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Abstract

Excellent image quality is a primary prerequisite for diagnostic non-invasive coronary CT angiography.
Artifacts due to cardiac motion may interfere with detection and diagnosis of coronary artery disease and
render subsequent treatment decisions more difficult. We propose deep-learning-based measures for coronary
motion artifact recognition and quantification in order to assess the diagnostic reliability and image quality
of coronary CT angiography images. More specifically, the application, steering and evaluation of motion
compensation algorithms can be triggered by these measures. A Coronary Motion Forward Artifact model
for CT data (CoMoFACT) is developed and applied to clinical cases with excellent image quality to introduce
motion artifacts using simulated motion vector fields. The data required for supervised learning is generated
by the CoMoFACT from 17 prospectively ECG-triggered clinical cases with controlled motion levels on a
scale of 0 to 10. Convolutional neural networks achieve an accuracy of 93.3% ± 1.8% for the classification
task of separating motion-free from motion-perturbed coronary cross-sectional image patches. The target
motion level is predicted by a corresponding regression network with a mean absolute error of 1.12 ± 0.07.
Transferability and generalization capabilities are demonstrated by motion artifact measurements on eight
additional CCTA cases with real motion artifacts.
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1. Introduction

Non-invasive coronary computed tomography an-
giography (CCTA) has become a preferred tech-
nique for the detection and diagnosis of coronary
artery disease (CAD) (Budoff et al., 2017; Foy et al.,
2017; Camargo et al., 2017; Liu et al., 2017), but
high quality imaging for small and moving vessels
is still challenging. ECG-controlled acquisition is
used to enable the reconstruction of heart phases
with small motion level and gating windows are lim-
ited to the temporal projection range required for
back-projection. However, hardware constraints re-
strict the temporal resolution of the reconstructed
CT image volumes. Despite ECG-triggering and
-gating, cardiac motion frequently leads to artifacts
in the reconstructed CT image volumes (Ghekiere
et al., 2017). These artifacts manifest in typical
patterns containing intensity undershoots and arc-
shaped blurring due to the CT reconstruction ge-
ometry (see Figure 1) and potentially limit or even

preclude the evaluation of parts of coronary arteries
or cause misinterpretations.

Thus, motion correction algorithms to improve
image quality of the coronary arteries have been
an important research area for years. Several ap-
proaches have been developed which are based
on motion estimation via 3-D/3-D registration
of multiple heart phases and subsequent motion-
compensated filtered back-projection (MC-FBP)
(van Stevendaal et al., 2008; Isola et al., 2010; Bha-
galia et al., 2012). An iterative motion compen-
sation approach dealing with motion vector field
(MVF) estimation by minimization of handcrafted
motion artifact measures (MAMs) has been intro-
duced by Rohkohl et al. (2013).

Due to possible failure modes and their sub-
stantial computational footprint, motion correction
methods can benefit from a reliable measure of mo-
tion artifacts. First, the recognition and quantifica-
tion of motion artifacts in the coronary artery tree
during CCTA could decide whether and where mo-
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tion correction is required to enable the diagnosis
of CAD and prevent misinterpretations. Second,
measures for motion artifacts could be used to ver-
ify the success of a motion compensation method.
Finally, an integration of motion artifact measures
in the motion compensation process as shown by
Rohkohl et al. (2013) is conceivable.

Furthermore, assessment of the scan quality
might be useful in automatic analysis of the coro-
nary arteries, e.g. by reporting on the reliabil-
ity of the coronary artery calcium score. A deep-
learning-based system for the identification of coro-
nary artery calcifications which are strongly af-
fected by cardiac motion artifacts has been intro-
duced by Šprem et al. (2017).

Most handcrafted measures for motion artifacts
(Rohkohl et al., 2013; McGee et al., 2000) such as
entropy and positivity are best suited for relative
assessment, i.e. for the comparison of the same im-
age region at different motion states. An absolute
measure for consistent artifact quantification across
patients and vessel segments has to be robust to
possible variations in noise level, background inten-
sity, vessel structure and contrast agent enhance-
ment. The ability of five handcrafted metrics to
quantify absolute motion artifact levels at the coro-
nary arteries has been investigated by Ma et al.
(2018). Beside the MAMs entropy and positivity,
the three metrics normalized circularity, Fold Over-
lap Ratio and Low-Intensity Region Score are con-
sidered. These rely on a prior segmentation of the
blurring artifacts or the intensity undershoot areas.

We propose a deep-learning-based method for
the quantification of the absolute motion artifact
levels directly from coronary cross-sectional im-
age patches. By a data-driven methodology, ma-
chine learning holds the promise to circumvent the
challenging task of designing an appropriate hand-
crafted measure. Over the past few years, Convolu-
tional Neural Networks (CNNs) have been driving
advances in many image-related tasks such as pat-
tern recognition, classification, segmentation, gen-
eration, synthesis, style transfer, and translation
(Krizhevsky et al., 2012; Chen et al., 2016; Gatys
et al., 2016). Also in the medical domain, CNN-
based predictive models showed great results (Lit-
jens et al., 2017; Zreik et al., 2018; Ronneberger
et al., 2015).

In the preliminary work (Elss et al., 2018a,b),
clinical data with synthetic motion artifacts is gen-
erated and used for a subsequent supervised learn-
ing process. In (Elss et al., 2018b) the feasibility

(a) Axial plane of a
step-and-shoot case re-
constructed at diastolic
rest phase. Severe motion
artifacts at the right coro-
nary artery (RCA) are
highlighted in red.

(b) Axial plane of a heli-
cal case reconstructed at
diastolic rest phase. Se-
vere motion artifacts at
the right coronary artery
(RCA) are highlighted in
red.

