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Blind Multirigid Retrospective Motion Correction
of MR Images

Alexander Loktyushin,1* Hannes Nickisch,2 Rolf Pohmann,3 and Bernhard Sch€olkopf4

Purpose: Physiological nonrigid motion is inevitable when
imaging, e.g., abdominal viscera, and can lead to serious

deterioration of the image quality. Prospective techniques for
motion correction can handle only special types of nonrigid
motion, as they only allow global correction. Retrospective

methods developed so far need guidance from navigator
sequences or external sensors. We propose a fully retrospec-

tive nonrigid motion correction scheme that only needs raw
data as an input.
Methods: Our method is based on a forward model that

describes the effects of nonrigid motion by partitioning the
image into patches with locally rigid motion. Using this forward
model, we construct an objective function that we can opti-

mize with respect to both unknown motion parameters per
patch and the underlying sharp image.

Results: We evaluate our method on both synthetic and real
data in 2D and 3D. In vivo data was acquired using standard
imaging sequences. The correction algorithm significantly

improves the image quality. Our compute unified device
architecture (CUDA)-enabled graphic processing unit imple-

mentation ensures feasible computation times.
Conclusion: The presented technique is the first computation-
ally feasible retrospective method that uses the raw data of

standard imaging sequences, and allows to correct for non-
rigid motion without guidance from external motion sensors.

Magn Reson Med 73:1457–1468, 2015. VC 2014 Wiley
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Key words: retrospective motion correction; autofocusing;
gradient-based optimization; nonrigid motion; graphic process-

ing unit

INTRODUCTION

Motion correction is among the most challenging
unsolved problems in MRI. Motion artifacts can have a
particularly devastating effect on high-resolution images,
which require a patient to restrict motion to below the
millimeter range over several minutes. Being stationary
in the scanner for a long time is challenging even for

healthy cooperative subjects, while patients with move-
ment disorders, elderly people and children almost inevi-
tably move unless sedated. Physically constraining the
subject usually provides only limited reduction of motion,
and has no effect on motion due to physiological function
of the organism, which is unavoidable even if the subject
is sedated. Especially respiration and heartbeat are of pri-
mary concern for thoracic and abdominal MR imaging.
Motion artifacts due to respiration can be reduced with
breath-held scans (1), but this imposes many limitations
on the acquisition, as scan times have to stay within toler-
able breath-holding periods. Further examples of physio-
logical motion include bowel movement, cardiovascular
pulsation, and even within the brain, nonrigid pulsations
in the thalamus are observed (2).

Usually, physiological motion leads to complex arti-
facts, which cannot be properly addressed by motion
correction methods that assume the scanned object to be
a rigid body. Prospective motion correction methods suf-
fer from the global correction problem (see (3)), and are
restricted to global affine motions, which include non-
rigid shearing and scaling (4). Most of the research on
nonrigid motion correction has focused on developing
retrospective methods, which correct for motion once the
data is acquired.

The early research of (5) shows that it is possible to
correct for nonrigid motion in kinetic joint studies. The
motion estimation does not require the use of additional
measurements, and is driven by the projections from a
segmented radial acquisition. In their seminal paper,
Batchelor et al. (6) derive a general description of effects
of arbitrary (also nonrigid) motion during MR imaging
applicable to standard sequences. Motion degradation is
modeled as a linear process described by matrix-vector
multiplications. The authors show that it is possible to
find an estimated inverse of the linear system, and thus
to retrospectively recover the underlying sharp image.
Their approach is of theoretical interest, because they
found it computationally prohibitive to estimate the
unknown motion parameters. To solve this problem,
external motion reference signals obtained from naviga-
tors were proposed (7). This idea turned out to be fruit-
ful, and was later used for nonrigid motion correction in
coronary MRI (8), cardiac CINE (9–11), and liver MRI
(12).

A further important step was made by Odille et al.
(13), who treat the image reconstruction and nonrigid
motion parameter estimation as two coupled inverse
problems. Still, models for patient motion driven by
external sensors such as electrocardiography (ECG) or
navigators need to be used to make the motion parameter
estimation feasible. In follow-up research (14), it is
shown how to reduce the number of unknown motion
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parameters with the use of adaptive meshes, which
involves grouping voxels with similar displacements and
thus encoding local smoothness information. But still
information from external motion sensors is needed for
reconstruction.

A recent work (15) proposes to approximate nonrigid
motion as simple linear translations in small spatial
regions to reduce the problem complexity. This allows
for sufficiently fast implementation of a nonrigid motion
correction algorithm, which uses butterfly navigators to
estimate the unknown motion parameters. More recently
(16), nonrigid motion correction was combined with
compressed sensing to address the problem of respiratory
motion during free-breathing cardiac acquisitions. Again,
a navigator signal is required to estimate the motion.

In this article, we propose a retrospective nonrigid
motion correction method that does not require motion
information from external sensors, thus being a purely
image-data-driven method. We assume locally rigid
motion and provide a generic quality functional together
with an efficient gradient-based optimization algorithm
to recover the underlying sharp image. Our work aims at
nonrigid physiological motion compensation in routine
clinical imaging (e.g., in abdomen scans) in the medium
term. In this study, we make a step forward, and in our
in vivo experiments, we correct for multirigid finger
motion in wrist imaging.

A Matlab implementation of our new method
(GradMC2) together with a few test examples is available
at: http://mloss.org/software/view/430/.

