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Blind Retrospective Motion Correction of MR Images

Alexander Loktyushin,1* Hannes Nickisch,2 Rolf Pohmann,3 and Bernhard Schölkopf1

Purpose: Subject motion can severely degrade MR images.
A retrospective motion correction algorithm, Gradient-based
motion correction, which significantly reduces ghosting and blur-
ring artifacts due to subject motion was proposed. The technique
uses the raw data of standard imaging sequences; no sequence
modifications or additional equipment such as tracking devices
are required. Rigid motion is assumed.
Methods: The approach iteratively searches for the motion tra-
jectory yielding the sharpest image as measured by the entropy
of spatial gradients. The vast space of motion parameters is
efficiently explored by gradient-based optimization with a con-
vergence guarantee.
Results: The method has been evaluated on both synthetic and
real data in two and three dimentions using standard imaging
techniques. MR images are consistently improved over differ-
ent kinds of motion trajectories. Using a graphics processing
unit implementation, computation times are in the order of a few
minutes for a full three-dimentional volume.
Conclusion: The presented technique can be an alternative or
a complement to prospective motion correction methods and is
able to improve images with strong motion artifacts from stan-
dard imaging sequences without requiring additional data. Magn
Reson Med 70:1608–1618, 2013. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Subject motion during MRI scans can cause severe degra-
dations of the image quality (1). Motion artifacts—usually
appearing as ghosts and blur—can easily render an image
unacceptable for medical analysis. Long scans used to
acquire high-resolution images are particularly vulnerable.
Many patients having difficulties in voluntarily constrain-
ing their motion could highly benefit from MR diagnostics
made possible by motion correction.

Although there is a vast literature on motion correction,
no universal solution to the problem yet exists. The avail-
able methods can be broadly classified into prospective
and retrospective techniques. Prospective methods correct
for motion during the scan by constantly adjusting the
magnetic field gradients to follow the subject’s pose as
measured by external sensors, like tracking cameras (2,3).
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Retrospective methods remove motion artifacts after the
image is fully acquired. This can be done by estimating the
point spread function due to translation, and then using its
phase for correction (4,5), by correlating the values in adja-
cent k-space lines to estimate the motion (6), by the method
of generalized projections (7) in space-limited images with
a known finite region of support, by special trajectories
introducing redundancy into the acquired data that allows
inferring the motion (8), or by navigator-based methods that
measure the motion (9,10) using additional echoes in the
pulse sequence.

Autofocusing (AF) methods represent a large and impor-
tant class of retrospective techniques. AF does not require
the use of special trajectories, or any other additional data,
and relies on optimization-based refining of the image with
respect to some quality measure. It was shown to be able to
compete with navigator-based methods in terms of image
quality (11). The origin of AF methods can be traced back
to early attempts for solving image denoising and deblur-
ring problems (12,13). AF is used for motion compensation
in radar measurements (14), where the acquisition, like
in MR, takes place in the frequency domain. The seminal
paper of Atkinson (15) adapts AF to MR motion correc-
tion. In the last years, AF methods for MR were improved
substantially to accommodate complex motions involving
rotations (16,17), and to deal with three-dimentional (3D)
acquisitions (18). Recently, retrospective approaches to cor-
rection of a non rigid body motion were proposed (19–21),
however, to cope with the large number of unknown motion
parameters, reference data (i.e., from navigator-based track-
ers) is needed.

We propose an AF method exploring the space of possi-
ble motions, and selecting the point in that space such that
the motion corrected image yields the minimum value of a
cost function. For high-resolution 3D volumes, the motion
space is vast since we have six free parameters per phase
encode step. Starting from an initial guess for the motion
trajectory, e.g., no-motion or some small random initial-
ization, our algorithm Gradient-based Motion Correction
(GradMC) iteratively corrects for translation and rotation
until no more progress in terms of image quality can be
made. To objectively measure the image quality, we use
the gradient entropy metric as cost function.

The major difference of GradMC to other AF approaches
is the way the motion space is explored. To our knowledge,
currently existing methods either perform greedy forward
selection or rely on brute force search in motion space,
which in high-resolution 3D scenarios fails due to the
curse of dimensionality. Greedy forward selection (as in e.g.
Ref. 15) locally optimizes a quality metric by altering only a
few motion parameters at a time. We use the analytical gra-
dient (see Appendix) to drive the optimization process, and
thus are able to explore the parameter space consistently
using quasi-Newton Broyden–Fletcher–Goldfarb–Shanno
and obtain provable convergence to a local optimum,
which is a desirable property of an optimization algorithm.
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FIG. 1. Illustration of the forward
model. An unknown underlying
image u experiences rotation and
translation during every phase
encode step represented by a
masking matrix Mt . Motion can be
represented in the pixel domain
(left) and in the Fourier domain
(right). The latter allows for efficient
computations.

Interestingly, gradients can be computed quite cheaply by
one single non uniform fast Fourier transformation per
degree of freedom (DoF). We conjecture that derivative-
based optimization makes it possible to achieve higher
image quality due to efficient exploration of the high-
dimensional objective landscape.

