Vembar et al., 2003).
The introduced procedure of data generation by the
CoMoFACT and subsequent supervised learning is,
in principle, extendable to arbitrary non-linear 3D
motion trajectories. However, the information con-
tent of the reconstructed image volumes is a lim-
iting factors in model extension to more complex
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motion, i.e. motion along the z-axis. Furthermore,
performed experiments on network fine-tuning from
phantom to clinical data reveal the problem of po-
tential overfitting to synthetic artifacts.

For application of the proposed CoMPACT MC
pipeline, the approximate locations of the coronary
arteries have to be known. In case of incomplete
or incorrect fully automatic centerline segmenta-
tion due to severe motion artifacts, semi-automatic
approaches which enable user-interaction have to
be considered. This requirement constitutes the
main disadvantage of patch-based MC in compari-
son to registration-based MC. Both approaches lead
to significantly reduced artifact levels in the CCTA
images. CoMPACT requires the minimal angular
range of 180 degrees in parallel rebinned geome-
try while the registration-based MC demands 315
degrees for the partial image reconstructions. Fur-
thermore, CoMPACT shows very promising results
despite minimal spatial information which enables
fast local processing of a few centerline points and
their neighborhood.

Patch-based motion estimation offers a lot of
potential for further research. Additional predic-
tion of network uncertainty and integration into
the distance-weighted MVF extrapolation might be
useful in patches with little information content, i.e.
in case of low contrast enhancement. So far, the
proposed CoMPACT method is merely based on 19
clinical data sets. In general, CCTA images are ac-
quired with a wide variety of scanner types, imag-
ing protocols and reconstruction algorithms. In or-
der to increase the network’s robustness, collection
of more data and network fine-tuning is required.
The transferability of the proposed CoMPACT MC
pipeline to other scanner types and imaging proto-
cols should be investigated.

The methodology of first introducing simulated
motion to clinical cases with excellent quality and
subsequent supervised learning of motion estima-
tion models based on the artifact appearance is,
in principle, not restricted to contrast-enhanced
coronary arteries. By providing a set of reference
cases without motion artifacts, patch-based motion
estimation and compensation is on-site trainable
for data of arbitrary contrast protocol and other
parts of the human anatomy. Possible examples
are motion artifact reduction at the aortic valve
or correction of calcium scores in non-contrast CT.
The information content of the reconstructed im-
age patches and overfitting to synthetic artifacts
are again potentially limiting factors.

6. Conclusions

Typical coronary artifact patterns are introduced
in phantom and clinical data by a forward model
which simulates linear, axial motion. The generated
image data is used for subsequent supervised learn-
ing of CNNs for estimation of underlying motion
vectors which are integrated into an iterative mo-
tion compensation pipeline. Despite variations in
noise level, background intensity and contrast agent
density, CNNs are remarkably successful in patch-
based MV estimation on clinical data. The pro-
posed CoMPACT MC method furthermore gener-
alizes to non-synthetic artifacts and deep-learning-
based motion estimation is particularly suitable for
MC in clinical cases with severe artifacts.
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