
Attribute-Based Classification for
Zero-Shot Visual Object Categorization

Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling

Abstract—We study the problem of object recognition for categories for which we have no training examples, a task also called

zero-data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently;

the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for

only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level

description that is phrased in terms of semantic attributes, such as the object’s color or shape. Because the identification of each such

property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from

existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation,

without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000

images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that

attribute-based classification indeed is able to categorize images without access to any training images of the target classes.

Index Terms—Object recognition, vision and scene understanding

Ç

1 INTRODUCTION

THE field of object recognition in natural images has made
tremendous progress over the last decade. For specific

object classes, in particular faces, pedestrians, and vehicles,
reliable and efficient detectors are available, based on the
combination of powerful low-level features, such as SIFT [1]
or HoG [2], with modern machine learning techniques, such
as support vector machines (SVMs) [3], [4] or boosting [5].
However, to achieve good classification accuracy, these
systems require a lot of manually labeled training data,
typically several thousand example images for each class to
be learned.

While building recognition systems this way is feasible
for categories of large common or commercial interest, one
cannot expect it to solve object recognition for all natural
categories. It has been estimated that humans distinguish
between approximately 30,000 basic object categories [6],
and many more subordinate ones, such as different breeds
of dogs or different car models [7]. It has even been argued
that there are infinitely many potentially relevant categor-
ization tasks because humans can create new categories on
the fly, for example, “things to bring to a camping trip” [8].
Training conventional object detectors for all these would
require millions or billions of well-labeled training images
and is likely out of reach for many years, if it is possible at

all. Therefore, numerous techniques for reducing the
number of necessary training images have been developed,
some of which we will discuss in Section 3. However, all of
these techniques still require at least some labeled training
examples to detect future object instances.

Human learning works differently: Although humans
can, of course, learn and generalize well from examples, they
are also capable of identifying completely new classes when
provided with a high-level description. For example, from
the phrase “eight-sided red traffic sign with white writing,” we
will be able to detect stop signs, and when looking for “large
gray animals with long trunks,” we will reliably identify
elephants. In this work, which extends our original publica-
tion [9], we build on this observation and propose a system
that is able to classify objects from a list of high-level
semantically meaningful properties that we call attributes.
The attributes serve as an intermediate layer in a classifier
cascade and they enable the system to recognize object
classes for which it had not seen a single training example.

Clearly, a large number of potential attributes exist and
collecting separate training material to learn an ordinary
classifier for each of them would be as tedious as doing so
for all object classes. Therefore, one of our main contribu-
tions in this work is to show how, instead of creating a
separate training set for each attribute, we can exploit the
fact that meaningful high-level concepts transcend class
boundaries. To learn such attributes, we can make use of
existing training data by merging images of several object
classes. To learn, for example, the attribute striped, we can
use images of zebras, bees, and tigers. For the attribute
yellow, zebras would not be included, but bees and tigers
would still prove useful, possibly together with canary
birds. It is this possibility to obtain knowledge about
attributes from different object classes and, vice versa, the
fact that each attribute can be used for the detection of many
object classes that makes our proposed learning method
statistically efficient.
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2 INFORMATION TRANSFER BY ATTRIBUTE SHARING

We begin by formalizing the problem and our intuition
from the previous section that the use of attributes allows us
to transfer information between object classes. We first
define the exact situation of our interest:

Learning with disjoint training and test classes. Let X be an
arbitrary feature space and let Y ¼ fy1; . . . ; yKg and Z ¼
fz1; . . . ; zLg be sets of object categories, also called classes. The
task of learning with disjoint training and test classes is to
construct a classifier f : X ! Z by making use of training
examples ðx1; l1Þ; . . . ; ðxn; lnÞ � X � Y even if Y \ Z ¼ ;.1

Fig. 2a illustrates graphically why this task cannot be
solved by ordinary multiclass classification: Standard
classifiers learn one parameter vector (or other representa-
tion) �k for each training class y1; . . . ; yK . Because the
classes z1; . . . ; zL are not present during the training step, no
parameter vector can be derived for them, and it is
impossible to make predictions about these classes for
future samples.

To make predictions about classes for which no training
data are available, one needs to introduce a coupling
between the classes in Y and Z. Since no training data for
the unobserved classes are available, this coupling cannot
be learned from samples, but it has to be inserted into the
system by human effort. Preferably, the amount of human
effort to specify new classes should be small because
otherwise collecting and labeling training samples might be
a simpler solution.

2.1 Attribute-Based Classification

We propose a solution for learning with disjoint training
and test classes by introducing a small set of high-level
semantic attributes that can be specified either on a per-
class or on a per-image level. While we currently have no
formal definition of what should count as an attribute, in
the rest of the manuscript, we rely on the following
characterization.

Attributes. We call a property of an object an attribute, if a
human has the ability to decide whether the property is present
or not for a certain object.2

Attributes are typically nameable properties, for exam-
ple, the color of an object, or the presence or absence of a
certain body part. Note that the definition allows properties
that are not directly visible but related to visual informa-
tion, such as an animal’s natural habitat. Fig. 1 shows
examples of classes and attributes.

An important distinction between attributes and arbi-
trary features is the aspect of semantics: Humans associate a
meaning with a given attribute name. This allows them to
create annotation directly in form of attribute values, which
can then be used by the computer. Ordinary image features,
on the other hand, are typically computable, but they lack
the human interpretability.