Figure 1: Cardiac motion leads to differently shaped arti-
facts in helical and step-and-shoot CT scans. Motion arti-
facts in step-and-shoot CT scans are less complex as merely
one coherent angular segment is used for the reconstruction
of each voxel. Due to table movement and multi-cycle re-
construction, motion artifacts have a different appearance in
CT scans with helical acquisition mode.

of motion artifact recognition using CNNs has al-
ready been demonstrated. The most recent work
(Elss et al., 2018a) furthermore deals with single-
slice motion estimation based on the coronary ar-
tifact appearance and the angular reconstruction
range.

Extending this work, we propose a Coronary
Motion Forward Artifact model for CT data (Co-
MoFACT). Beyond motion artifact recognition, we
quantify motion artifact levels with CNNs. Our
deep-learning-based motion artifact measures are
created by the following steps:

1. The CoMoFACT generates the required input
and label data for supervised learning by intro-
ducing simulated and hence controlled motion
to clinical cases with excellent image quality,
see Section 3.1.

2. Following Elss et al. (2018b), CNNs are trained
to classify motion-free and motion-perturbed
coronary cross-sectional image patches, see
Sections 3.2 & 3.2.3.

3. CNNs are trained to predict the artifact level
of coronary cross-sectional image patches, see
Sections 3.2 & 3.2.4.

Finally, several experiments are performed to inves-
tigate the generalization capabilities of the resul-
tant deep-learning-based motion artifact measures
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to clinical data with real artifacts (see Sections 4.2
& 4.3.2).

2. Material

2.1. Reference data

Contrast-enhanced cardiac CT data sets with ex-
cellent image quality are the basis of the proposed
deep learning procedure. In addition to the recon-
structed CT image volumes, we require the corre-
sponding coronary artery trees and the raw projec-
tion data. Slice-by-slice visual inspection is per-
formed to gather CCTA data sets which exhibit no
coronary motion artifacts in the reconstructed car-
diac CT image volume. In total, 17 prospectively
ECG-triggered clinical data sets from different pa-
tients are selected as reference point determining
the no motion state.

In all reference cases, acquisition was performed
with a 256-slice CT scanner (Brilliance iCT, Philips
Healthcare, Cleveland, OH, USA) using a step-
and-shoot protocol and a gantry rotation speed of
0.272 sec per turn. The restriction to step-and-
shoot cases offers the advantage to generate arti-
facts in a well-controlled situation without table
movement or multi-cycle reconstruction (see Figure
1). The mean heart rates of the patients HRmean

ranged from 45.2 bpm to 66.0 bpm during the ac-
quisition. The cardiac CT image volumes are re-
constructed at the mid-diastolic quiescent cardiac
phase. The center of the cardiac gating window
for the aperture-weighted cardiac reconstruction
(AWCR) (Koken and Grass, 2006; van Stevendaal
et al., 2007), hereafter called the reference cardiac
phase r is chosen between 70% and 80% R-R inter-
val, respectively.

The coronary artery tree of each case is seg-
mented using the Comprehensive Cardiac Analysis
Software (IntelliSpace Portal 9.0, Philips Health-
care, Cleveland, OH, USA). It includes a set of cen-
terline points ~c ∈ C with associated information on
the corresponding cross-section, such as lumen con-
tour and normal vector ~n~c (centerline direction). As
illustrated in Figure 2, the required input and label
data for supervised learning is generated by apply-
ing the forward model presented in Section 3.1 to
these 17 reference cases.

2.2. Test data

We collect eight clinical cases from different pa-
tients which exhibit real motion artifacts for testing

purposes to complement the artifact-free reference
cases. Step-and-shoot data (five vessels) as well
as helical data (three vessels) from the Brilliance
iCT are considered and corresponding centerlines
are extracted by the Comprehensive Cardiac Anal-
ysis Software. The helical CCTA scans have an
extended temporal scan range which enables ret-
rospectively ECG-gated reconstruction of multiple
heart phases. The centerlines are extracted for
these cases from the reconstructed CT image vol-
ume with 75% R-R as reference gating phase.

3. Methods

3.1. CoMoFACT

The Coronary Motion Forward Artifact model for
CT data (CoMoFACT) takes a reconstructed CT
image volume with corresponding raw projection
data and segmented coronary artery tree as input
and delivers locally motion-perturbed CT image
volumes as output. The introduced motion level
is determined by the control parameter s ∈ R+,
hereafter called the target motion strength.

The CoMoFACT introduces simulated motion by
applying the motion compensated filtered back-
projection (MC-FBP) algorithm (van Stevendaal
et al., 2008; Schäfer et al., 2006) which is briefly ex-
plained in Section 3.1.1. For each centerline point
~c ∈ C in the coronary artery tree, an continuous
MVF ~d~c with pre-selected target motion strength s
is created. The Subsections 3.1.2, 3.1.3, 3.1.4 de-
tail the design of the synthetic MVF and underlying
motion models. Subsequent MC-FBP delivers a CT
image volume which is locally motion-perturbed
around the corresponding centerline point. The re-
versing motion trajectory ~d−1

~c corresponds to the
simulated heart motion during acquisition.

After application of the CoMoFACT, one cross-
sectional image patch is sampled perpendicular to
the centerline (see Section 3.2.1) and finally added
to the input data of the supervised learning process.
As described in Section 3.2.3 and 3.2.4, ground
truth labels are defined by means of the utilized
target motion strength s. In this way, the CoMo-
FACT enables the generation of the required input
and label data for supervised learning.