Similar to other approaches, we assume that the motion
time-scale is longer than the repetition time TR, i.e., we
model the motion trajectory as a piecewise constant func-
tion. We neglect second-order effects such as the influence
of motion on the magnetic field. Like all other reference-
free (no external information on motion) methods, we
assume that the imaged object behaves as a rigid body.
Under these assumptions, we can correct for arbitrary
motion trajectories in six degrees of freedom for both two-
dimentional (2D) and 3D acquisitions. We provide a Matlab
implementation of GradMC along with four examples at:
http://mloss.org/software/view/430/.

METHODS

In this section, we first explain how we model the motion-
corrupted k-space data. Next, we construct the cost func-
tion based on the image gradient entropy metric. We then
describe how translational and rotational motion is imple-
mented, and deal with non linearities and local minima
in our objective using multiscale optimization. Finally, we
demonstrate that our method can be extended to multiple
coils.

Model

MR scanners acquire Fourier coefficients along smooth tra-
jectories as dictated by the gradient shapes of the MRI
sequence. We restrict ourselves to the Cartesian case where
k-space is densely sampled line by line. In the following,
we describe a forward model of the measurement process
that includes a moving subject. For an illustration, see
Figure 1.

Let F ∈ C
N×N be an orthonormal Fourier matrix and

u ∈ C
N an unknown sharp image of size N = nx · ny · nz

pixels. M = diag(m) ∈ [0, 1]N×N is a diagonal masking
matrix where m ∈ [0, 1]N are masking coefficients, and
Ãθt ∈ R

N×N denotes a rigid motion transformation matrix
parameterized by a vector of translations and rotations
θt ∈ R

3 × [0, 2π)3 at time t.
Assuming additive measurement noise ε, the acquisition

in k-space can be written as

y =
∫ T

0
MtFÃθt dt u + ε ∈ C

N ,
∫ T

0
mtdt = 1, [1]

with Mt selecting the part of k-space being filled by a
scanner at time t.

At all times t, our subject is rigidly moving, i.e., Eq. [1]
acts on the transformed image Ãθt u instead of u. As mea-
surements are acquired in k-space, it is more convenient to
represent Ãθt directly in k-space. Mathematically speaking,
Ãθt and F do not commute. However, there is an operator
Aθt such that FÃθt = Aθt F, because rotation and transla-
tion have counterparts in k-space (22). Rotation (around the
center) in pixel space corresponds to rotation (around the
DC component) in k-space and translation in pixel space
corresponds to pointwise multiplication of k-space data
with linear phase ramps. This simplifies our measurement
Eq. (1) because F can be moved outside the integral

y =
∫ T

0
diag(mt)Aθt dt Fu + ε ∈ C

N ,
∫ T

0
mtdt = 1. [2]

In a Cartesian MRI measurement, there are two charac-
teristic time intervals, the echo time TE and the repetition
time TR. Our line-by-line setting is best described by a
sequence of T repetitions of length TR each. In the fol-
lowing, we assume that the subject motion is piecewise
constant, which means that the rigid transform matrix
Aθt changes very little during one repetition. Thus, the
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measurement integral (2) can be approximated by the sum
and the masking becomes binary:

y =
T∑

t=1

diag(mt)Aθt Fu + ε ∈ C
N ,

T∑
t=1

mt = 1, mt ∈ {0, 1}N .

[3]

Assume for now that k-space lines for a volume of size
nx by ny by nz pixels are measured, hence T = ny · nz

repetitions are needed. In every repetition, a noisy version
of diag(mt)Aθt Fu ∈ C

N is acquired. The binary mask mt

contains nx nonzero components [Aθt ]mt Fu ∈ C
nx , where

the shortcut [Aθt ]mt ∈ C
ny ×N represents the nonzero sub-

matrix of diag(mt)Aθt ∈ R
N×N . As a result, we can pack the

whole motion into the single matrix Aθ = ∑T
t=1 diag(mt)Aθt

composed of blocks of size nx each

y = AθFu + ε ∈ C
N , Aθ :=

⎡
⎢⎢⎢⎣

[Aθ1 ]m1

[Aθ2 ]m2

...
[AθT ]mT

⎤
⎥⎥⎥⎦ ∈ C

N×N , [4]

where Aθ is parameterized by θ = [θ1, . . . , θT ] ∈ Θ =
R

3T × [0, 2π)3T —the vector with all the motion parame-
ters of the trajectory, and T = ny · nz . Computationwise, a
matrix vector multiplication with Aθ requires O(N ) because
Aθ can be decomposed into blocks, the matrix vector mul-
tiplications of which can be performed efficiently. Some
additional details are provided in Appendix.