It is possible to assign attributes on a per-image basis, or
on a per-class basis. The latter is particularly helpful, since it
allows the creation of attribute annotation for a new classes
with minimal effort. To make use of such attribute
annotation, we propose attribute-based classification.

Attribute-based classification. Assume the situation of
learning with disjoint training and test classes. If for each
class z 2 Z and y 2 Y, an attribute representation az; ay 2 A
is available, then we can learn a nontrivial classifier � : X !
Z by transferring information between Y and Z through A.

In the rest of this paper, we will demonstrate that
attribute-based classification indeed offers a solution to the
problem of learning with disjoint training and test classes, and
how it can be practically used for object classification. For
this, we introduce and compare two generic methods to
integrate attributes into multiclass classification.

Direct attribute prediction (DAP), illustrated in Fig. 2b,
uses an in-between layer of attribute variables to decouple
the images from the layer of labels. During training, the
output class label of each sample induces a deterministic
labeling of the attribute layer. Consequently, any super-
vised learning method can be used to learn per-attribute
parameters �m. At test time, these allow the prediction of
attribute values for each test sample, from which the test
class labels are inferred. Note that the classes during testing
can differ from the classes used for training, as long as the
coupling attribute layer is determined in a way that does
not require a training phase.

Indirect attribute prediction (IAP), depicted in Fig. 2c, also
uses the attributes to transfer knowledge between classes,
but the attributes form a connecting layer between two
layers of labels: one for classes that are known at training
time and one for classes that are not. The training phase of
IAP consists of learning a classifier for each training class, as
it would be the case in ordinary multiclass classification. At
test time, the predictions for all training classes induce a
labeling of the attribute layer, from which a labeling over
the test classes is inferred.
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Fig. 1. Examples from the Animals with Attributes: object classes with
per-class attribute annotation.

1. It is not necessary for Y and Z to be disjoint for the problems described
to occur, Z 6� Y is sufficient. However, for the sake of clarity, we only treat
the case of disjoint class sets in this work.

2. In this manuscript, we only consider binary-valued attributes. More
general forms of attributes have already appeared in the literature; see
Section 3.



The major difference between both approaches lies in
the relationship between training classes and test classes.
Directly learning the attributes results in a network where
all classes are treated equally. When class labels are
inferred at test time, the decision for all classes is based
only on the attribute layer. We can expect it, therefore, to
also handle the situation where training and test classes
are not disjoint. In contrast, when predicting the attribute
values indirectly, the training classes occur also at test time
as an intermediate feature layer. On the one hand, this can
introduce a bias, if training classes are also potential
output classes during testing. On the other hand, one can
argue that deriving the attribute layer from the label layer
instead of from the samples will act as a regularization
step that creates only sensible attribute combinations and,
therefore, makes the system more robust. In the following,
we will develop realizations for both methods and bench-
mark their performance.

2.2 A Probabilistic Realization

Both classification methods, DAP and IAP, are essentially
metastrategies that can be realized by combining existing
learning tools: a supervised classifier or regressor for the
image-attribute or image-class prediction with a parameter-
free inference method to channel the information through
the attribute layer. In the following, we use a probabilistic
model that reflects the graphical structures in Figs. 2b and
2c. For simplicity, we assume that all attributes have binary
values such that the attribute representation a ¼ ða1; . . . ;
aMÞ for any class are fixed-length binary vectors. Contin-
uous attributes can, in principle, be handled in the same
way by using regression instead of classification. A
generalization to relative attributes [10] or variable length
descriptions should also be possible, but lies beyond the
scope of this paper.

2.2.1 Direct Attribute Prediction

For DAP, we start by learning probabilistic classifiers for
each attribute am. As training samples, we can use
all images from all training classes, as labels, we use either

per-image attribute annotations, if available, or we infer the

labels from the entry of the attribute vector corresponding

to the sample’s label, i.e., all samples of class y have the

binary label aym. The trained classifiers provide us with

estimates of pðam j xÞ, from which we form a model for the

complete image-attribute layer as pða j xÞ ¼
QM

m¼1 pðam j xÞ.
At test time, we assume that every class z induces its

attribute vector az in a deterministic way, i.e., pða j zÞ ¼
½½a ¼ az��, where we have made use of Iverson’s bracket

notation [11]: ½½P �� ¼ 1 if the condition P is true and it is 0

otherwise. By applying Bayes’ rule, we obtain pðz j aÞ ¼
pðzÞ
pðazÞ ½½a ¼ az�� as the representation of the attribute-class layer.

Combining both layers, we can calculate the posterior of a

test class given an image:

pðz j xÞ ¼
X

a2f0;1gM
pðz j aÞpða j xÞ ¼ pðzÞ

pðazÞ
YM

m¼1

p
�
azm j x

�
: ð1Þ

In the absence of more specific knowledge, we assume

identical test class priors, which allows us to ignore the

factor pðzÞ in the following. For the factor pðaÞ, we assume

a factorial distribution pðaÞ ¼
QM

m¼1 pðamÞ, using the em-

pirical means pðamÞ ¼ 1
K

PK
k¼1 a

yk
m over the training classes

as attribute priors.3 As decision rule f : X ! Z that assigns

the best output class from all test classes z1; . . . ; zL to a test

sample x, we then use MAP prediction:

fðxÞ ¼ argmax
l¼1;...;L

pðz ¼ l j xÞ ¼ argmax
l¼1;...;L

YM

m¼1

p
�
azlm j x

�

p
�
azlm
� : ð2Þ

2.2.2 Indirect Attribute Prediction

To realize IAP, we only modify the image-attribute stage: As a

first step, we learn a probabilistic multiclass classifier

estimating pðyk j xÞ for each training classes yk, k ¼ 1; . . . ; K.