3.1.1. Motion-compensated filtered back-projection

The MC-FBP algorithm is an extension of the
AWCR method. Both concepts are compared in
Figure 3. In the AWCR, the attenuation coefficient
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Figure 2: A Coronary Motion Forward Artifact model for CT data (CoMoFACT) is developed which enables to transform
cardiac CT data sets with excellent image quality to locally motion-perturbed CT image volumes. Motion is introduced around
each centerline point of the coronary artery tree by respectively creating a synthetic continuous MVF and applying the MC-
FBP algorithm. The target motion strength s is a control parameter which scales the length of the displacement vectors in the
CoMoFACT. A coronary cross-sectional patch (highlighted in blue) is sampled perpendicular to the centerline from the locally
motion-perturbed image sub-volume and used as input data for supervised learning. Corresponding ground truth labels are
defined by means of the target motion strength s. Finally, CNNs are trained for motion artifact classification and artifact level
regression on randomly rotated, mirrored and cropped cross-sectional patches (highlighted in green, gray and red).

µ(~ν) of each voxel ~ν ∈ Ω in the field of view Ω ⊂ R3

is calculated by:

µ(~ν) =

tend∫
tstart

wAWCR(t, ~ν) pfilt(t, ~ν) dt (1)

The weighting function wAWCR includes aperture
weighting for avoidance of cone-beam artifacts, an-
gular weighting for gated reconstruction and pi-
partner normalization. The projection integral
pfilt(t, ~ν), which passes through the voxel ~ν at time
point t ∈ [tstart, tend], is re-binned to wedge geome-
try and high-pass filtered with a ramp filter. The
variables tstart and tend denote the start time and
the end time of the CT scan. The MC-FBP fur-
thermore takes into account the estimated displace-
ments ~d(t, ~ν) of each voxel during acquisition:

µ(~ν) =

tend∫
tstart

wAWCR(t, ~ν+~d(t, ~ν)) pfilt(t, ~ν+~d(t, ~ν)) dt

(2)
For this purpose, a reference motion state has to be
chosen. MVFs are usually calculated by registra-
tion and interpolation to approximate the motion
each image voxel has undergone between the refer-
ence time t0 and the time each specific projection

was acquired. Each voxel is moved accordingly be-
fore back-projection is actually done. So, MC-FBP
leads to a compensation of correctly estimated mo-
tion, whereas the application of the MC-FBP with
an artificial MVF on high quality cases induces mo-
tion artifacts.

𝑝 𝑡0, Ԧ𝑣

𝑝(𝑡−1, Ԧ𝑣)

Ԧ𝑣

(a) AWCR

Ԧ𝑑 𝑡−1, Ԧ𝑣
𝑝 𝑡0, Ԧ𝑣

Ԧ𝑑 𝑡+1, Ԧ𝑣

𝑝(𝑡−1, Ԧ𝑣 + Ԧ𝑑 𝑡−1, Ԧ𝑣 )

Ԧ𝑣

(b) MC-FBP

Figure 3: Schematic drawing of voxel-driven back-projection
without and with motion compensation. (a) The simple
back-projection procedure of AWCR relies on the assump-
tion, that the object is static during acquisition. Inconsis-
tent projection data caused by motion leads to artifacts in
the reconstructed CT image volume. (b) In case of MC-FBP,
moving voxel positions are considered and line integrals are
spatially corrected in the back-projection procedure.

4



3.1.2. Synthetic motion vector field

The continuous MVF ~d~c : [0%, 100%]× Ω→ R3

describes the displacement of each voxel coordinate
~ν ∈ Ω ⊂ R3 in the CT volume at each time point
tcc ∈ [0%, 100%] in millimeters. Due to the simula-
tion of periodic motion, time is measured in percent
cardiac cycle here. The artificial MVF is defined by
three separable components:

~d~c(tcc, ~ν) = s ·m~c(~ν) · ~δ~c(tcc) (3)

The first component is the pre-selected target
motion strength s which scales the length of each
displacement vector in the continuous MVF. The
role of s as motion level regulator is illustrated in
Figure 2. Whenever s = 0, no motion is introduced
and the CoMoFACT delivers the input CT image
volume without motion artifacts as output.

The second component is the location-dependent
weighting mask m~c : Ω → [0, 1] which restricts the
motion to a limited area around the currently pro-
cessed centerline point ~c and additionally forces the
MVF to be spatially smooth. It is defined as a 3D
trapezoidal function generated by binary dilation of
the centerline point and subsequent uniform filter-
ing. A kernel radius of 15 mm for dilation and a
uniform filter size of 12.4 mm × 12.4 mm are chosen
in the following experiments. The limitation of the
motion area is required to prevent undesired mo-
tion artifacts from peripheral structures like bones.
The smoothing is necessary to avoid reconstruction
artifacts as elastic tissue structure forbids abrupt
changes of motion in a local neighborhood.

The third component ~δ~c : [0%, 100%] → R3

defines the motion direction for each point in
time. It is obtained by piecewise linear inter-
polation between five sample vectors ~δi ∈ R3,
i ∈ {−2,−1, 0,+1,+2}. The corresponding phase
points ti ∈ {r − 10%, r − 5%, r, r + 5%, r + 10%}
are assigned around the reference heart phase r
of the input CT volume with a temporal distance
of 5% cardiac cycle. The temporal projection
range required for reconstruction depends on the
heart rate and the gantry rotation speed. For the
given data sets, the angular weighting window is
narrower than 20% cardiac cycle respectively, so
no extrapolation has to be performed.

A schematic drawing of the artificial MVF is
given in Figure 2. The displacement vectors (light
red arrows) are linearly interpolated in time domain
from the sample vectors (dark red arrows) to obtain
the motion state at some tcc ∈ [r − 10%, r + 10%].