Cost Function

The key ingredient of any AF method is an image quality
metric. Ideally, it is large for motion-corrupted images and
small for motion-free ones. The second desirable property
is that minima over such a metric correspond to diagnos-
tically useful images according to medical experts. We are
not aware of a theoretically-justified optimal metric fulfill-
ing these requirements. As a surrogate, we use the gradient
entropy

φ(u) = H(Dxu) + H(Dy u), [5]

that was found to be superior to 24 estimators in an empir-
ical study based on the expertise of radiologists (23). Here,
Dx , Dy ∈ {0, ±1}N×N are horizontal and vertical finite
difference matrices, and H(·) is a pixel entropy defined as:

H(u) = −v� ln v, v =
√

u � ū
uHu

∈ R
N
+ , u ∈ C

N . [6]

Further, ū denotes the complex conjugate and a�b denotes
the pointwise (Hadamard) product of two vectors a and b.
Note that the entropy is scale invariant H(u) = H(αu), phase
invariant H(u) = H(exp(iω)�u), and invariant with respect
to a constant offset H(u) = H(u + c1). The effect of such a
focus criterion is to prefer images having uniform intensity
regions separated by sharp edges. Indeed, motion corrupted
images are known to be affected by blurring and ghosts,
both leading to smooth intensity variations, and thus high-
gradient entropy H.

Our goal is to estimate the motion parameters θ̂ which
best describe the motion in the corrupted volume, and
then to correct for motion. We consider a class of approx-
imately invertible motions composed of translations and
small angle rotations (<3◦). For strong rotations, the infor-
mation in high-frequency k-space regions is lost, and no
artifact-free empirical inversion is possible. By empirical
inversion, we mean the application of Aθ directly to a
motion corrupted observation y

uθ = FHAθy, [7]

where uθ is the resulting image in the spatial domain. We
are interested in motion parameters θ̂ that correspond to
the sharpest image according to the minimum of our cost
function

θ̂ = arg min
θ∈Θ

φ (uθ) . [8]

It is clear that the estimation of 6 · T free motion param-
eters from a single image constitutes a highly underdeter-
mined problem. Therefore, we regularize the trajectory of
the recovered motion parameters by putting a quadratic
penalty on the differences of consecutive motion param-
eters

θ̂ = arg min
θ∈Θ

φ(FHAθy) + λ ‖Dθ‖2 , [9]

where D ∈ {0, ±1}6·T×6·T is a finite difference matrix
(respecting the temporal order of the phase encodes), and
λ ∈ R+ is a regularization parameter controlling the
smoothness of the trajectory. In practice, the value λ = 0.1
was found to give best results. In order for a regulariza-
tion to make sense, we assume that the order in which
k-space lines are recorded by the scanner is known (in 3D
there is a phase/slice direction ambiguity with this respect).
Otherwise, the temporal structure of the motion trajectory
recovered by the algorithm might not match the actual tem-
poral sequence of acquisition in k-space. As an alternative
to the difference penalty term, a blocking approach can be
used, where the motion parameters in consecutive views
are hard-constrained to be optimized together. This makes
it possible to obtain reasonable and probable motion esti-
mates for those regions in k-space, where the accuracy of
the algorithm is limited. While it may be worthwhile to take
advantage of this complexity reduction approach to further
improve the motion correction results, the spirit of our cur-
rent research is slightly different. We reduce complexity by
means of an adjustable regulariser instead, while keeping
the number of parameters fixed. This leaves more freedom
to the optimizer to find the best setting among the softly
coupled parameters.

Translation and Rotation Correction

The practical implementation of the Aθ operator involves
the treatment of translational and rotational motion repre-
sented by 6 · T components in θ. The translation correction
amounts to a multiplication of each k-space line with a lin-
ear phase ramp exp(−2πikxθt), a function of translation θt

in the spatial domain at time t, and the Fourier coefficient
kx of the affected view.
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FIG. 2. Multiscale optimization of
motion parameters θ is performed by
progressively growing the processed
data ŷ from the low-frequency cen-
ter until the whole k-space is cov-
ered. [Color figure can be viewed in
the online issue, which is available at
wileyonlinelibrary.com.]

Rotation is more involved since it causes a rotation of one
section of k-space relative to others. To compute its effect on
the image, we first construct a deformed grid by rotating the
points of each k-space line by their time-respective angles.
Then, we do the interpolation in an oversampled (2X) k-
space to estimate the values on the points of the rotated
grid.

Multiscale Initialization

Our cost function is highly nonlinear since it involves log-
arithms, complex exponentials, and piecewise cubic inter-
polation polynomials. Minimizing such a function is diffi-
cult, due to the presence of local minima. We address this
problem by using a multi scale coarse-to-fine approach—
see Algorithm 1 and Figure 2 for illustration. It is based on
the observation that in DC-centered k-space cubes contain-
ing low frequencies only, even strong motion will produce
little offsets in the spatial domain. Furthermore, the signal
intensity, and thus signal-to-noise ratio is usually higher
in low-frequency regions. This means that estimation and
correction of motion is easier in coarsely sampled versions
of the image. Having estimated the motion parameters for
the coarser scales, we proceed to the finer ones, for which
we can use the motion parameters from coarser scales as
an initialization. This way, we drive the optimizer towards
better minima in the objective landscape.