As for DAP, we assume a deterministic dependence between
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3. In practice, the prior pðaÞ is not crucial to the procedure and
setting pðamÞ ¼ 1

2 yields comparable results.

Fig. 2. Graphical representation of the proposed across-class learning task: Dark gray nodes are always observed; light gray nodes are observed
only during training. White nodes are never observed but must be inferred. An ordinary, flat, multiclass classifier (left) learns one parameter set �k for
each training class. It cannot generalize to classes ðzlÞl¼1;...;L that are not part of the training set. In an attribute-based classifier (middle) with fixed
class-attribute relations (thick lines), training labels ðykÞk¼1;...;K imply training values for the attributes ðamÞm¼1;...;M , from which parameters �m are
learned. At test time, attribute values can directly be inferred, and these imply output class label even for previously unseen classes. A multiclass-
based attribute classifier (right) combines both ideas: Multiclass parameters �k are learned for each training class. At test time, the posterior
distribution of the training class labels induces a distribution over the labels of unseen classes by means of the class-attribute relationship.



attributes and classes, setting pðam j yÞ ¼ ½½am ¼ aym��. The
combination of both steps yields

pðam j xÞ ¼
XK

k¼1

pðam j ykÞpðyk j xÞ; ð3Þ

so in comparison to DAP, we only perform an additional
matrix-vector multiplication after evaluating the classifiers.
With the estimate of pða j xÞ obtained from (3) we proceed
in the same way as in for DAP, i.e., we classify test samples
using (2).

3 RELATED WORK

Multilayer or cascaded classifiers have a long tradition in
pattern recognition and computer vision: multilayer percep-
trons [12], decision trees [13], mixtures of experts [14], and
boosting [15] are prominent examples of classification
systems built as feed-forward architectures with several
stages. Multiclass classifiers are also often constructed as
layers of binary decisions from which the final output is
inferred, for example, [16], [17]. These methods differ in
their training methodologies, but they share the goal of
decomposing a difficult classification problem into a
collection of simpler ones. However, their emphasis lies
on the classification performance in a fully supervised
scenario, so the methods are not capable of generalizing
across class boundaries.

Especially in the area of computer vision, multilayered
classification systems have been constructed, in which
intermediate layers have interpretable properties: Artificial
neural networks or deep belief networks have been shown to
learn interpretable filters, but these are typically restricted
to low-level properties, such as edge and corner detectors
[18]. Popular local feature descriptors, such as SIFT [1] or
HoG [2], can be seen as hand-crafted stages in a feed-
forward architecture that transform an image from the pixel
domain into a representation invariant to noninformative
image variations. Similarly, image segmentation has been
formulated as an unsupervised method to extract contours
that are discriminative for object classes [19]. Such pre-
processing steps are generic in the sense that they still allow
the subsequent detection of arbitrary object classes. How-
ever, the basic elements, local image descriptors or
segments shapes, alone are not reliable enough indicators
of generic visual object classes, unless they are used as input
to a subsequent statistical learning step.

On a higher level of abstraction, pictorial structures [20],
the constellation model [21], and recent discriminatively trained
deformable part models [22] are examples of the many
methods that recognize objects in images by detecting
discriminative parts. In principle, humans can give descrip-
tions of object classes in terms of such parts, for example,
arms or wheels. However, it is a difficult problem to build a
system that learns to detect exactly the parts described.
Instead, the above methods identify parts in an unsuper-
vised way during training, which often reduces the parts to
reproducible patterns of local feature points, not to units
with a semantic meaning. In general, parts learned this way
do not generalize across class boundaries.

3.1 Sharing Information between Classes

The aspect of sharing information between classes has
attracted the attention of many researchers. A common idea
is to construct multiclass classifiers in a cascaded way. By
making similar classes share large parts of their decision
paths, fewer classification functions need to be learned,
thereby increasing the system’s prediction speed [23].
Similarly, one can reduce the number of feature calculations
by actively selecting low-level features that help discrimi-
nation for many classes simultaneously [24]. Combinations
of both approaches are also possible [25].

In contrast, interclass transfer does not aim at higher
speed, but at better generalization performance, typically
for object classes with only few available training
instances. From known object classes, one infers prior
distributions over the expected intraclass variance in terms
of distortions [26] or shapes and appearances [27].
Alternatively, features that are known to be discriminative
for some classes can be reused and adapted to support the
detection of new classes [28]. To our knowledge, no
previous approach allows the direct incorporation of
human prior knowledge. Also, all above methods require
at least some training examples of the target classes and
cannot handle completely new objects.

A notable exception is [29] that, like DAP and IAP, aims at
classification with disjoint train and test set. It assumes that
each class has a description vector, which can be used to
transfer between classes. However, because these descrip-
tion vectors do not necessarily have a semantic meaning,
they cannot be obtained from human prior knowledge.
Instead, an additional data source is needed to create them,
for example, data samples in a different representation.

3.2 Predicting Semantic Attributes

A second relevant line of related work is the prediction of
high-level semantic attributes for images. Prior work in the
area of computer vision has mainly studied elementary
properties, such as colors and geometric patterns [30], [31],
[32], achieving high accuracy by developing task-specific
features and representations. In the field of multimedia
retrieval, similar tasks occur. For example, the TRECVID
contest [33] contains a task of high-level feature extraction,
which consists of predicting semantic concepts, in particular
scene types, for example, outdoor, urban, and high-level
actions, for example, sports. It has been shown that by
combining searches for several such attributes, one can
build more powerful retrieval database mechanisms, for
example, of faces [34], [35].