For a phase point tcc, the motion directions are
spatially constant, while the displacement length
decreases with increasing distance to the currently
processed centerline point ~c (highlighted in blue).

Two model variants are presented in the following
Subsections 3.1.3 and 3.1.4 which differ in terms
of the sample vector definition. Both concepts are
compared in Figure 4.

Ԧ𝛿+1
Ԧ𝛿0 = 0

Ԧ𝛿−1
Ԧ𝛿−2

Ԧ𝛿+2Ԧ𝛿+2

ℓ = 
𝑗=−2

1
Ԧ𝛿𝑗 − Ԧ𝛿𝑗+1 2

Ԧ𝛿−2
Ԧ𝛿+1

Ԧ𝛿−1 Ԧ𝛿0 = 0

sample vectorsreference point interpolated trajectory

a piecewise linear motion model (b) constant linear motion model

Figure 4: Schematic drawing of the time-dependent motion
trajectories (dashed blue lines) determined by the sample

vectors ~δi (red arrows) for both sub-models. (a) The piece-
wise linear motion model comprises random displacement
directions and varying velocities. (b) The constant linear
motion model is restricted to a predefined motion direction
and equidistant sample vectors.

3.1.3. Piecewise linear motion model

The first model variant of piecewise linear mo-
tion has been introduced in Elss et al. (2018b) and
was developed for the classification task of separat-
ing no-artifact and artifact coronary cross-sectional
patches. The sample vectors are calculated by:

~δi =
~ρi

maxj,k ‖~ρj − ~ρk‖2
(4)

The motion directions are given by random uniform
vectors ~ρi ∼ U [−1, 1]3 for i ∈ {−2,−1,+1,+2} and
the center heart phase defines the reference state
of no motion, i.e. ~ρ0 = ~0. Normalization of the
random uniform vectors ~ρi is performed so that the
target motion strength s finally corresponds to the
maximal displacement during 20% R-R interval in
millimeters (see Figure 4a).

The choice of random uniform vectors for ~ρi en-
ables complex motion trajectories and application
of the CoMoFACT leads to realistic-looking mo-
tion artifact pattern with differently shaped blur-
ring and intensity undershoots (see Figure 5a). The
target motion strength s can be observed as weak
surrogate of the visual artifact level. For deep-
learning-based motion artifact quantification, the
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motion model is adapted with the objective of in-
creasing the correlation between selected target mo-
tion strength s and the resulting visual artifact
level. Compared to (Elss et al., 2018b), the Co-
MoFACT is extended for cross-section-wise motion
corruption under consideration of the mean heart
rate and the angular reconstruction range.

3.1.4. Constant linear motion model

The second model variant is developed for the
regression task of predicting the artifact level in
coronary cross-sectional patches. Multiple factors
beside the motion level during acquisition have an
impact on the artifact level. The phantom study
in Figure 6 shows that the relation between mo-
tion direction and the angular reconstruction range
is essential. Most severe artifacts occur in case of
motion which is orthogonal to the mean reconstruc-
tion direction (highlighted in gray). In addition, the
visual artifact level depends on surrounding back-
ground intensities, the temporal resolution required
for reconstruction and the relation between motion
direction and vessel orientation.

In contrast to the classification model variant
presented in Section 3.1.3, severe restrictions are
made to consider each of the aforementioned influ-
encing factors except for surrounding background
intensities. The sample vectors are calculated now
by the following formula:

~δi =
60 bpm

HRmean

i

4
· ~ρorth

‖~ρorth‖2
(5)

As illustrated in Figure 4b, the regression model is
limited to constant linear motion. It takes the mean
heart rate HRmean of each data set during acquisi-
tion into account to force homogeneous velocities
among the clinical input cases. In contrast to the
previous classification model, the motion direction
now depends on the currently processed centerline
point ~c.

The motion direction determined by ~ρorth is de-
fined as the cross product of the normal vector ~n~c of
the corresponding centerline segment and the mean
reconstruction direction in axial plane (see Figure 6,
right). The mean reconstruction direction is com-
puted by means of the gantry rotation angle at the
center of the cardiac gating window and is constant
for each voxel reconstructed by the same circular
scanning shoot. In case of helical acquisition tra-
jectories, voxels are not necessarily reconstructed
by one coherent angular segment. So, in contrast

to the classification model, the regression model
with its orthogonal displacement directions is not
directly transferable to helical cases.

Figure 5b shows coronary cross-section images
with varying target motion strength s generated by
the constant linear motion model. In comparison
to the corresponding outputs of the piecewise lin-
ear model in Figure 5a, the data looks more consis-
tent and the target motion strength s can be inter-
preted as an approximate measure for the artifact
level. However, the severely restricted constant lin-
ear motion model merely allows for a specific arti-
fact appearance (banana-shaped blurring) whereas
the more complex motion trajectories of the piece-
wise linear motion also generates bird-shaped arti-
facts. Therefore, the risk of overfitting should be
considered in the evaluation of the regression net-
works.

3.1.5. Sub-volume reconstruction

For the final extraction of one cross-sectional
image patch per motion-perturbed image volume,
merely a limited area around the currently pro-
cessed centerline point ~c is of interest. Therefore,
the FOV Ω = Ω(~c) is restricted in the CoMoFACT,
in order to speed-up the data generation process.
The selected centerline point ~c defines the center of
the restricted FOV and the FOV size is determined
by the patch size during the subsequent sampling
process (see Section 3.2.1). In addition, the recon-
struction of a sub-volume instead of the full input
CT image geometry is reasonable in terms of mem-
ory requirements.