There is a fundamental difference between 2D and 3D
multiscale optimization. In 2D, a temporal sequence of
acquired views in the spectrum most often goes in high-
low-DC-low-high frequency order. In 3D, a sequence is
more complex and involves multiple alternations of high-
and low-frequency views (consider Cartesian line-by-line
covering of the 3D k-space cube). In the first scale itera-
tion, GradMC finds only the lowest frequency segments of
the motion trajectory. These segments are surrounded by
gaps corresponding to yet unknown motion parameters of
higher frequency views. In each scale iteration the gaps
shrink, until finally the whole trajectory is recovered. We
exploit the alternation effect to our benefit—we initialize
the motion parameters in the gaps by linearly interpolating
from the values on their boundaries, where the algorithm
has already determined the motion. This allows achiev-
ing higher accuracy in determining the motion in more
problematic high-frequency views.

Multiple Coils

The approach can be extended to images acquired with
multiple coils. Since we optimize with respect to motion
parameters, there is no need to know the sensitivity profiles

Algorithm 1 Multiscale optimization

Input: Corrupted volume y with N = nx ·ny ·nz k-space coef-
ficients centered at [cx , cy , cz] = [ nx

2 + 1, ny
2 + 1, nz

2 + 1
]
.

Also, assume ny = nz .
Output: Restored volume u in spatial domain.
For s ← 64

2 , ..., ny
2 do

• Use only k-space center of the raw data:
ŷ ← y(cx , cy−s .. cy+s, cz−s .. cz+s).

• Compute best motion parameters:
θ̂ ← arg minθ φ(FHAθŷ).

• Initialize central frequency part of θ̂ on next finer scale:
θ̂ ← θ(cy−s .. cy+s, cz−s .. cz+s).

End
Finally, obtain the sharp image: û ← FHA

θ̂
y.

See Figure 2 for an illustration.

of each coil. We seek the motion parameters θ̂ that invert
the motion on the data from each coil, such that the sum of
the cost functions over all C coils is minimal

θ̂ = arg min
θ∈Θ

C∑
c=1

φ
(
FHAθyc

)
+ λ ‖Dθ‖2 , [10]

where yc is the raw data from coil c.

Data Acquisition

Imaging experiments were performed on a 3T scanner
(Siemens Healthcare, Erlangen, Germany), using a single-
channel birdcage coil for brain imaging. To obtain motion-
free images and to inflict well-controlled motion and
exclude non rigid motion, a fixed monkey brain embedded
in agarose was used for initial experiments. It was placed on
a special, MR-compatible holder that allowed well-defined
motion in 3D (two translational, one rotational DoF) during
the scan.

In vivo human images were acquired on four subjects as
approved by the local ethics board. The subjects, whose
heads were loosely fixed inside the coil, were told to
move during some of the experiments. Standard imaging
protocols in 2D and 3D were used, with sequences and
parameters similar to those used in medical routine and
neuroscience research. For 2D images, a multi slice RARE
sequence was used. Acquiring eight echoes per echo train,
four 4 mm slices were imaged with a TE of 40 ms and
a TR of 2.5 s within 75 s. Including the scanner’s auto-
matic two-fold oversampling in read direction, a FOV of
400×160 mm2 was covered with a matrix size of 384×160.
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FIG. 3. Comparison of the computation times for motion correction
of 3D volumes of different sizes N for implementations in Matlab,
plain C with MEX interface, and CUDA (GPU). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]

In addition, high-resolution data were obtained with a
matrix size of 1024 × 666 over a FOV of 440 × 286 mm2.
Those scans acquired 18 echoes per echo train with a TE of
61 ms, a TR of 4 s and a refocusing flip angle of 120◦ within
2.5 min. 3D in vivo data had a matrix size of 384×192×96
over a FOV of 440 × 220 × 115 mm3. FLASH images with
a TE of 5.3 ms, a TR of 16 ms and a flip angle of 18◦ were
acquired within 5 min. For the monkey brain images, the
FOV was reduced to 100×100×24mm3 and only 16 slices
were sampled with a flip angle of 35◦. MP-RAGE scans had
a similar duration (4.8 min) and used an inversion time of
1.1 s, a TE of 2.85 ms, a TR of 1.5 s and a flip angle of 9◦.

Optimization Algorithm

We use the limited memory Brayden–Fletcher–Goldfarb–
Shanne nonlinear optimizer (24) with 50 iterations per
scale. Note that the gradient of the cost function can be
computed similarly fast as the objective function itself
(see Appendix for details). The computational bottleneck
are the fast Fourier transformations requiring an effort of
O(N · log N ) each. Figure 3 shows the computation times
for various implementations against the total number of
voxels in a 3D volume. Our pure Matlab implementation1

is clearly impractical for large volumes, but has an advan-
tage of clear structure with the entire pipeline represented
by dedicated matrix classes (25) handling all major oper-
ations of the forward model. The first order speed-up was
achieved by implementing the heavy resampling and grid-
ding routines in plain C via Matlab’s MEX interface. Finally,
we took advantage of modern graphic cards [graphical pro-
cessing unit, (GPU)], benefiting from the fact that most
heavy operations in our pipeline are massively parallel.
GPU implementation was done in CUDA language and is
also interfaced via MEX. For realistic volumes with 1283

voxels, 3 min of processing are required. The current bot-
tleneck of our GPU implementation is the need to transfer
the image from the main memory to the device memory of
the GPU for each function evaluation. Thus, merging our
GPU code with the code of the optimizer will make it pos-
sible to achieve a further speed-up. Experiments were done
on an Intel(R) Core(TM)2 Duo CPU 2.66 Ghz processor and
a GeForce GTX 285 graphics card.