Instead of relying on manually defined attributes, it has
recently been proposed to identify attributes automatically.
Parikh and Grauman [36] introduced a semiautomatic
technique for this that combines classifier outputs with
human feedback. Sharmanska et al. [37] propose an
unsupervised technique for augmenting existing attribute
representations with additional nonsemantic binary fea-
tures to make them more discriminative. It has also been
shown that new attributes can be found by text mining [38],
[39], [40], and that object classes themselves can act as
attributes for other tasks [41]. Berg et al. [40] showed that
instead of predicting only the presence or absence of an
attribute, their occurrence can also be localized within the
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image. Other alternative models for predicting attributes
from images include conditional random fields [42], and
probabilistic topic models [43]. Scheirer et al. [44] intro-
duced an alternative technique for turning the output of
attribute classifiers into probability estimates based on
extremal value theory. The concept that attributes are
properties of single images has also been generalized:

Parikh and Grauman [10] introduced relative attributes,
which encode a comparison between two images instead of
specifying an absolute property, for example, is larger than,
instead of is large.

3.3 Other Uses of Semantic Attributes

In parallel to our original work [9], Farhadi et al. [45]
introduced the concept of predicting high-level semantic
attributes of objects with the objective of being able to
describe objects, even if their class membership is unknown.

Numerous follow-up papers have explored even more
applications of attributes in computer vision tasks, for
example, for scene classification [46], face verification [35],
action recognition [47], and surveillance [48]. Rohrbach
et al. [49] performed an in-depth analysis of attribute-based

classification for transfer learning. Kulkarni et al. [50] used
attribute predictions in combination with object detection
and techniques from natural language processing to
automatically create descriptions of images in natural
language of images. Attributes have also been suggested
as feedback mechanisms to improve image retrieval [51]
and categorization [52].

3.4 Related Work Outside of Computer Science

In comparison to computer science, cognitive science

research started much earlier to study the relations between
object recognition and attributes. Typical questions in the
field are how human judgements are influenced by
characteristic object attributes [53], [54], and how the
human performance in object detection tasks depends on

the presence or absence of object properties and contextual
cues [55]. Since one of our goals is to integrate human
knowledge into a computer vision task, we would like to
benefit from the prior work in this field, at least as a source
of high-quality data that, so far, cannot be obtained by an
automatic process. In the following section, we describe a
data set of animal images that allows us to leverage
established class-attribute association data from the cogni-
tive science research community.

4 THE ANIMALS WITH ATTRIBUTES (AwA)
DATA SET

In the early 1990s, Osherson et al. [56] collected judgements
from human subjects on the “relative strength of association”
between 85 semantic attributes and 48 mammals. Kemp
et al. [57] later added two more classes and their attributes
for a total of 50� 85 class-attribute associations.4 The full
list of classes and attributes can be found in Tables 1 and 2.
Besides the original continuous-valued matrix, also a binary
version was created by thresholding the original matrix at
its overall mean value; see Fig. 3 for excerpts from both
matrices. Note that because of the data collection process,
the data are not completely error free. For example, contrary
to what is specified in the binary matrix, panda bears do not
have buck teeth, and walruses do have tails.

Our goal in creating the Animals with Attributes data set5

was to make this attribute-matrix accessible for computer
vision experiments. We collected images by querying the
image search engines of Google, Microsoft, Yahoo, and Flickr
for each of the 50 animals classes. We manually removed
outliers and duplicates as well as images in which the target
animals were not in prominent enough view to be
recognizable. The remaining image set has 30,475 images,
where the minimum number of images for any class is
92 (mole) and the maximum is 1,168 (collie). Fig. 1 shows
exemplary images and their attribute annotation.

To facilitate use by researchers from outside of computer
vision, and to increase the reproducibility of results, we
provide precomputed feature vectors for all images of the
data set. The representations were chosen to reflect different
aspects of the images (color, texture, shape), and to allow
easy use with off-the-shelf classifiers: HSV color histograms,
SIFT [1], rgSIFT [58], PHOG [59], SURF [60], and local self-
similarity histograms [61]. The color histograms and PHOG
feature vectors are extracted separately for all 21 cells of a
three-level spatial pyramids (1�1, 2�2, 4�4). For each cell,
128-dimensional color histograms are extracted and con-
catenated to form a 2,688-dimensional feature vector. For
PHOG, the same pyramid is used, but with 12-dimensional
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TABLE 1
Animal Classes of the Animals with Attributes Data Set

The 40 classes of the first four columns are used for training, the 10
classes of the last column (in italics) are the test classes.

TABLE 2
Eighty-Five Semantic Attributes of the

Animals with Attributes Data Set in Short Form

Longer forms given to human subject for annotation were complete
phrases, such as has flippers, eats plankton, or lives in water.

4. http://www.psy.cmu.edu/�ckemp/code/irm.html.
5. http://www.ist.ac.at/~chl/AwA/.



base histograms in each cell. The other feature vectors each
are bag-of-visual-words histograms obtained from quantizing
the original descriptors with 2,000-element codebooks that
were obtained by k-means clustering on 250,000 element
subsets of the descriptors.