METHODS

We base the present method on our previous rigid motion
model (17), which we restate in the beginning of this sec-
tion. We then explain how to combine multiple locally
rigid motions in image patches into a joint global nonrigid
motion model, and introduce and discuss the concept of
image patch separability. Next, we formulate the trade-off
between data fidelity and restored image quality meas-
ures, and introduce our nested-loop optimization algo-
rithm to recover the sharp image and the underlying

motion parameters. At the end of the section, we detail
the technical aspects of our real data experiments.

Rigid Motion in MRI

In the following, we restate the rigid motion forward
model used by (17) to describe the image degradation
due to rigid motion in MR scans. Let F 2 CN�N be the
orthonormal Fourier transformation matrix, let u 2 CN

denote a column vector containing the unknown sharp
volume with N ¼ nx � ny � nz voxels; mt 2 ½0;1�N withPT

t¼1 mt ¼ 1 are binary masking coefficients mapping a
particular segment of k-space to a given acquisition tra-
jectory, and ~Aht

2 RN�N is a rigid motion transformation
matrix parameterized by a vector pair of translations and
rotations ht 2 R3 � ½0;2pÞ3 at acquisition time t. The
motion transformation matrix ~Aht

and the Fourier trans-
formation matrix F do not commute in general. But since
we know that rotation and translation have equivalents
in k-space (18) there exists an operator Aht

such that
F ~Aht

¼ Aht
F, which we use in our implementation.

Assuming additive measurement noise e, the acquisition
in k-space can be written as

y ¼
XT

t¼1

diag ðmtÞAht
Fuþ e ¼ AHFuþ e 2 CN [1]

where mt selects the part of k-space that is recorded by
the scanner at time t and diag ð�Þ builds a diagonal matrix
from a vector. The summation is carried out over the
total number of acquisitions T ¼ ny � nz. See the left
panel of Figure 1 for a graphical illustration.

Let the matrix H ¼ ½h1; ::; hT � contain the parameters for
the entire motion trajectory. As the masking vector mt is
binary, the motion matrix AH has a convenient block
structure

AH :¼
XT

t¼1

diag ðmtÞAht
¼

½Ah1
�m1

½Ah2
�m2

�

½AhT
�mT

2
666664

3
777775
2 CN�N [2]

FIG. 1. Illustration of the forward model. Left panel, rigid: An unknown underlying image u is affected by a linear transformation, which

is given by the operator ~Aht
in the spatial domain (left part of the panel), or by Aht

in the Fourier domain (right part) at every time point
t. The observed image (bottom row) is obtained by summation (over the entire acquisition time t ¼ 1::T ) of k-space segments extracted

by the trajectory matrix Mt. Right panel, multirigid: The image is split into P patches (brain/jaw) by means of spatial windows wp. For
each spatial window, a rigid motion (left panel) is applied with a distinct set of motion parameters Hp. The observed image (bottom row)
is obtained by summing over spatial patches.
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allowing for efficient matrix-vector multiplications with
AH at a computational effort of OðNÞ. For the computa-
tional details on the efficient implementation of the for-
ward model, see ((17), section Methods).

In the following, we demonstrate how a set of forward
motion matrices representing locally rigid motion in
image patches can be combined to obtain a multirigid
forward model.

Nonrigid Motion in MRI

Nonrigid body motion leads to image distortions that can-
not be described by a single global pair of translation and
rotation vectors. We consider (approximately rigid but)
local motion inside an image patch, which we will call
multirigid in the following. We use the term “multirigid”
instead of the more common “nonrigid” to emphasize that
we view a general nonrigid motion as the extreme case,
where each point of the body of interest possesses a
unique motion vector. Note that any linear operation on
the volume can be modeled by multirigid transformations
if only the patches are made small enough, i.e., the num-
ber of patches P is in the order of the number of voxels N.
We illustrate our model in Figure 1.

Formally, we partition the image volume into P spatial
patches using windows wp 2 ½0;1�N . This description is
similar to the Efficient Filter Flow framework (19) that aims
to solve a nonstationary deconvolution problem. We do nei-
ther impose a particular shape nor require connectedness of
the patches. The patches could—at least theoretically—be
estimated from the measured k-space data y, however, in
this article, we assume that they are given (see Discussion
section). Doing the normalization

PP
p¼1 wp ¼ 1, we can

interpret the windows wp as the probabilities of voxels to
belong to the spatial patch p. Implementation wise, we
define the spatial windows using binary masks, which we
convolve with a Gaussian kernel to enforce a smooth transi-
tion between the motion parameters of neighboring patches.
Note that the width of the Gaussian kernel governs the influ-
ence region and the steepness of the motion parameter
transition. The k-space equivalent of the pointwise multipli-
cation with a spatial window wp is a convolution matrix Wp

such that WpFu ¼ ðFwpÞ?ðFuÞ ¼ Fðwp � uÞ, where ? is the
convolution operation and � denotes pointwise multiplica-
tion. Each of the P patches has an associated motion trajec-
tory parameterized by Hp. We can write the multirigid
forward model as

y ¼
XP

p¼1

AHp
Fðwp � uÞ þ e ¼ AHFuþ e 2 CN ; [3]

where we use P different rigid motion matrices AHp
to

construct the multirigid transformation AH ¼
PP

p¼1 AHp
Wp

with an overall number of 6 � T � P free parameters. Note
that for P¼ 1, we have wp ¼ 1)Wp ¼ I that is we
recover the rigid motion model introduced in the previous
section as a special case.