1Available from http://mloss.org/software/view/430/.

RESULTS

In the following, we benchmark GradMC algorithm on
increasingly challenging motion correction tasks. Starting
with 2D and 3D simulated data, we then proceed to 2D and
3D real world data.

Simulations

Starting with a motion-free 2D image, we use our forward
motion model to create the corrupted data. This allows us to
compare the motion trajectory recovered by our reconstruc-
tion algorithm against the ground truth. Both rotational and
translational motion was simulated. The motion trajectory
for each motion parameter was generated to be of a sinu-
soidal form (see Fig. 4). The sine-form motion was chosen
for convenient analysis of the recovered motion trajectories
against the ground truth in all view/frequency ranges.

In Figure 4, we show the results of the analysis of recov-
ered trajectories. For a 2D image of the brain (matrix size
N = 192 × 192), we induced an out-of-phase sine-form
motion simultaneously in all motion DoF (phase/frequency
encode direction translations, and in-plane rotation). In
100 successive trials, the optimizer was challenged with
different random initializations, which were in the range
of the amplitude of the sinusoid. Plotted in solid are the
ground truth sinusoidal trajectories. Dashed lines show the
empirical mean of the recovered trajectories. The shaded
gray tube around the empirical mean contains 95% of the
probability mass computed by the respective quantiles.
Analyzing the discrepancy of recovered mean trajectories
to ground truth and the width of the error tubes, we observe
that the accuracy is very high for translations in low-
and mid-frequency ranges (DC component is the center of
abscissa), whereas moderate discrepancies occur in high-
frequencies, likely due to low power of the signal in these
regions of the spectrum. A large discrepancy also appears
in the estimation of translational motion in phase direction
around the DC component that is consistent over all trials,
thus having a systematic origin. However, this discrep-
ancy was not observed to deteriorate the restored image,
probably because close-to-DC regions are not that sensi-
tive to motion, with DC itself being completely invariant to
it. Doing the restoration with motion parameters θ initial-
ized to zeros, the unitless image metric values computed
on corrupted/restored/ground-truth images were equal to
1318/1114/1032, respectively.

In Figure 5, the same analysis is carried out in 3D (matrix
size N = 192 × 192 × 48). Since low- and high-frequency
views are interleaved in 3D, the recovered trajectories have
periodic large variance regions. These regions correspond
to high-frequency views, and the intervals between their
centers are equal to the matrix dimension in phase encode
direction, so there are a total of 48 of such regions for the
given matrix size. One beneficial consequence of this is that
if the true motion trajectory has smooth variations, it is pos-
sible to actually constrain the variations in high-variance
regions from the neighbouring low-frequency supports.

Measured Data

First, we show results of applying our method to 2D images
acquired by a RARE sequence. The motion corrupted and
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FIG. 4. Recovery of underlying ground truth motion parameters in a 2D forward simulation with three DoFs starting from a random initial-
ization. Solid line: underlying sinusoidal motion trajectory. Dotted line: the empirical mean over 100 recovered trajectories. Shaded gray:
error tube over 100 recovered trajectories capturing 95% of the probability mass (corresponds to ±2σ for Gaussian).

restored images (matrix size N = 384 × 160) are shown
in Figure 6. The subject made sideways head movements
with rotation around the support point, where the head
touched the table. The echo train length was equal to eight,

which in principle could allow us to reduce the number
of motion parameters to be estimated by packing them
into the train blocks. We did not exploit this advantage,
and let the algorithm determine the motion parameters for

FIG. 5. Recovery of underlying ground truth motion parameters in a 3D forward simulation with six DoFs starting from random initializations.
Solid line: underlying sinusoidal motion trajectory. Dotted line: the empirical mean over 100 recovered trajectories. Shaded gray: error
tube over 100 recovered trajectories capturing 95% of the probability mass (corresponds to ±2σ for Gaussian).
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FIG. 6. Motion correction of 2D RARE images. Freely moving human
subject. Left: motion corrupted image. Middle: reconstruction.
Right: no motion image. Top: low resolution. Bottom: high resolution
(matrix size N = 1024 × 640).

each view. The reconstructed result is of high quality com-
pared to the observed image, where the anatomical details
are almost fully occluded by ghosting artifacts. Addition-
ally, the bottom part of Figure 6 shows the reconstruction
of high resolution (matrix size N = 1024 × 640) RARE
image, for which the method is also capable of improving
the image quality.