We define a fixed split of the data set into 40 classes
(24,295 images) to be used for training, and 10 classes
(6,180 images) to be used for testing; see Table 1. This split
was not done randomly, but much of the diversity of the
animals in the data set (water/land-based, wild/domestic,
etc.) is reflected in the training as well as in the test set of
classes. The assignments were based only on the class
names and before any experiments were performed, so in
particular, the split was not designed for best zero-shot
classification performance. Random train-test splits of
similar characteristics can be created by fivefold cross
validation (CV) over the classes.

5 OTHER DATA SETS FOR ATTRIBUTE-BASED

CLASSIFICATION

Besides the Animals with Attributes data set, we also
perform experiments on two other data sets of natural
images for which attribute annotations have been released.
We briefly summarize their characteristics here. An over-
view is also provided in Table 3.

5.1 aPascal-aYahoo

The aPascal-aYahoo data set6 was introduced by Farhadi
et al. [45]. It consists of a 12,695-image subset of the
PASCAL VOC 2008 data set7 and 2,644 images that were
collected using the Yahoo image search engine. The
PASCAL part serves as training data, and the Yahoo part
as test data. Both sets have disjoint classes (20 classes for
PASCAL, 12 for Yahoo), so learning with disjoint training
and test classes is unavoidable. Attribute annotation is
available on the image level: Each image has been
annotated with 64 binary attribute that characterize shape,
material, and the presence of important parts of the visible
object. As image representation, we rely on the precom-
puted color, texture, edge orientation, and HoG features
that the authors of [45] extracted from the objects’ bounding
boxes (as provided by the PASCAL VOC annotation) and
released as part of the data set.

5.2 SUN Attributes

The SUN Attributes8 data set was introduced by Patterson

and Hays [46]. It is a subset of the SUN Database [62] for

fine-grained scene categorization and consists of 14,340

images from 717 classes (20 images per class). Each image is

annotated with 102 binary attributes that describe the

scenes’ material and surface properties as well as lighting

conditions, functions, affordances, and general image

layout. For our experiments, we rely on the feature vectors

that are provided by the authors of [46] as part of the data

set. These consists of GIST, HOG, self-similarity, and

geometric color histograms.

6 EXPERIMENTAL EVALUATION

In this section, we perform an experimental evaluation of

the DAP and the IAP model on the Animals with Attributes

data set as well as the other data sets described above.
Since our goal is the categorization of classes for which

no training samples are available, we always use training

and test set with disjoint class structure.
For DAP, we train one nonlinear support vector machine

for each binary attributes, a1; . . . ; aM . In each case, we use

90 percent of the images of the training classes for training,

with binary labels for the attribute, which are either

obtained from the class-attribute matrix by assigning each

image the attribute value of its class, or by per-image

attribute annotation, where available. We use the remaining

10 percent of training images to estimate the parameters of a

sigmoid curve for Platt scaling, to convert the SVM outputs

into probability estimates [63].
At test time, we apply the trained SVMs with Platt

scaling to each test image and make test class predictions

using (2).
For IAP, we train one-versus-rest SVMs for each training

class, again using a 90/10 percent split for training of the

decision functions, and of the sigmoid coefficients for Platt

scaling. At test time, we predict a vector of class

probabilities for each test image. We L1-normalize this

vector such that we can interpret it as a posterior

distribution over the training classes. We then use (3) to

predict attribute values, from which we obtain test class

predictions by (2) as above.
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6. http://vision.cs.uiuc.edu/attributes/.
7. http://www.pascal-network.org/challenges/VOC/. 8. http://cs.brown.edu/~gen/sunattributes.html.

Fig. 3. Real-valued (left) and binary-valued (right) class-attribute matrices of the Animals with Attributes data set. Shown are 13� 33 excerpts of the
complete 50� 85 matrices.



6.1 SVM Kernels and Model Selection

To achieve optimal performance of the SVM classifiers, we

use established kernel functions and perform thorough

model selection. All SVMs are trained with linearly combined

�2-kernels: For any D-dimensional feature vectors, hðxÞ 2
IRD and hð�xÞ 2 IRD, of images x and �x, we set kðx; �xÞ ¼
expð���2ðhðxÞ; hð�xÞÞÞwith �2ðh; �hÞ ¼

PD
i¼1
ðhi� �hiÞ2
hiþ �hi

. For DAP,

the bandwidth parameter � is selected in the following way:

For each attribute, we perform fivefold cross validation,

computing the receiver operating characteristic (ROC) curve

of each predictor and averaging the areas under the curves

(AUCs) over the attributes. The result is a single mean

attrAUC score for any value of the bandwidth. We perform

this estimation for �� ¼ c� 2 f0:01; 0:03; 0:1; 0:3; 1; 3; 10g,
where c ¼ 1

n2

Pn
i;j¼1 �

2ðhðxiÞ; hðxjÞÞ, i.e., we parameterize �

relative to the average �2-distance of all points in the training

set. �� ¼ 3 was consistently found as best value.
Given L different feature functions, h1; . . . ; hK , we obtain

L kernel functions k1; . . . ; kL, and we use their unnormalized
sum as the final SVM kernel, kðx; �xÞ ¼

PL
l¼1 klðx; �xÞ. Once we

fixed the kernel, we identify the SVMs C parameter among
the values f0:01; 0:03; 0:1; . . . ; 30; 100; 3;000; 1;000g in an
analogous procedure. We perform fivefold cross validation
for each attribute, and we pick C that achieves the highest
mean attrAUC. Note that we use the same C values for all
attribute classifiers. Technically, this would not be necessary,
but we prefer it to avoid large scaling differences between
the SVM outputs of different attribute predictors. Also, one
can expect the optimalC values to not vary strongly between
different attributes, because all classifiers use the same
kernel matrix and differ only in their label annotation.