3.2. Supervised learning

The proposed CoMoFACT enables the gen-
eration of multiple motion-perturbed CT image
(sub)volumes I~c,sΩ with controlled motion level s at
specific coronary centerline points ~c ∈ C. On the
basis of velocity measurements at the coronary ar-
teries by Vembar et al. (2003), the data generation
process for the supervised learning task is limited
in the following experiments to maximal displace-
ments of 10 millimeters during 20% cardiac circle.

3.2.1. Patch sampling

The sampling process of the input data is illus-
trated in Figure 2. One cross-sectional image patch
I~c,s100 of size 100× 100× k voxels (blue box) is sam-
pled by trilinear interpolation from each output CT
image volume I~c,sΩ of the CoMoFACT with a resolu-
tion of 0.4×0.4×0.4 millimeters per voxel. The first
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s= 0 s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7 s= 8 s= 9 s= 10

(a) Output patches of the piecewise linear motion model from Section 3.1.3.

s= 0 s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7 s= 8 s= 9 s= 10

(b) Output patches of the constant linear motion model from Section 3.1.4.

Figure 5: Coronary cross-sectional image patches are sampled from motion-perturbed CT image volumes, which are generated
by means of the CoMoFACT. Each row shows the same cross-section of size 60 × 60 pixels in different motion states. Both
sub-models of the CoMoFACT are compared and reveal the trade-off between motion model complexity and suitability of s as
artifact level surrogate. (a) The piecewise linear motion model from Section 3.1.3 leads to a wide range of coronary artifact
appearances, but the visual coronary artifact level is not monotonically increasing with the underlying target motion strength
s. Patches highlighted in green and red are assigned to the classes no artifact or artifact respectively. Non-highlighted patches
with a target motion strength s between two and five are excluded from the learning process. (b) The constant linear motion
model from Section 3.1.4 leads to a limited range of coronary artifact appearances, but the underlying target motion strength s
highly correlates with the visual artifact level at the coronary arteries. All patches are included as input data in the regression
learning process with s as their corresponding label.
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RMSE = 3.39RMSE = 3.37RMSE = 3.05RMSE = 2.50no motion

Figure 6: Constant linear motion is introduced in the axial plane of a vessel phantom using the CoMoFACT. Depending on the
relation of motion direction (red arrow) and mean reconstruction direction (gray dashed arrow), motion artifacts with varying
level occur. The artifact level is measured by the root mean squared error (RMSE) with respect to the motion-free phantom
plane (left). Orthogonal motion (right) leads to most severe motion artifacts in the reconstructed image.

two patch dimensions are aligned perpendicular to
the centerline segment while the third dimension is
oriented along the normal vector ~n~c. The center
slice of each image patch covers the processed cen-
terline point ~c. Single-slice (k = 1) and multi-slice
(k > 1) patches are tested as input data in the fol-
lowing experiments. The grey values of each patch
are clipped to the relevant intensity range with a
window/level setting of 900/200 HU and addition-
ally normalized (from [−250, 650] to [−1, 1]).

3.2.2. Data augmentation

Due to the patch similarity of adjacent center-
line points, the data for training, validation and
testing are case-wise separated with a ratio of
9 : 4 : 4. The database during the training process
is extended by online data augmentation. Motion
artifacts are variable in shape, orientation and
position. In order to build this invariance into the
neural network, the following transformations are
performed in cross-sectional plane, i.e. limited to
the first two dimensions:

Cropping: The CoMoFACT may cause small ves-
sel shifts compared to the original coronary cen-
terline position. Image translation by cropping is
necessary to avoid a bias from the in-plane coro-
nary position. Therefore, sub-patches of the size
85× 85× k are randomly cropped from I~c,s100.

Rotating: The sub-patches of the size 85×85×k
are randomly rotated by 0 to 360 degrees. The
center patch of the size 60×60×k is finally cropped
to ensure full image contents.

Mirroring: Horizontal mirroring is performed
with a probability of 0.5.

The final image patches I~c,s60 of size 60 × 60 × k

voxels are used as input data for supervised learn-
ing. During validation and testing merely center
cropping is performed.

3.2.3. Classification

Following Elss et al. (2018b), the database for
the classification task of separating artifact and no
artifact cross-sectional patches is generated by ap-
plying the proposed piecewiese linear motion model
of Section 3.1.3 seven times (with different target
motion strength s) per coronary centerline point.
The target label yclass (0: no artifact, 1: artifact)

of each image patch I~c,s60 is defined by the corre-
sponding utilized target motion strength:

yclass =

{
0, if s ∈ {0, 1}
1, if s ∈ {6, 7, 8, 9, 10}

(6)

The gap in s is chosen to assure better class sep-
aration. Merely a subset of two fifths of the
samples from class artifact is randomly selected
and included in the learning process, in order to
force balanced classes. By this procedure, a total
amount of 14 724 samples is collected as classifica-
tion database.

Multiple hyperparameter settings and network
architectures including the ResNet (He et al.,
2016) and VGG inspired networks (Simonyan and
Zisserman, 2015) were tested by extensive cross-
validation. Highest validation results are achieved
by a feed-forward 20-layer ResNet which is em-
ployed in all subsequent experiments. Figure 7 il-
lustrates the network architecture. The learning
process is driven by the cross-entropy loss. The
Adam optimizer (Kingma and Ba, 2015) with an
initial learning rate of 0.05, a minibatch size of 32
and a momentum of 0.8 is defined as the learning
setup.
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Notation:

Figure 7: The 20-layer ResNet takes coronary cross-sectional image patches of the size 60 × 60 × k as input. In the last layer
the soft-max function is used as activation function of the two (positive and negative) output nodes. The projection shortcuts
are realized as 1 × 1 convolutions. In case k > 1 the convolutional kernel sizes are enlarged from (3 × 3 × 1) to (3 × 3 × 3).