Fourier Domain versus Spatial Domain

Instead of doing the computations in the Fourier domain
using P rigid motion transformations as depicted in the

right panel of Figure 1, we can swap the summation over
time t and patches p and equivalently evaluate the for-
ward model in the spatial domain

y ¼
XT

t¼1

F ~Aht
uþ e; ~Aht

¼
XP

p¼1

~Aht;p
diag ðwpÞ [4]

leaving the result unaltered but choosing a different com-
putational route. Here, the main difference is the compu-
tational complexity of (a) the spatial approach and (b)
the Fourier approach:

� Method (a) is dominated by T fast Fourier trans-
forms Oð23 Nlog NÞ following the application of the
oversampled multirigid transformation Oð2DNÞ
yielding OðT �N � ð23 log N þ 2DÞÞ.

� Method (b) is governed by the complexity of P rigid
models where double oversampling is used for the
Fourier transform and an additional double over-
sampling for the rotation interpolation leaving an
overall OðP �N � ð4D þ 2Dlog NÞÞ.

Setting n :¼ nx ¼ ny ¼ nz ¼ 200;N ¼ n3 as data size,
D¼ 3 as data dimension, T¼n as the number of motion
parameters (piecewise constant motion trajectory), and
equating the complexities of (a) and (b), we find P � 19.
For n¼100, we obtain P � 10 which illustrates how com-
plex the nonrigid motion can become until spatial compu-
tations of method (a) are more efficient. As modern
processors and graphic processing units (GPUs) allow par-
allel computations, the resulting trade-off depends on the
degree of parallelization. Both the P interpolated rotations
in (b) and the summation over the T independent Fourier
transformed motion transformations in (a) can be done in
parallel. In our case of a moderate number of patches P
� 6 and sufficiently large images, the Fourier approach is
computationally beneficial.

Motion Separability

It is well known that the artifacts due to motion manifest
as ghosts that propagate in phase-encode direction, and
blur in the direction(s) of motion (see (20,21)). In case of
pure translations, the motion degradation is described by
a convolution with some point-spread-function, which
has a large support (attributed to global ghosts) in phase-
encode direction, and much smaller support (resulting in
local blur) in frequency encode direction.

This has strong implications when it comes to non-
rigid motion correction. Consider a 2D multirigid prob-
lem, where the image is half-split into two rectangular
patches. If the image is split in frequency encode direc-
tion, we call the problem separable. This means that it is
possible to segment the image into two patches in spatial
domain by means of spatial windows, and then treat the
two resulting images as two separate rigid motion correc-
tion problems, which can be addressed by existing retro-
spective rigid motion correction methods. In particular,
the problem can be solved using our inverse-based
approach (17) in the order of seconds time. It is impor-
tant to note that as blurring also propagates in frequency
encode direction, the problem is—strictly speaking—not
completely separable. However, as the support of point-
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spread-function in frequency encode direction is small
the use of spatial windows with smooth cut-off/overlap
allows to treat the problem as approximately separable
subject to small localized errors near the window bound-
ary. In many cases, where the boundary between rigid
parts has no diagnostic value these small errors might be
tolerated. So far we were assuming that the image is
affected by pure translational motion. It is important to
note that a strong rotational motion (in a range of more
than a couple of degrees) makes the problem nonsepar-
able irrespective of whether the patches are arranged in
phase or frequency encode directions.

In the nonseparable case, the patches are arranged in
phase-encode direction, which leads to a considerable
“artifact cross-talk” between the adjacent patches result-
ing a genuine multirigid problem. We see the separable
case as a “trivial” one, where a solution might be
obtained using rigid motion correction methods. In this
article, our goal is to solve the nonseparable problem,
and in our experiments we arrange the patches (and
assume multiple motion trajectories) in phase-encode
direction. We explicitly test the property of separability
in a dedicated experiment (see Results section).

Objective Function

To recover both unknown motion parameters H and the
underlying sharp image u from the motion-corrupted k-
space measurement y, we need to formalize the trade-off
between data fidelity, i.e., how well the data y is repro-
duced by the forward operator AH and regularization of
both u and H. Regularization here has two meanings:
The regularizer for u measures the image quality, and
the regularizer for H softly constrains the vast space of
motion parameters, so that only a tiny relevant subspace
needs to be considered. Our objective function is

cðu;HÞ ¼ fðuÞ þ l � jjrHjj2 þ m �
XP

p¼1

tr ðHpD>t DtH
>
p Þ;

with rH ¼ AHFu	 y

[5]

where l 2 Rþ and m 2 Rþ are scalar weights for the data-
fidelity term and the motion trajectory regularizer,
respectively. We measure data fidelity by the squared
norm of the k-space residual rH, which corresponds to
the squared error. Regularization of the motion parame-
ters is achieved by requiring small temporal derivatives
independently for each of the P motion trajectories
where Dt 2 f0;61gT�T is a discrete temporal derivative
matrix and tr ð�Þ is the trace operator.