For IAP, we use the same kernel as for DAP and
determine C using fivefold cross validation similar to the
procedure one described above, except that we use the
mean area under the ROC curve of class predictions (mean
classAUC) as selection criterion.

6.2 Results

We use the above-described procedures to train DAP and
IAP models for all data sets. For DAP, where applicable, we
use both per-image or per-class annotation to find out
whether the time-consuming per-image annotation is
necessary. For the data set with per-image attribute
annotation, we create class-attribute matrices by averaging
all attribute vectors of each class and thresholding the
resulting real-valued matrix at its global mean value.
Besides experiments with fixed train/test splits of classes,

we also perform experiments with random class split using
fivefold cross validation for Animals with Attributes (i.e., 40
training classes, 10 test classes), and 10-fold cross validation
for SUN Attributes (approximately 637� 1 classes for
training and 70� 1 classes for testing). We measure the
quality of the prediction steps in terms of normalized
multiclass accuracy (MC acc.) on the test set (the mean of
the diagonal of the confusion matrix). We also report areas
under the ROC curve for each test class z and attribute a,
when their posterior probabilities pðz j xÞ and pða j xÞ,
respectively, are treated as ranking measures over all test
images.

In the following, we show detailed results for Animals
with Attributes and summaries of the results for the other
data sets.

6.2.1 Results—Animals with Attributes

The Animals with Attributes data set comes only with per-
class annotation, so there are two models to compare: per-
class DAP and per-class IAP. Fig. 4 shows the resulting
confusion matrices for both methods. The class-normalized
multiclass accuracy can be read off from the mean value of
the diagonal as 41.4 percent for DAP and 42.2 percent for
IAP. While the results are not as high as a supervised
method could achieve, it nevertheless clearly proves our
original claim about attribute-based classification: By shar-
ing information via an attribute layer, it is possible to classify
images of classes for which we had no training examples. As a
baseline, we compare against a zero-shot classifier, where
for each test class, we identify the most similar training
class and predict using a classifier for it trained on all
training data. We use two different methods to define the
similarity between the classes’ attribute representations:
Hamming distance or cross correlation. As it turns out, both
variants make almost identical decisions, resulting in
multiclass accuracies of 30.7 and 30.8 percent. This is
clearly better than chance performance, but below the
results of DAP and IAP.

Using random class splits instead of the predefined one,
we obtain slightly lower multiclass accuracies of 34.8/44.8/
34.7/35.1/36.3 percent (average 37.1 percent) for DAP, and
33.4/42.8/27.3/31.9/35.3 percent (average 34.1 percent) for
IAP. Again, the baselines achieve clearly lower results:
32.4/31.9/28.1/25.3/20.9 percent (average 27.7 percent) for
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TABLE 3
Characteristics of Data Sets with Attribute Annotation:

Animals with Attributes [9], aPascal/aYahoo (aP/aY) [45],
SUN Attributes (SUN) [46]

Fig. 4. Confusion matrices between 10 test classes of the Animals with
Attributes data set. Left: Indirect attribute prediction. Right: Direct
attributes prediction.



the cross-correlation version, and 33.0/29.0/28.4/25.3/
20.9 percent (average 27.3 percent) for the version based
on Hamming distance.

The quantitative results for all method are summarized
in Table 4. One can see that the differences between the two
approaches, DAP and IAP, are relatively small. One might
see a slight overall advantage for DAP, but as the large
variance between class splits is rather high, this could also
be explained by random fluctuations. To avoid redundancy,
we give detailed results only for the DAP model in the rest
of this section.

Another measure of prediction performance besides
multiclass accuracy is how well the predicted posterior
probability of any of the test classes can be used to retrieve
images of this class from the set of all test images. We
evaluate this by plotting the corresponding ROC curves in
Fig. 5 and report their AUC. One can see that for all classes,
reasonable classifiers have been learned with AUCs clearly
higher than the chance level 0.5. With an AUC of 0.99, the

performance for humpback whale is even on par of what we
can expect to achieve with fully supervised learning
techniques. Fig. 6 shows the five images with highest
posterior score for each test class, therefore allowing to
judge the quality of a hypothetical image retrieval system
based on (1). One can see that the rankings for humpback

whales, leopards, and hippopotamuses are very reliable.
Confusions that occur are typically between animals classes
with similar characteristics, such as a whale mistaken for a
seal, or a racoon mistaken for a rat.

Because all classifiers base their decisions on the same
learned attribute classifiers, one can presume that the easier
classes are characterized either by more distinctive attribute
vectors or by attributes that are easier to learn from visual
data. We believe that the first explanation is not correct,
since the matrix of pairwise distances between attribute
vectors does not resemble the confusion matrices in Table 4.

We, therefore, analyze the quality of the individual
attribute predictors in more detail. Fig. 7 summarizes their
quality in terms of the area under the ROC curve

460 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 3, MARCH 2014

TABLE 4
Numeric Results on the Animals with Attributes Data Set

in Percent: Multiclass Accuracy for DAP, IAP,
Class-Transfer Classifier Using Cross Correlation (CT-cc)

or Hamming Distance (CT-H) of Class Attributes,
and Chance Performance (rnd)

Fig. 5. Retrieval performance of attribute-based classification (DAP
method): ROC curves and area under curve for the 10 Animals with
Attributes test classes.