Finally, the trained neural network NNclass takes
a cross-sectional patch I~c,s60 as input and delivers a
predicted artifact probability as output.

3.2.4. Regression

The database for the regression task of predict-
ing the artifact level in cross-sectional patches is
generated by applying the proposed constant lin-
ear motion model of Section 3.1.4 eleven times
per coronary centerline point. The target label
yregr = s ∈ {0, 1, . . . , 10} of each image patch I~c,s60 is
set equal to the corresponding utilized target mo-
tion strength. By this discrete equidistant labeling
procedure, a total amount of 40 491 samples is col-
lected as regression database.

Except for the reduction of output neurons in the
last layer from two to one and the replacement of
the soft-max function by simple linear activation,
no adaption of the network architecture is done
compared to Figure 7. The initial learning rate
is changed to 5 · 10−4 while the remaining hyper-
parameters remain unchanged.

The neural network NNregr takes a cross-sectional

patch I~c,s60 as input and delivers a prediction ŷ ∈
R as output. The learning process is driven by a
piecewise L1 loss function:

l(yregr, ŷ) =


max(0, ŷ), if yregr = 0

|yregr − ŷ|, if 0 < yregr < 10

max(0, 10− ŷ), if yregr = 10

(7)
This loss function considers adaptive penalization
at the boundaries for predictions outside the target
interval [0, 10] to avoid for too conservative predic-
tions. In comparison to network training with the

simple L1 loss, the regressors more often dare out-
put values near zero or ten. Clipping of the net-
work output finally delivers the predicted artifact
level ŝ = min(max(0, ŷ), 10) ∈ [0, 10] which is used
for the following evaluation.

4. Experiments and Results

4.1. Quantitative error analysis

For all experiments, the Microsoft Cognitive
Toolkit (CNTK v2.5, Microsoft Research, Red-
mond, WA, USA) is used as deep learning frame-
work. A bagging approach is applied for quantita-
tive evaluation which comprises the following steps:

1. Four validation cases and four test cases are
randomly sampled.

2. Network training is performed based on the re-
maining nine clinical cases.

3. After every epoch of the learning process the
generalization capability is examined by means
of the validation set.

4. The model with the highest performance on
the validation set during 60 epochs of training
is selected for calculation of the test accuracy
(or test error).

5. Steps 1.-4. are performed five times in total.

6. The mean test accuracy (or the mean test er-
ror) over the five splits is calculated.

7. Steps 5.-6. are performed for k ∈ {1, 3, 5, 7}
(with the same separations in training, valida-
tion and testing for comparability).

The test results of the classification and the re-
gression networks are summarized in Table 1. The
networks performances increase with the number of
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Table 1: Test results including mean and standard deviation
of the classification accuracy and the absolute regression er-
ror for single-slice and multi-slice input data.

number classification regression
slices accuracy error

k = 1 91.64%± 1.63% 1.38± 0.17
k = 3 92.08%± 2.12% 1.16± 0.06
k = 5 92.70%± 2.18% 1.14± 0.07
k = 7 93.26%± 1.82%93.26%± 1.82%93.26%± 1.82% 1.12± 0.071.12± 0.071.12± 0.07

input slices. The additional information in multi-
slice patches seem to provide a benefit, e.g. in
the differentiation between bifurcations and blur-
ring artifacts. But, higher memory requirements
and execution time have to set against it. In case
of k = 7, the classification result splits into a ratio
of 46.90% : 46.36% : 3.64% : 3.10% for the rates
TN : TP : FN : FP, where positive refers to the
class artifact. Figure 8 shows the confusion matrix
of the corresponding regression network. A clear
diagonal structure with few scattering of the pre-
dicted labels is observable.
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Figure 8: Confusion matrix of the regression network for
multi-slice input data (k = 7) with rd denoting the rounding
operator.

The presented quantitative results prove that
CNNs are able to identify artifact pattern from
synthetically introduced motion. To further evalu-
ate generalization capabilities and the performance
of the learned motion artifact measures in clini-
cal practice additional qualitative experiments are
performed. In comparison with the handcrafted

MAMs entropy and positivity from Rohkohl et al.
(2013), the abilities for measuring relative and ab-
solute levels of motion artifacts are verified.

4.2. Relative artifact measurement

In the following, it is investigated whether the
deep-learning-based artifact measures are able to
identify the cardiac phase of a clinical data set
with least motion artifacts. A quantitative study
by Vembar et al. (2003) has shown that minimum
velocities at the right coronary artery (RCA) can
be observed in the mid-diastolic cardiac phase (be-
tween 70% and 80% R-R). Therefore, increasing
temporal distance to this cardiac phase should go
along with increasing artifact levels.

The three helical test cases (see Section 2.2) are
reconstructed at multiple cardiac phases using the
AWCR algorithm. The selected cardiac phases are
arranged around 75% R-R interval (mid-diastole)
with a temporal distance of 2% R-R interval. Cross-
sectional patches of size 60 × 60 × 7 are sampled
along the RCA as input for the deep-learning-based
and the handcrafted motion artifact measures. Fi-
nally, the mean motion artifact measures across the
entire vessel are computed for each reconstructed
phase image. In this experiment, the bagging en-
sembles of the five classification and the five regres-
sion networks with k = 7 are selected. The cal-
culated motion artifact measures are scaled to the
value range [0, 1], to provide comparability. There-
fore, the predicted artifact levels ŝ ∈ [0, 10] of the
regression network NNregr are down-scaled by a fac-
tor of ten. The handcrafted MAMs are normalized
to the interval [0, 1] by the minimal and maximal
output over all motion states. As the classification
network NNclass already delivers predicted artifact
probabilities, these remain unchanged.