Using the full objective (5), we can correct for both
strong rotations and multirigid motion. In this work, we
use the sum of the gradient’s absolute values
fðuÞ ¼ jjGujj1, with G ¼ ½Dx ;Dy ;Dz� 2 f0;61g3N�N , and
jjvjj1 ¼

PN
i¼1 jvij as an image regularizer. We use this l1-

norm of the gradient image metric for two reasons:

1. Optimization of (5) w.r.t. u is a convex penalized
least squares problem with a single global optimum.

2. The metric is widely used and compares well to
other nonconvex metrics in empirical studies (22).

For a discussion of the connection between the previously
used inverse-based approach and Eq. [5], see the Appendix.

Optimization Scheme

Using the objective function (5), we want to recover both
the unknown sharp image u and the motion parameters
H simultaneously. Let us define the mapping c
 obtained
by evaluating the objective w at the optimal image u
 by

c
ðHÞ ¼ cðu
;HÞ; with u
 ¼ arg min
u

cðu;HÞ:

Empirically, small changes in H can lead to big changes
in the optimal value u
. Also, optimization w.r.t. u is con-
vex and simple, whereas w is a nonconvex function in H.
This suggests the special structure of an optimization
scheme, which we detail in the Algorithm 1. The purpose
of the annealing loop is to progressively relax the impor-
tance of the regularization terms of both the image u and
motion parameters H by increasing the weight of the data-
fidelity term. In the motion loop c
 is optimized w.r.t.
motion parameters H; here we use the fact that the for-
ward model allows to compute the motion parameter gra-
dient in closed form. The most inner image loop involves
the computation of the current best estimate of the image
u
 obtained by optimizing the convex objective function
(5). Additionally, for strong motions, a multiscale
approach is used, which is implemented by the outermost
multiscale loop. The idea is to first solve a simpler low-
resolution problem, and then use the estimated motion
parameters as initializations for higher resolution scales.
This has an effect of avoiding bad local minima, which
the optimizer is prone to stuck in given the nonlinear
objective function. To do the optimization, we use the
limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm [BFGS] (LBFGS) package (23).

Algorithm 1 Nested-loop optimization algorithm.

Input: y 2 CN ;N ¼ nx � ny � nz // Corrupted volume
s ¼ ½s1; s2; :::; sK � // Multiscale schedule
k ¼ ½l1;l2; :::; lL� // Annealing schedule
NQ // Number of motion estimation steps
Nu // Number of image estimation steps

Output: u
 // Restored image
Start from zero motion H 0.
For s ¼ ½s1; s2; :::; sK � do // Multiscale loop

Use only k-space center of the raw data.
For l ¼ ½l1; l2; :::; lL� do // Annealing loop

For ‘ ¼ 1; :::;NQ do // Motion estimation loop
Start from zero image u 0.
// Image estimation loop
Find u
  arg min ucðu;HÞ.
Compute the motion gradient
rc
  @cðu
;HÞ=@H.
Make a conjugate gradient step along rc
.

End
End
Initialize central frequency part of H on next
scale.

End
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Implementation

Reweighted Data-Fidelity Term

The literature on blind deconvolution (24,25) suggests
that it is beneficial to compute the data-fidelity term in
the gradient domain for blur kernel estimation (corre-
sponds to our motion estimation loop in Alg. 1). We also
adopt this approach and use a data fidelity of the
form jjGFHrHjj2 in the motion estimation loop of
Alg. 1. Here, rH ¼ AHFu	 y is the k-space residual and
G ¼ ½Dx ;Dy ;Dz� 2 f0;61g3N�N computes the gradient
using finite differences. As the gradient computation
operation is diagonal in k-space and the Fourier matrix F
is orthonormal (leaving the norm invariant), the data-
fidelity term becomes the weighted sum jjdx � rHjj2
þjjdy � rHjj2 þ jjdz � rHjj2 instead of the plain norm
jjrHjj2 in Eq. [5]. The effect of the reweighting is similar
to a preconditioner in a linear system: High frequencies are
magnified and low frequencies receive less emphasis. This
comes in line with an intuition that motion can be best
estimated from the localized high-frequency structures
such as edges and cusps. Without the reweighting—due to
the second-order structure of natural (and also medical)
images—the norm jjrHjj2 would be dominated by the low
frequencies. The reweighting is not a prerequisite for our
method to work, but the reconstruction results for 3D vol-
umes are better and the optimization is faster.

Forward Model Operator

In case of pure translations, the matrix AHp
is diagonal

with the elements given by the Fourier translation iden-
tity F½gðx þ aÞ� ¼

Rþ1
	1 gðxÞe	2pikðxþaÞdx ¼ F½gðxÞ� � e	2pika.

For rotational motion, the matrix AHp
has non-zero off-

diagonal elements, which correspond to interpolation
coefficients used for regridding. The number of non-zero
elements in each row depends on the number of neigh-
bors used for interpolation. The interpolation quality can
be increased by using more neighbors, and also by using
an oversampled grid, which can be obtained by zero-
padding in the spatial domain. In our implementation,
we are using 2-fold oversampling and 4D neighboring
points, where D is the number of dimensions.

GPU-Based Parallel Computation

It is important to note that the matrix AHp
never needs to

be constructed explicitly, an operation that can easily
become memory prohibitive when dealing with large
data volumes. What needs to be implemented are the
matrix-vector operations: multiplications with AHp

, its
transpose and derivative with respect to motion parame-
ters. Computationally these operations amount to point-
wise multiplications with translational phase ramps, and
interpolations to estimate the values on rotation-
deformed grids. As these operations involve local multi-
plications and additions in frequency domain they can
be efficiently handled by the computational architectures
capable of massively parallel computations. We use the
GPUs for this purpose, and implement our method in
compute unified device architecture (CUDA) C.