Fig. 6. Highest ranking results for each test class in the Animals with Attributes data set. Classes with unique characteristics are identified well, for
example, humpback whales and leopards. Confusions occur between visually similar categories, for example, pigs and hippopotamuses.



(attrAUC). Missing entries indicate that all images in the
test set coincided in their value for this attribute, so no
ROC curve can be computed. Fig. 8 shows, for a selection
of attributes, the five images of highest posterior score
within the test set.

On average, attributes can be predicted clearly better
than random (the average AUC is 72.4 percent, whereas
random prediction would have 50 percent). However, the
variance within the predictions is large, ranging from near
perfect prediction, for example, for is yellow and eats
plankton, to essentially random performance, for example,
on has buckteeth or is timid. Contrary to what one might
expect, attributes that refer to visual properties are not
automatically predicted more accurately than others. For
example, is blue is identified reliably, but is brown is not.
Overall good performance is also achieved on several
attributes that describe body parts, such as has paws, or the
natural habitat lives in trees, and even on nonvisual
properties like, such as, is smelly. There are two explana-
tions for this effect: On the one hand, attributes that are
clearly visual, such as colors, can still be hard to predict

from a global image representation because they typically
reflect information that is localized within only the object
region. On the other hand, nonvisual attributes can often
still be predicted from image information because they
occur correlated with visual properties, for example,
characteristic texture. It is known that the integration of
such contextual information can improve the accuracy of
visual classifiers, for example, road regions helps the
detection of cars. However, it remains to be seen if this
effect will be sufficient for purely nonvisual attributes, or
whether it would be better in the long run to replace
nonvisual attributes by the visual counterparts they are
correlated with.

Another interesting observation is that the system
learned to correctly predict attributes such as is big and is
small, which are ultimately defined only by context. While
this is desirable in our setup, where the context is
consistent, it also suggests that the learned attribute
predictors themselves are context dependent and cannot
be expected to generalize to object classes very different
from the training classes.
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Fig. 7. Quality of individual attribute predictors (trained on train classes, tested on test classes), as measured by the area under the ROC curve.
Attributes without entries have constant values for all test classes, so their ROC curve cannot be computed.

Fig. 8. Highest ranking results for a selection of attribute predictors (see Section 6.2) learned by DAP on the Animals with Attributes data set.



6.2.2 Results—Other Data Sets

We performed the same evaluation as for the Animals with
Attributes data set also for the other data sets. Since these
data sets have per-image attribute annotation in addition to
per-class attribute annotation, we obtain results for two
variants of DAP: trained with per-image labels and trained
with per-class labels. In both cases, test time inference is
done with per-class labels, since we still assume that no
examples of the test classes are available. As additional
baseline, we use the class transferred classifier as in
Section 6.2.1. Since both variants perform almost identically,
we report only results for the one based on Hamming
distance. The results are summarized in Tables 5a and 5b.

For the SUN data set, we measure the classification
performance based on the three-level SUN hierarchy
suggested in [62]. At test time, the ground truth label and
the predicted class label each corresponds to one path in the
hierarchy (or multiple paths, since the hierarchy is not a tree,
but a directed acyclic graph). A prediction is considered
correct at a certain level, if both paths run through a common
node in that level. At the third level, each class is a separate
leaf, so level-3 accuracy is identical to the unnormalized
multiclass accuracy, which coincides with the diagonal of
the confusion matrix in this case, since all classes have the
same number of images. However, at levels 1 and 2,
semantically similar classes are mapped to the same node,
and confusions between these classes are, therefore, dis-
regarded. Note that the values obtained for the SUN data set
are not directly comparable to earlier supervised work using
these data. Because we split the data into disjoint train
(90 percent) and test classes (10 percent), fewer classes of the
data set are present at test time.

The results for both data sets confirm our observations
from the Animals with Attributes data set. DAP (both
variants) as well as IAP achieves far better than random
performance in terms of multiclass accuracy, mean per-class
AUC, and mean per-attribute AUC, and also better than the
Hamming distance-based baseline classifier.

A more surprising observation is that per-image
attribute annotation, as it is available for the aPascal
and SUN Attributes data sets, does not improve the
prediction accuracy compared to the per-class annotation,
which is much easier to create. We currently do not have

a definite explanation for this. However, two additional
observations suggest that the reason might be a bias-
variance effect: First, per-image attribute annotation does
not follow class boundaries, so its mutual information of
the ground truth attribute annotation with the class labels
is lower than for per-class annotation (see Table 6).
Second, the visual learning tasks defined by per-image
annotation do not seem easier learnable than the per-class
counterparts, as indicated by the reduced mean attribute
AUC in Tables 4, 5a, and 5b. Likely this is because per-
class annotation is correlated with many other visual
properties in the images and therefore often easy to
predict, whereas per-image annotation singles out the
actual attribute in question.

In combination, we expect the per-image annotation to
lead to less bias in the training problem, therefore having
the potential for better attribute classifiers given enough
data. However, because of the harder learning problem,
the resulting classifiers have higher variance when trained
on a fixed amount of data. We take the results as a sign
that the second effect is currently the dominant source of
errors. We plan to explore this hypothesis in future work
by studying the learning curves of attribute learning with
per-class and per-image annotation for varying amounts of
training data.

There is also a second, more empirical, explanation:
Per-class training of attribute classifiers resembles recent
work on discriminatively learned image representations,
such as classemes [64]. These have been found to work
well for image categorization tasks, even for categories
that are not part of the classemes set. A similar effect
might hold for per-class trained attribute representations:
Even if their interpretation as semantic image properties
is not as straightforward as for classifiers trained with
per-image annotation, they might simply lead to a good
image representation.