We did additional experiments in 2D to test the multicoil
procedure as described in the methods section. The results
are shown in Figure 7, which compares the reconstruc-
tion using the data from each coil separately (middle) to
simultaneous treatment (right). The reconstruction quality
is slightly better if the coil data is motion corrected jointly.

Next, we present the reconstruction results on more chal-
lenging 3D volumes. To completely avoid the effects of non
rigid motion, we first imaged the monkey brain. In Figure 8,
we show the reconstruction results for 3D volume (matrix
size N = 384 × 192 × 16) acquired with FLASH sequence.
From left to right two-degraded/restored/nomotion slices
are shown. GradMC was able to find an almost artifact-free
solution.

Finally, we acquired 3D motion-affected volumes of the
brain of a freely moving human subject. The top rows of

Figure 9 show the results from the FLASH sequence (matrix
size N = 384×192×96), whereas the bottom rows display
images acquired with an MPRAGE sequence (matrix size
N = 304 × 192 × 94).

DISCUSSION

In recent years, most successful techniques have been
based on prospective motion correction (see Refs. (26–28)
for a comprehensive review). The obvious and very strong
advantage of our method (and retrospective methods in
general) is that it can be applied to any already acquired
dataset (subject to our model assumptions), and does not
require the use of any tracking equipment, or special imag-
ing sequences. By applying additional constraints, it may
also be extendable to handle non-rigid body motion, for
which prospective correction is highly challenging. Con-
versely, large rotations and motion of the object out of the
FOV lead to irreversible loss of information, which is prob-
lematic for retrospective methods, while prospective ones
are immune to such problems.

We have shown that gradient-based optimization is
an efficient way to uncover motion parameters from
motion-corrupted MRI scans and to reconstruct undis-
torted images, even though the optimization is challenging
due to nonlinearity, high dimensionality, and heavy com-
putational demand. In previous AF approaches, motion
parameters were obtained by application of trial transla-
tional/rotational displacements throughout the views in
k-space and calculation of the image quality metric to find
the best displacement for each view. Using complicated
heuristics to select and group views to be optimized, it is
possible to make the procedure quite fast, but at the cost of
complexity, accuracy and robustness of the algorithm. Deal-
ing with high-resolution 3D volumes such methods run
into all sorts of trouble due to the curse of dimensionality,
leading to an enormous combinatorial search.

When starting to develop our method, we faced two
major challenges: the first one was that our highly non-
convex image quality metric contains multiple local min-
ima. We addressed this problem by using a multiscale
algorithm to initialize the motion parameters on each scale
iteration to the vicinity of supposedly good local min-
ima found from the previous coarser scale. We exploited
that it is much easier to accurately determine the motion
parameters of low-frequency regions in k-space because of
higher signal power and less sensitivity to strong motion.
The second problem was computation time—an important
limitation for many retrospective motion correction meth-
ods. We developed a GPU version of GradMC based on a
highly parallel implementation of our forward model. For
volumes of realistic sizes, only a few minutes are needed
for the reconstruction. There is still room for improvement
with respect to computation time, as in the current imple-
mentation it is necessary to move the data to the memory
of the GPU and back for each function evaluation. We have
used cubic interpolation to do the gridding, which might
seem inferior to recent efficient gridding methods based
on Kaiser–Bessel convolution kernels or jincs (29,30). The
reason we are using cubic interpolation is that it can
be implemented simply and efficiently on GPUs. Better
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FIG. 7. Motion correction of data recorded by four coils. Monkey brain in fixation gel. Left: motion corrupted data. Middle: reconstruction
using the data from each coil separately. Right: reconstruction with simultaneous optimization of image metric over the data from all coils.

interpolation kernels would need specialized mathemat-
ical functions like Bessel functions either not available on
GPUs or quite slow to compute.

To test the stability of the reconstruction algorithm, we
used our forward model to generate motion corrupted
data. The ground truth motion trajectory had a sinusoidal
form, which conveniently allows controlling the strength
of motion (amplitude) and its time variation (frequency).
Doing a motion correction on this simulated data, we chal-
lenged the optimizer with random initializations of motion
parameters. With respect to image quality, there was always
a substantial improvement for all initializations. Compar-
ing recovered trajectories to ground truth, we observed that
the mismatch in motion parameters was small for low- and
mid-frequency views, and increasingly large towards high-
frequency views. We expected to see such a pattern which
is due to an inverse power law drop of the signal strength
from low- to high-frequencies. Additionally, the simulation
experiment showed that multiple differing motion trajec-
tories, when used to invert the motion, lead to similarly
good reconstruction with respect to both image metric and
visual quality. For 3D volumes, we also observed “cross-
talk” effects between different DoFs, most strongly distinct
between translational DoF in phase/slice encoding direc-
tions. This effect is most strongly observed if the data is
simulated with motion in some DoF only. On reconstruc-
tion of such data, recovered motion trajectories show non
zero motion in “silent” DoF. Thus, artifacts produced by
motion in one DoF can—up to a certain extent—be mim-
icked by motion in another DoF. The bottom line is that the
good match between the recovered trajectory and ground
truth, although being desirable is not always possible and
this is especially true for high-frequency views. It seems,
though, that the objective landscape has a nice property of
allowing for multiple local minima, which are also good in
terms of image quality.