Not only the operations with AHp
matrix can benefit

from a parallel computation. In fact the objective func-

tion (5) involves further ingredients that are subject to
parallelization such as computation of spatial gradients,
fast Fourier transforms, and image metric evaluation. To
have the maximum computational gain, we implement
and run the entire pipeline of Alg. 1 on GPU. In particu-
lar, this allows to minimize the memory transactions
from the graphic card to the main memory, which can be
a bottleneck when transferring large data volumes.

The most computationally active part of the algorithm
is the inner image estimation block, which is iterated
LNQ times, and itself involves repetitive application of
the motion operator. As the motion parameters do not
change within this block, this allows to precompute both
translational phase coefficients and interpolation weights
before starting the block and store them in GPU memory.
This makes the image estimation loop computationally
cheap, and the entire algorithm operable in practical
time.

Computation Times

Figure 2 compares computation times for different set-
ups. The simplest class of problems involves rigid bodies
affected by weak (translation< 3 mm, rotation< 4�), but
commonly encountered motion. Such problems can be
addressed with our fast inverse-based approach, which
only requires a single loop for estimation of motion
parameters. Going beyond this regime (multirigid mode
and/or strong motion) requires additional computational
work. The Fourier transforms still constitute the bottle-
neck, however, we now perform optimization in several
nested loops, which increases the computation time by a
factor depending on the number of outer loop iterations.
Thus, there is a trade-off between the computation time
and an achievable level of complexity of the motion cor-
rection problem to be solved. Still, using GPUs the com-
putation times even for complicated classes of problems
are tolerable (significantly below 1 h), and are going to
improve due to the rapid advances in modern GPU
technology.

Data Acquisition

Imaging experiments were performed on a 3 T scanner
(Magnetom Trio, Siemens Healthcare, Erlangen, Ger-
many), using single-channel volume coils designed for
wrist examinations. In a non-human set of experiments,
we imaged kiwi fruits, which feature high-contrast fine-
detailed regular internal structure, and are thus very
helpful in assessing the ability of the correction algo-
rithm to improve the visual quality. To induce the
motion, we used a special MR-compatible actuator. 2D
kiwi data had a matrix size of 384 � 384 over a field-of-
view (FOV) of 150 � 150 mm2 with a slice thickness of 3
mm. Fast length adjustment of short reads (FLASH)
images with an echo time of 5.9 ms, a repetition time of
250 ms, and a flip angle of 50� were acquired within 1.5
min.

In vivo images were acquired with approval of the
local ethics board. The hand of a human subject was
imaged, who was told to move an index finger, while
trying to keep the rest of the hand stationary. A standard
FLASH sequence was used in both two and three
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dimensions. 2D images with a matrix size of 384 � 384
over a FOV of 180 � 180 mm2, a echo time of 5.9 ms, a
repetition time of 250 ms, and a flip angle of 50� were
acquired within 1 min. 2D images with a multifinger
motion were acquried within 2 min, a matrix size of 320
� 320 over a FOV of 256 � 256 mm2, a echo time of 7.1
ms, a repetition time of 500 ms, a flip angle of 60�, and a
slice thickness of 3 mm. 3D wrist data had a matrix size
of 256 � 256 � 24 over a FOV of 180 � 180 � 36 mm3, a
echo time of 3.1 ms, a repetition time of 20 ms, and a
flip angle of 20� and were acquired within 2 min.

RESULTS

Simulated Data

We first used Eq. [1] to simulate motion-corrupted data-
sets, where we know both ground-truth image and
motion trajectory. In the first experiment (see Figure 3),
we examined the convergence properties of the nested-
loop Algorithm 1. We evaluated the correction progress
by tracking the error in the estimated image and trajec-
tory on each outer loop iteration. As a ground-truth we
used a 2D image (size of 192 � 192) of the monkey brain,

FIG. 3. Analysis of the motion correction process w.r.t. the error decrease in the reconstructed image and motion trajectory. The optimization
time line is going from top to bottom. The regularization parameter annealing scheme consists of two epochs delimited with a black line. Left:

the images before, in the middle (after the first annealing epoch), and after correction. Center: the change in the absolute value of the difference
between estimated motion parameters and ground-truth; the color coding (red to blue) indicates the error decrease. Right: Normalized RMSE in

reconstructed image computed w.r.t. ground-truth.

FIG. 2. Computation times (in log scale) for different motion correction problem classes. The problems differ in the dimensionality (2D,

192� 192 vs. 3D, 192� 192� 16) of the raw data, the kind of motion (global rigid motion w versus multirigid motion ), and the type
of motion (translation $, rotation “, strong rotation ““). The different problem classes require different flavors of the algorithm (single-

loop � direct inverse objective vs. nested-loop full objective optimization). For some (feasible) problems, we also show CPU compu-
tation times for C(MEX) and MATLAB implementations.
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and set the motion trajectory to a global (rigid, single
patch) rotation of pure sine form with an amplitude of 2
degrees. In the center of Figure 3, we show for each iter-
ation of the algorithm the error (absolute value of the dif-
ference) in the estimated rotational motion parameters
computed w.r.t. ground-truth. The optimization time
arrow is pointing from the top to the bottom of Figure 3,
and the improvement (color coded from red to blue)
toward the end of optimization can be seen. Periodically
occurring low-error motion estimates (best seen in the
very first iterations) are due to the fact that motion
parameters were initialized to zeros, thus for zero-
crossings of the sine trajectory they will be initially
valid. We used two annealing steps k ¼ ½2:5;17�, which
split the optimization process into two epochs (each
epoch takes 50 iterations). In the first epoch (top half of
Fig. 3), the algorithm gradually improved the motion
parameter estimates corresponding to low-frequency
excitations. This is because the heavily weighted regula-
rization term eliminates high-frequency information in
the image. During the second epoch, less weight was put

into regularization term, and the algorithm was able to
recover high-frequency motion parameters.