Figure 9 shows the results of the proposed multi-
phase experiment. In the first case (Figure 9a), all
motion artifact measures (handcrafted and deep-
learning-based) provide similar results. The pre-
dicted best cardiac phases around 72− 76% R-R
comply with the visual inspection. In the sec-
ond case (Figure 9b), only the positivity and the
deep-learning-based measures deliver predictions of
the best cardiac phase which concur with the vi-
sual impression. However, a weakness of the neu-
ral networks can be discerned. The modulation of
the radiation dose leads to lower signal-noise-ratios
(SNRs) at the marginal cardiac phases around 60%
R-R. The trained neural networks seem to be more
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(a) Case 1

60% R-R 62% R-R 64% R-R 66% R-R

68% R-R 70% R-R 72% R-R 74% R-R

76% R-R 78% R-R 80% R-R 82% R-R

84% R-R 86% R-R 88% R-R 90% R-R

(b) Case 2
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(c) Case 3

Figure 9: The mean motion artifact level of the RCA is analyzed in three cardiac CT cases with helical acquisition mode by
the deep-learning-based and the handcrafted motion artifact measures. For each reconstructed CT image volume within the
phase interval [60%, 90%], cross-sectional image patches are sampled based on the centerline segmented at the reference phase
75% R-R. The outputs of the motion artifact measures are averaged, scaled to the interval [0, 1] and visualized in the upper
row. The predictions of the best cardiac phases are indicated by colored dots, respectively. One axial slice per selected cardiac
phase is given below for visual inspection.

vulnerable to such SNR fluctuations than the hand-
crafted measures. In the third case (Figure 9c), the
regression network is in agreement with both hand-
crafted MAMs with respect to the predicted best
cardiac phase at 76% R-R. The classification net-
work selects an earlier stage around 66% R-R in
which also hardly artifacts occur. A temporally ex-
tended rest phase is observable which is discovered
by the trained neural networks.

The results of this multi-phase experiment are
promising given the fact, that the deep-learning-
based measures are solely trained on step-and-shoot
data which is perturbed by constant or piecewise
linear motion. Generalization capabilities of the
CNNs and transferability to helical data sets with
real motion artifacts are demonstrated by this ex-
periment.

4.3. Absolute artifact measurement

In the following, it is investigated whether the
deep-learning-based artifact measures are able to
detect a region of motion, given the approximate
location of the coronary artery.

4.3.1. Evaluation on synthetic motion artifacts

Local motion is introduced to test reference cases
at arbitrary points in the coronary tree by means
of the piecewise linear motion model proposed in
Section 3.1.3. A target motion strength of s = 8
is selected in the following experiments. For each
centerline point of the corresponding vessel, a cross-
sectional patch of size 60× 60× 7 is sampled from
the locally motion-perturbed CT image volume I~c,sΩ

and the corresponding motion artifact measures are
calculated. The classification and regression net-
works are selected so that the currently processed
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(a) Case 1, vessel = LAD
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(b) Case 1, vessel = RCA
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(c) Case 2, vessel = LAD
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(d) Case 2, vessel = RCA

Figure 10: Section-wise outputs of the deep-learning-based and the handcrafted motion artifact measures are calculated for four
vessels without and with synthetic motion artifacts. In each subplot, the no motion state is given as reference above the local
motion state. Stack transition artifacts (a)&(d), bifurcations (b) and severe calcifications (c) are indicated by white arrows in
the MPRs. The weighting mask value m~c marked in red, corresponds to the true relative displacement width of each centerline
point and determines the area of introduced motion. Corresponding cross-sectional image patches are given below for visual
inspection. In contrast to the handcrafted MAMs, high predictions made by the neural networks are mostly correctly located
at the regions of motion influence.
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test case has neither been used for training nor for
validation.

Figure 10 shows the results of this local motion
experiment for two test cases. The left anterior
descending artery (LAD) and the right coronary
artery (RCA) are processed, respectively. In each
subplot, the original no motion state is visualized
as reference above the local motion state. The x-
axis corresponds to the spatial coordinate along the
centerline. The value range [0, 1] of the y-axis is de-
termined by the weighting mask values m~c ∈ [0, 1]
which correspond to the level of introduced mo-
tion. In each subplot, calculated motion artifact
measures are scaled accordingly, to provide compa-
rability again.

As expected, the handcrafted MAMs are not suit-
able for section-wise motion artifact quantification,
due to limited robustness regarding variations in
background intensities. The deep-learning-based
measures, by contrast, accurately detect regions of
motion with few exceptions. Both networks are ro-
bust towards vessel shifts at stack transitions (see
Figure 10a). Bifurcations (see Figures 10b), calcifi-
cations (see Figures 10c) and varying contrast lev-
els between scanning sequences (see Figure 10d) do
not affect the deep-learning-based measures either.
The aforementioned image areas are highlighted in
the multi-planar reformations (MPRs) by white ar-
rows. The lowest artifact level in the motion area is
predicted by the regression network in Figure 10d,
which also confirms with visual inspection of the
four motion-perturbed MPRs. This experiment al-
ready demonstrates generalization capability of the
regression network which is trained on perturbed
data with constant linear motion and tested on data
with more complex piecewise linear motion trajec-
tories.