The current major limitation of our method is the inabil-
ity to correct for motion involving strong rotations (angles
larger than 3◦). The visual quality of a reconstructed image

never gets worse than that of a degraded image, how-
ever, the stronger the rotation, the less improvement can
be achieved. For rotation angles larger than 10◦, the cor-
rected image looks essentially the same as the degraded
one. This limitation stems from the reduced form of our
objective, where instead of a data fidelity term (difference
between the observation and the forward model applied to
a motion-free estimate), we use an empirical inverse of the
observed motion. An exact empirical inversion is not possi-
ble since for strong rotations the amount of missing k-space
information is significant. Losses occur in high-frequency
corners, and in k-space holes that appear due to rotation of
neighbouring views against each other. The inversion-free
treatment of the problem capable of dealing with arbitrary
rotations involves only the forward model, taking the form
of alternations between the estimation of motion param-
eters and recovery of the sharp image. Both alternating
steps have the data fidelity and regularization terms. Reg-
ularization terms are to be based on prior knowledge of
the properties of motion parameters and the image. We
experimented with the outlined alternating procedure, but
experienced problems with convergence. An alternative to
empirical inversion in a final image reconstruction step
would be to use a proper mathematical inverse, i.e., com-
puted by conjugate gradients. In respective experiments,
we did not find the results obtained with a mathematical
inverse to be better in terms of accuracy compared to the
empirical inverse. The reason for this is that the objective
function used to estimate motion parameters has an empir-
ical inverse in its core resulting in inherently suboptimal
estimates of motion parameters. A related effect, also due
to an empirical inversion in the objective, is that the pose
of the object in the reconstructed image can be different
compared to the ground truth. Indeed, translating/rotating
the whole object does not influence the value of the quality
metric. We do not consider this to be a flaw of the method,
though.

A strong assumption we make is that the imaged object
behaves as a rigid body. Indeed, this is what allows us
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FIG. 8. Motion correction of 3D FLASH images. Monkey brain in fixation gel. Motion was induced by manually moving the probe in the
scanner by means of specialized device. Left: motion corrupted slices. Middle: reconstruction. Right: no motion image. Bottom: recov-
ered trajectories (from top to bottom—translations, then rotations). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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FIG. 9. Motion correction of 3D FLASH and MPRAGE images.
Freely moving human subject. Left: motion corrupted slices. Middle:
reconstruction. Right: no motion image.

to carry out fast multiplications with the matrix Aθ in
the Fourier domain. Slight deviations from non rigid-
ity are well-tolerated, however gross effects (e.g., due to
movement of the tongue during the acquisition) make an
artifact-free correction difficult, as we observed in a dedi-
cated experiment. We also assume that the input to GradMC
is the raw k-space data along with the order in which the
k-space was sampled. In a clinical setting, such data is
not always available, because often only magnitude images
are preserved. Since real data from the scanner often has
non uniform spatial phase, taking the modulus of complex-
valued pixels in the spatial domain results in distortions
of the motion structure in the Fourier domain. It does not
longer hold that the same motion affects all coefficients in
each k-space view. An interesting direction for future work
is to understand what clues about motion still survive in
magnitude images, with the hope of exploiting them for the
correction.

In our approach, we assume that the k-space is acquired
in a Cartesian line-by-line fashion. Extending our approach
to radial/spiral trajectories is straight forward—i.e., for
radial trajectories we expect our method to achieve higher
accuracy, since each k-space view will contain low-
frequency coefficients, which are crucial for estimation of
motion parameters.

We have shown how to extend our method to handle
data from multiple coils. To do the correction, we do not
require sensitivity profiles of coils, however, if sensitiv-
ity profiles are known, GradMC can be modified to make
many interesting correction scenarios possible. For exam-
ple, inverting the sensitivity mask by subtracting it from
the unity mask, and then penalizing intensities in the

inverted region, it is possible to estimate the motion and
correct for it. The underlying mechanism for this is that
high-intensity pixels in out-of-profile regions of coils likely
appear due to motion artifacts. Unfortunately, we cannot
simply extend our method to include parallel imaging,
because this would require a proper mathematical inverse
to estimate the motion parameters. This, however, would
mean that the analytical gradient is computationally out of
reach.

In summary, we presented a retrospective method capa-
ble of blind estimation and correction of motion. We
exploit the analytic formulation of our degradation model
to search for motion parameters in a high-dimensional
space being guided by the gradient of our cost function.
Numerous experiments substantiate the great potential of
the proposed method.