The effects of the two epochs are easily seen in the
recovered images. In the left column of the Figure 3,
from top to bottom we show the motion-corrupted image,
the image estimated after first epoch (notice oversmooth-
ing due to strong regularization), and the image recov-
ered after the second epoch. Additionally, we computed
the normalized root mean-squared error between esti-
mated images and ground-truth, and plot it in the right
part of Figure 3.

Our next experiment (see Figure 4) probes the separa-
bility property that we introduced in the Methods sec-
tion. We first study a nonseparable case, and split the
image into two patches (blue, green) in phase-encode
direction. We used our multirigid forward model to
apply the translational motion (uniformly random bi-
directional motion in a range of 4 pixels) to the blue
patch. As ghosts propagate globally (from the nearby
blue patch) one can see the decrease of image quality in
the green patch, although it is not directly affected by

FIG. 4. Rigid motion correction in

case of nonseparable (top) and
separable (bottom) problems. In
both cases, the same random

and bi-directional translational
motion was applied to patch

enclosed in a blue frame. No
motion was applied to green-
frame patch. The left part of the

figure shows the simulated
motion-affected images, and the

right part the results of motion
correction.
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motion. We then use spatial windows to extract the con-
tents from each patch and correct them separately using
our rigid inverse-based approach (17). No improvement

in image quality can be observed. In the separable case,
the patches were arranged in frequency encode direction.
The same motion trajectory as used in the nonseparable

FIG. 5. Real data. Left to right: Image of a kiwi corrupted by rotational motion; restoration using the inverse-based objective; correction
using the nested-loop algorithm.

FIG. 6. Real data. Multirigid motion correction was performed on the image split into two patches (indicated by red/green overlays).
Top: from left to right, we show the observed image (of kiwi fruits), the spatial masks used, motion correction result, and ground-truth

image from the motion-free scan. Bottom: the trajectories for both patches recovered by the algorithm.
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experiment was applied to the blue patch. The green
patch was not affected by motion. In contrast to the non-
separable case, a great improvement of image quality is
now evident.

Real Data

Similarly to the simulated data experiments, we first
consider the global single-patch problem involving
strong rotational motion. Figure 5 demonstrates the abil-
ity of our method to correct real data affected by strong
rigid motion, and its superiority over our previous
inverse-based method. We used NQ ¼ Nu ¼ 50 for

motion/image estimation loops, and the annealing sched-
ule of k ¼ ½e1; e2; e3�.

For our next experiments, we used a wrist coil to
acquire images of kiwi fruits and a hand of a human sub-
ject. Note that the spatial windows (indicated by color-
coded overlays) were arranged in phase-encode direction
leading to hard, nonseparable problems. For the first real
data experiment (see Figure 6), we acquired the image of
two kiwi fruits. During the acquisition, we were using
MR-neutral actuator to displace the left kiwi fruit. Doing
the motion correction, we split the image into two
patches, and used our multirigid nested-loop algorithm.
To evaluate the quality of reconstructed images, we addi-
tionally acquired a motion-free ground-truth image. As

FIG. 7. Real data. Multirigid motion correction was performed on in vivo data, where the image of the human wrist was acquired. During the

experiment, the subject was moving the index finger, and was trying to keep the hand stationary. Top: from left to right, we show the observed
image, the spatial masks used, motion correction result, and ground-truth image from the motion-free scan. Bottom: the trajectories for both

patches recovered by the algorithm.
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can be seen in Figure 6, the algorithm was able to
remove strong artifacts, and reconstructed results look
very similar to ground-truth.

In the next experiment, we acquired in vivo data of
the human hand (see Figure 7). The subject was asked to
move the index finger and keep the wrist stationary.
Also in this case with a more biologically plausible
motion our algorithm was able to significantly improve
the image quality. Additionally, in the bottom part of the
figures, we plot the motion trajectories recovered by the
algorithm. The motion parameters estimated in the left
kiwi and index finger patches indicate a strong motion.
Please note, however, that the motion trajectories recov-
ered in nonmotion patches also contain significant varia-
tion. This is due to the fact that blind autofocusing
motion correction approaches suffer from an ambiguity
in the recovered motion parameters, which does not
influence the image quality of the recovered image (17).

Additionally, if strong regularization of the image is
used, this has an effect of penalizing high-frequency
information, and means that the recovered image is toler-
ant to variation in high-frequency excitation motion
parameters.

Next, we tested our algorithm on a more complicated
problem, which involved multiple patches (Fig. 8). The
subject was moving all fingers simultaneously trying to
displace them in a disorganized manner, so that each
finger has a unique motion trajectory. Also in this case
major improvement of the image quality is possible.
Doing the reconstructions we used the following algo-
rithm parameters: NQ ¼ Nu ¼ 50, k ¼ ½e1; e2�.