6.2.3 Comparison to the Supervised Setup

Besides the relative comparison of the different methods to
each other, we also try to highlight how DAP and IAP
perform on an absolute scale. We, therefore, compare our
method to ordinary multiclass classification with a small
number of training examples. For each test class, we
randomly pick a fixed number of training examples and
use them to train a one-versus-rest multiclass SVM, which
we evaluate using the remaining images of the test classes.
The kernel function and parameters are the same as for the
IAP model. Fig. 7 summarizes the results in form of the
mean over 10 such splits. For an easier comparison, we also
repeat the range of values that zero-shot with DAP or IAP
achieved (see Tables 4, 5a, and 5b).

By comparing the last column to the others, one sees that
on the Animals with Attributes data set, attribute-based
classification achieves results on par with supervised
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TABLE 5
Numeric Results on the aPascal/aYahoo and the SUN Attributes
Data Sets in Percent: DAP with Per-Image Annotation (DAP-I),
DAP with Per-Class Annotation (DAP-C), IAP, Class-Transfer

Classifier (CT-H), and Chance Performance (rnd)

TABLE 6
Mean Mutual Information between Individual Attributes

and Class Labels with Per-Class or Per-Image Annotation



training with 10-15 training examples per test class, i.e., 100-
150 training images in total. On the aPascal, the attribute
representations perform worse. Their results are compar-
able to supervised training with at most one example per
class, if judged by multiclass accuracy, and two to three
examples per class, if judged by mean classAUC. On the
SUN data set, approximately two examples per class (142
total) are necessary for equal mean class accuracy, and 5-10
examples per class (355 to 710 total) for equal mean AUC.
Note, however, that all the above comparisons may over-
estimate the power of the supervised classifiers: In a
realistic setup with so few training examples, model
selection is problematic, whereas to create Table 7, we just
reused the parameters obtained by thorough model selec-
tion for the IAP model.

Interpreting the low performance on the aPascal-aYahoo
data set, one has to take the background of this data set into
account. Its attributes were selected to provide additional
information about object classes, not to discriminate
between them. While the resulting attribute set is compar-
ably difficult to learn (see Table 5(a)), each attribute on
average contains less information about the class labels
(see Table 6), mainly because several of the attributes are
meaningful only for a small subset of the categories. We
conclude from this that attributes that are useful to describe
objects from different categories are not automatically also
useful to distinguish between the categories, a fact that
should be taken into account in the future creation of
attribute annotation for image data sets.

Overall, we do not think that the experiments we
presented are sufficient to make a definite statement about
the quality of attribute-based versus supervised classifica-
tion. However, we believe that the results confirm the
intuition that a larger ratio of attributes to classes improves
the prediction performance. However, not only the number
of attributes matters, but also how informative the chosen
attributes are about the classes.

7 CONCLUSION

In this paper, we introduced learning with disjoint training
and test classes. It formalizes the problem of learning an
object classification systems for classes for which no
training images are available. We proposed two methods

for attribute-based classification that solve this problem by
transferring information between classes. In both cases, the
transfer is achieved by an intermediate representation that
consists of high-level semantic attributes that provide a fast
and simple way to include human knowledge into the
system. To predict the attribute level, we either rely on
classifiers trained directly on attribute annotation (DAP), or
we infer the attribute layer from classifiers trained to
identify other classes (indirect attribute prediction). Once
trained, the system can detect new object categories, if a
suitable characterization in terms of attributes is available
for them, and it does not require retraining.

As a second contribution, we introduced the Animals with
Attributes data set: It consists of over 30,000 images with
precomputed reference features for 50 animal classes, for
which a semantic attribute annotation is available that has
been used in earlier cognitive science work. We hope that
this data set will foster research and serve as a testbed for
attribute-based classification.

7.1 Open Questions and Future Work

Despite the promising results of the proposed system,
several questions remain open and require future work. For
example, the assumption of disjoint training and test classes
is clearly artificial. It has been observed, for example, in
[65], that existing methods, including DAP and IAP, do not
work well if this assumption is violated, since their
decisions become biased toward the previously seen
classes. In the supervised scenario, methods to overcome
this limitation have been suggested, for example, [66], [67],
but a unified framework that includes the possibility of
zero-shot learning is still missing.

A related open problem is how zero-shot learning can be
unified with supervised learning when a small number of
labeled training examples are available. While some work
in this direction exists (see our discussion in Section 3), we
believe that it will also be able to extend DAP and IAP for
this for purpose. For example, one could make use of their
probabilistic formulation to define an attribute-based prior
that is combined with a likelihood term derived from the
training examples.

Beyond the specific task of multiclass classification, there
are many other open questions that will need to be tackled
if we want to make true progress in solving the grand tasks
of computer vision: How do we handle the problem that
many object categories are rare? How can we build object
recognition systems that adapt and incorporate new
categories that they encounter? How can we integrate
human knowledge about the visual world besides specify-
ing training examples? We believe that attribute-based
classification will be able to help in answering at least some
of these questions.
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TABLE 7
Numeric Results of One-versus-Rest Multiclass SVMs Trained

with n 2 f1; 2; 3; 4; 5; 10; 15; 20g Training Examples from
Each Test Class in Comparison to the Results Achieved by

Zero-Shot Learning with DAP and IAP (in Percent)
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