4.3.2. Evaluation on real motion artifacts

The ability for absolute motion artifact measure-
ment is additionally tested on eight clinical cases
with real motion artifacts (see Section 2.2). En-
semble averaging (k = 7) is performed for the
evaluation. Figure 11 shows the resulting artifact
measurements and corresponding cross-sectional
patches. The vessels are sorted by the maximum
artifact level predicted by the regression network.
Artifact areas identified by the classification net-
works (with running average for outlier removal)
are highlighted in red.

Four separate observer studies were per-
formed to rate the 120 cross-sectional image

patches visualized in Figure 11 with respect
to diagnostic reliability in a five point Lik-
ert scale ( : excellent, : good, : mixed,

: strong artifact, : non-diagnostic). The
eight vessels were presented in random order with-
out indication of the motion artifact measures to
the readers. It has to be noted that the readers
were no radiologists, but research scientists with
high level of expertise in reading cardiac CT im-
ages. The resulting annotations are visualized as
color bars in the Figure 11.

In contrast to the handcrafted MAMs, the deep-
learning-based measures deliver sensible results.
The classification networks enable the rough detec-
tion of artifact areas and the regression network
additionally allows one to assess the artifact sever-
ity. Noise (see Figure 11e) and vessel segments with
tiny lumen (see Figure 11g) can be identified as
potential sources of uncertainty. The human ob-
server ratings show disagreements in these areas as
well. Furthermore, confusions between bifurcations
and blurring artifacts are observable in the reader
scores (see first patch of Figure 11b and Figure
11h). Image patches with consistent artifact labels
(red or orange) are correctly identified as motion-
perturbed by the neural networks. This also holds
for image patches with consistent artifact-free labels
(light green and dark green). Hence, transferability
from synthetic to real motion artifacts is demon-
strated. The proposed experiments reveal poten-
tial and current limitations of deep-learning-based
artifact measurement in clinical practice.

5. Discussion

The paper demonstrates the feasibility of accu-
rate motion artifact quantification in the coronary
arteries using deep learning. The results of the
quantitative error analysis in Section 4.1 merely
provide indications, as the target labels do not
always constitute exact ground truth. Figure 5a
shows multiple image patches with false positive
target label, for instance originating from motion
along the vessel orientation. The thresholds which
define the margin in s are crucial parameters which
might affect the classification performance. The
reduced complexity of the constant linear motion
model presented in Section 3.1.4 enables more con-
sistent target labels, but these might also exhibit
slight inaccuracies. Some label noise originates
from approximations and simplifications in the Co-
MoFACT. The centerline and its normal vectors are
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Figure 11: Section-wise outputs of the deep-learning-based and the handcrafted motion artifact measures are calculated for
eight vessels with real motion artifacts. The predicted artifact level ŝ of NNregr, the entropy and the positivity are down-
scaled to [0, 1]. Corresponding cross-sectional image patches with four human observer ratings each (from : excellent to

: non-diagnostic) are given below for visual inspection. The vessels are sorted by the maximum artifact level predicted by
the regression network. Vessel type (RCA or LAD) and acquisition mode (seq: step-and-shoot or hel: helical) are specified.
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merely estimates and the mean reconstruction di-
rection is limited to the axial plane, i.e. the z-axis
is not considered. Furthermore, motion in the ax-
ial plane has different effects on the reconstructed
image data than motion in z-direction. Also other
factors like background intensities and image noise
influence the visual artifact level. The majority of
the generated image and corresponding label data
constitute good approximations of the reality. For
network training purposes, the label quality is suf-
ficient, but exact test performance can not be de-
termined. As a next step, quantitative compari-
son studies to hand-labeled data from radiologists
should be performed.

For the quality assessment of CCTA images us-
ing the proposed motion artifact measures, the ap-
proximate locations of the coronary arteries have
to be known. Since motion artifacts frequently in-
hibit fully automatic centerline segmentation, al-
ternative approaches are required. Many tools for
coronary centerline extraction are semi-automatic,
i.e. they allow the user to guide the segmentation
process. Furthermore, the creation of a coronary
artery atlas which involves the probability density
for the position of each vessel segment with respect
to the heart segmentation and the deployment of
deep-learning based centerline extraction are op-
tions which should be investigated. The proposed
CoMoFACT enables one to evaluate the robustness
of centerline extraction methods with regard to mo-
tion artifacts. In general, motion introduction by
the CoMoFACT might be useful as a data aug-
mentation strategy in several other CT data-driven
learning tasks.

So far, the proposed measures are merely based
on 17 clinical data sets. CT images for non-invasive
coronary angiography are acquired with a wide va-
riety of scanner types, imaging protocols and recon-
struction algorithms. In order to increase robust-
ness of the CNNs, collection of more data and net-
work fine-tuning should be performed. Especially in
order to increase the networks insensitivity to noise,
an extension of the training database by including
clinical cases with lower SNR or synthetic noise in-
troduction would be required. Robustness might
additionally be improved by measurement smooth-
ing of adjacent centerline points in order to reduce
appearing scatter and to avoid outliers.

6. Conclusions

Application of the MC-FBP algorithm using high
quality cardiac CT cases and artificial MVFs as
inputs, enabled the generation of CT image data
with controlled motion levels at the coronary ar-
teries. Subsequent supervised learning of CNNs
delivered measures for motion artifact recognition
and quantification. High predictive accuracy was
achieved on data with synthetically introduced mo-
tion, thus demonstrating the advantage of deep-
learning-based measures for motion artifact local-
ization over existing handcrafted MAMs. Further-
more, the generalization capabilities of our mea-
sures have been shown by clinical data with real
artifacts and helical acquisition mode. Quantitative
validation studies are required to assess the trans-
ferability of these promising initial results to motion
artifact prediction in clinical practice.
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