Finally, we tested our method on a 3D dataset, which
was also corrupted by multirigid motion. In Figure 9, we
show four slices from the motion-corrupted, corrected,
and motion-free volumes. A significant improvement of
the image quality can be observed in the reconstructed

FIG. 8. Real data. Multirigid motion correction was performed on the image split into P¼6 patches. The human subject was moving all
six fingers during the experiment.

FIG. 9. Real data. Multirigid motion correction was performed on the 3D image of the human hand. During the experiment, the subject
was moving the index finger. Left: four slices from the observed 3D dataset (containing 32 slices in total). Middle: spatial windows.

Right: multirigid motion correction result, and the slices from the reference volume not affect by motion.
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result. We used the following algorithm parameters:
NQ ¼ 100;Nu ¼ 50;k ¼ ½e1; e2�, and three multiscale
iterations.

DISCUSSION

In this proof-of-concept study, we have experimentally
demonstrated the performance of multirigid motion cor-
rection using a fully blind retrospective method. Our
technique is an extension of our previous work; the
main innovation being the use of a forward model based
objective function.

We assume that patch masks to be given as an input
(although in theory they could be obtained by discrete
optimization) either by the user or an automatic process
like a coarse segmentation of the 3D image. Of course,
this means that before using our algorithm the patches
need to be provided (either by their coordinates or by a
graphical interface). This is a difficult problem in itself if
the multirigid motion is complex, or if the observation is
covered by strong artifacts. In a practical setting, e.g.,
knee or hand imaging, the patch splitting can be
obtained by segmentation or atlas registration so that the
degrees of freedom of the imaged body parts are reflected
in the parts of the segmentation. Another way to avoid
the need of user-created masks is a regular patch split-
ting of the image. With increasing patch density, any
nonrigid motion can be described, an extreme case being
the vector field over all voxels. At this extreme the prob-
lem is, of course, computationally very hard to solve,
furthermore, it is severely underconstrained given the
mere number of parameters to optimize. Further research
will go into the direction of coupling the motion parame-
ters over patches for reducing the effective number of
parameters to optimize. In particular, upgrading our algo-
rithm to use an adaptive patch splitting (14) looks like a
reasonable next step.

Compared to our previous inverse-based approach
(17), the method presented in this article is computation-
ally more demanding. Modern graphic cards render ret-
rospective motion correction problems that were
considered almost intractable years ago solvable in a rea-
sonable time now. Although, in our current implementa-
tion, we are already experiencing massive time savings
due to parallelization there is still room for improvement
by code optimization. For example, when performing
line searches in the objective landscape, one could avoid
to compute the gradient direction on each step.

Our new algorithm has more parameters to tune com-
pared to our previous inverse-based procedure, which is
robust enough to be used out of the box. The tuning is a
price to pay for being able to solve the more complex
multirigid problem. In our current research, we faithfully
report all the parameters that we were using in our
experiments. Future research might allow to simplify the
choice of parameters.

In this study, the validity of our approach was demon-
strated on somewhat artificial instances of multirigid
motion. Our ultimate goal is to address the problem of
motion correction in abdomen data sets, i.e., images of
liver or kidneys, which are affected by breathing. This is
challenging for many reasons, first, motion due to breath-

ing is quite strong, and second, the task of splitting the
abdomen data into patches is nontrivial. Usually there
are many different tissues in the FOV, and they are
likely to possess different modes of motion—i.e., spine,
and walls of the abdomen are likely not to be moving,
while the internal organs are affected by translations,
and possibly small rotations.

While in the current study, we assumed the data were
acquired with a single coil, this may be a difficult setting
compared to multirigid motion correction from multicoil
data. This is due to the fact that spatial sensitivity pro-
files of the coils naturally disentangle the effects (arti-
facts) of nonrigid motion over the spatial domain that
otherwise propagate globally in phase-encode direction.
Recent nonrigid motion correction methods (see Intro-
duction) operate on data from multiple coils and should
strongly benefit from this property. The bigger challenge
is that in practice the input to the reconstruction algo-
rithm would likely be a magnitude-only DICOM image.
Thus, not only the information from each coil is not
accessible but also the spatial phase in the image is
gone. To our knowledge, there is no method for doing
retrospective motion correction of both rigid and non-
rigid motion based on pure magnitude data.

In summary, we have developed a retrospective
method to correct a multirigid motion that does not need
external information on motion as an input. At the core
of our new method is an analytic nonlinear optimization
of objective function of both the image and motion sub-
ject to fidelity and regularization constraints. We have
demonstrated the ability of the method to correct for
motion on both simulated and real data sets.

APPENDIX

Connection to Inverse-Based Approach

Assuming P ¼ 1;m ¼ 0;AH to be invertible and its
inverse being a valid motion matrix AH0 :¼ A	1

H , and sub-
stituting u ¼ FHAH0z we can rewrite the objective
cðz;HÞ ¼ fðFHAH0zÞ þ l � jjz	 yjj2, where z is an auxil-
iary variable. For large1 k we obtain y ¼ z and hence
cðHÞ ¼ fðFHAH0yÞ, which is the direct inverse objective
function we used in our previous work (17, Eq. 9).
Although it allows for fast motion correction, the
inverse-based objective has clearly a number of limita-
tions, i.e., it does not allow for valid reconstruction in
case rotational motion is stronger than few degrees.