APPENDIX

Derivatives

In the following section, we show how to compute the
derivatives ∂φ(FHAθy)/∂θ ∈ R

N of an image quality met-
ric φ with respect to a parameter vector θ ∈ R

N . Here,
Aθ ∈ C

N×N is a parameterized matrix such that every
row [Aθ]i , i = 1 . . . N depends on a single scalar param-
eter θi only. Furthermore, y ∈ C

N is an arbitrary vector,
F ∈ C

N×N represents an arbitrary matrix and φ : C
N → R is

a continuously differentiable function.
We start off by computing the derivative ∂φ/∂u of our

entropy criterion φ(u) = −v� ln v, u ∈ C
N , v ∈ R

N+ from
Eq. [6] which turns out to be

∂φ

∂u
= v � p/ū − u

v�p
uHu

, v =
√

u � ū
uHu

where p := ∂φ/∂v = −(1 + ln v) is the derivative of the
objective with respect to v, sign(u)i = ui/|ui | for |ui | 	=
0 and 0 otherwise is the complex modulus and |u|i =
|ui | = √
[ui]2 + �[ui]2 is the absolute value. By noting
that limv→0 v log v = 0 for v ∈ R+, we see that φ(u) is
well-behaved for all values except for u = 0. In practice,
one can circumvent that situation by using the stabiliza-
tion vε = √

u � ū + ε21/
√

uHu + ε2, 0 < ε  1 such that
φε(u) = −v�

ε ln vε and φε(0) = 0. Similarly, the stabilized
derivative is given by

∂φε

∂u
= u � v � p/(u � ū + ε21) − u

v�
ε p

uHu + ε2

with the limit ∂φε(0)/∂u = 0. In our implementation, we did
not observe any trouble even when using ε = 0. The follow-
ing derivations do not depend on the particular functional
form of the vector ∂φ/∂u ∈ C

N .
Let us denote by A′

θ the matrix such that [ ∂
∂θi

Aθy]i =
[A′

θy]i i.e., A′
θ contains all the information needed for the

Jacobian ∂Aθy/∂θ� = dg(A′
θy), which is diagonal because

every row i depends on θi only, since the cross terms van-
ish. Now, let ∂φ(uθ)/∂uθ (where uθ = FHAθy) denote the
derivative of the objective function φ : C

N → R. By means
of the chain rule, we have

∂φ(uθ)
∂θ

= ∂u�
θ

∂θ

∂φ(uθ)
∂uθ

= 

[(

A′
θy

) �
(

F
∂φ(uθ)
∂uθ

)]
, [11]
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where 
[z] denotes the real part of the complex vector z.
For 2D images, we have one rotational and two transla-
tional parameters and for 3D images, we have both three
rotational and translational parameters for each time step,
so that we end up with either θ = [θx , θy , θα] ∈ R

T×3 or
θ = [θx , θy , θz , θa, θb, θc] ∈ R

T×6. In the following, we look
at the general case θ ∈ R

N×6, where the parameter vector is
expanded to the same size as the matrix by replicating the
single parameter per phase encode.

To compute (matrix vector multiplications with) A′ in
general, we need to take a closer look at how the MVM
Ay (we write A and A′

# where # ∈ {x, y , z, a, b, c} in the
following) is computed and how it depends on the motion
parameters. First of all, Ay can be decomposed into a trans-
lational part t = tx � ty � tz ∈ C

N by pointwise multiplica-
tion with a location specific phase shift and a rotational part
R ∈ R

N×N that is in fact a resampling matrix transforming
the Cartesian grid g ∈ R

N×3 into the (phase-encode-wise)
rotated grid k ∈ R

N×3, such that Ay = t�(Wy). In particular,
we have tx = exp(−2πikx � θx ), where the derivatives are
given by t′x = −2πiθx � tx . Rotated grid vectors ki ∈ R

3 are
obtained from the Cartesian grid vectors by a local rotation
Rigi as achieved by a rotation matrix Ri ∈ R

3×3, depending
on three rotation parameters ai , bi , ci from θi ∈ R

6. Further-
more, entries of the gridding matrix Wij are obtained by
application of a windowing function w : R → R (we use
cubic resampling windows for ease of GPU implementa-
tion) to the new k-space location kj and the old Cartesian

location gi , such that W ij = w (ki
x −gj

x )w (ki
y −gj

y )w (ki
z −gj

z).
Using the derivative of the window function w ′, we define
the matrix W′

a (and similarly W′
b and W′

c) containing the

derivatives [W′
a]ij = w ′(ki

x − gj
x )w (ki

y − gj
y )w (ki

z − gj
z). Also,

the derivative k′
# ∈ R

N×3 of the rotated k-space grid with
respect to rotation parameters # ∈ {a, b, c} can be writ-
ten as (ki

#)′ = (Ri
#)′gi , where gi is the Cartesian location

and (Ri
#)′ = ∂Ri

#/∂#i ∈ R
3×3 is the derivative of the rota-

tion matrix in with respect to the rotation parameters. We
use the axis-angle representation for the matrices R but
other representation such as Euler angles are possible, too.
Putting everything together, we obtain

A′
xy = (t′x � ty � tz) � (Wy), and

A′
ay = t �

∑
#∈{a,b,c}

(W′
#y) � k′

a.

Computationwise, matrix vector multiplications with A′
have a complexity of O(N ) each so that the derivatives with
respect to each of the six DoFs of the general 3D case can
be computed efficiently.
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