REFERENCES

1. Plathow C, Ley S, Zaporozhan J, Sch€obinger M, Gruenig E,

Puderbach M, Eichinger M, Meinzer HP, Zuna I, Kauczor HU. Assess-

ment of reproducibility and stability of different breath-hold manoeu-

vres by dynamic MRI: comparison between healthy adults and

patients with pulmonary hypertension. Eur Radiol 2006;16:173–179.

2. Soellinger M, Rutz AK, Kozerke S, Boesiger P. 3d cine displacement-

encoded MRI of pulsatile brain motion. Magn Reson Med 2009;61:

153–162.

1From the theory of regularization paths, we know that we do not need to drive
l to infinity but there exists a threshold beyond which the optimizer will always
obey z ¼ y.

Blind Multirigid Retrospective Motion Correction 1467



3. Maclaren J, Herbst M, Speck O, Zaitsev M. Prospective motion correc-

tion in brain imaging: a review. Magn Reson Med 2012;69:621–636.

4. Manke D, R€osch P, Nehrke K, B€ornert P, D€ossel O. Model evaluation

and calibration for prospective respiratory motion correction in coro-

nary MR angiography based on 3d image registration. IEEE Trans

Med Imaging 2002;21:1132–1141.

5. Sch€affter T, Rasche V, Carlsen IC. Motion compensated projection

reconstruction. Magn Reson Med 1999;41:954–963.

6. Batchelor P, Atkinson D, Irarrazaval P, Hill D, Hajnal J, Larkman D.

Matrix description of general motion correction applied to multishot

images. Magn Reson Med 2005;54:1273–1280.

7. Odille F, Cı̂ndea N, Mandry D, Pasquier C, Vuissoz PA, Felblinger J.

Generalized MRI reconstruction including elastic physiological

motion and coil sensitivity encoding. Magn Reson Med 2008;59:

1401–1411.

8. Schmidt J, Buehrer M, Boesiger P, Kozerke S. Nonrigid retrospective

respiratory motion correction in whole-heart coronary MRA. Magn

Reson Med 2011;66:1541–1549.

9. Odille F, Uribe S, Batchelor PG, Prieto C, Sch€affter T, Atkinson D.

Model-based reconstruction for cardiac cine MRI without ECG or

breath holding. Magn Reson Med 2010;63:1247–1257.

10. Vuissoz PA, Odille F, Fernandez B, Lohezic M, Benhadid A, Mandry

D, Felblinger J. Free-breathing imaging of the heart using 2d cine-

GRICS (generalized reconstruction by inversion of coupled systems)

with assessment of ventricular volumes and function. J Magn Reson

Imaging 2012;35:340–351.

11. Hansen M, S�rensen T, Arai A, Kellman P. Retrospective reconstruc-

tion of high temporal resolution cine images from real-time MRI

using iterative motion correction. Magn Reson Med 2012;68:741–750.

12. White MJ, Hawkes DJ, Melbourne A, Collins DJ, Coolens C, Hawkins

M, Leach MO, Atkinson D. Motion artifact correction in free-

breathing abdominal MRI using overlapping partial samples to

recover image deformations. Magn Reson Med 2009;62:440–449.

13. Odille F, Vuissoz P, Marie P, Felblinger J. Generalized reconstruction

by inversion of coupled systems (GRICS) applied to free-breathing

MRI. Magn Reson Med 2008;60:146–157.

14. Menini A, Vuissoz PA, Felblinger J, Odille F. Joint reconstruction of

image and motion in MRI: implicit regularization using an adaptive

3D mesh. Med Image Comput Comput Assist Interv 2012;15:264–271.

15. Cheng JY, Alley MT, Cunningham CH, Vasanawala SS, Pauly JM,

Lustig M. Nonrigid motion correction in 3d using autofocusing with

localized linear translations. Magn Reson Med 2012;68:1785–1997.

16. Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter

T, Batchelor PG, Prieto C. Motion corrected compressed sensing for

free-breathing dynamic cardiac MRI. Magn Reson Med 2012;70:504–

516.

17. Loktyushin A, Nickisch H, Pohmann R, Sch€olkopf B. Blind retrospec-

tive motion correction of MR images. Magn Reson Med 2013;70:

1608–1618.

18. Bracewell RN. The Fourier transform and its applications. New York:

McGraw Hill; 1999.

19. Hirsch M, Sra S, Sch€olkopf B, Harmeling S. Efficient filter flow for

space-variant multiframe blind deconvolution. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), San Francisco,

California, USA, 2010. pp 607–614.

20. Wood M, Henkelman R. MR image artifacts from periodic motion.

Med Phys 1985;12:143–151.

21. Morelli J, Runge V, Ai F, Attenberger U, Vu L, Schmeets S, Nitz W,

Kirsch J. An image-based approach to understanding the physics of

MR artifacts. Radiographics 2011;31:849–866.

22. McGee K, Manduca A, Felmlee J, Riederer S, Ehman R. Image metric-

based correction (autocorrection) of motion effects: analysis of image

metrics. J Magn Reson Imaging 2000;11:174–181.

23. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for

bound constrained optimization. SIAM J Sci Stat Comput 1995;16:

1190–1208.

24. Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT. Removing

camera shake from a single photograph. ACM Trans Graphics

2006;25:787–794.

25. Cho S, Lee S. Fast motion deblurring. ACM Trans Graphics 2009;28:

145:1–145:8.

1468 Loktyushin et al.


	l
	l
	l

