ADVANCING
EARTH AND
ﬂuu SPACE SCIENCE

Journal of Geophysical Research: Space Physics ok

TECHNICAL
REPORTS:
METHODS
10.1029/2018JA025274

Key Points:

« We use a deep neural network to
automatically extract features from
auroral images

« With these features we train a
machine to predict the detailed
auroral image category

« We achieve an auroral classification
accuracy of 82% and an auroral
detection rate of 96%

Correspondence to:
L. B. N. Clausen,
lasse.clausen@fys.uio.no

Citation:

Clausen, L. B. N., & Nickisch, H.

(2018). Automatic classification

of auroral images from the Oslo
Auroral THEMIS (OATH) data set using
machine learning. Journal of
Geophysical Research: Space

Physics, 123, 5640-5647.
https://doi.org/10.1029/2018JA025274

Received 26 JAN 2018

Accepted 1 JUN 2018

Accepted article online 9 JUN 2018
Published online 11 JUL 2018

©2018. The Authors.

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided
the original work is properly cited, the
use is non-commercial and no

modifications or adaptations are made.

Automatic Classification of Auroral Images
From the Oslo Auroral THEMIS (OATH)
Data Set Using Machine Learning

Lasse B. N. Clausen'"” and Hannes Nickisch?

"Department of Physics, University of Oslo, Oslo, Norway, 2Philips Research, Hamburg, Germany

Abstract Based on their salient features we manually label 5,824 images from various Time History

of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imagers; the labels we use are
clear/no aurora, cloudy, moon, arc, diffuse, and discrete. We then use a pretrained deep neural network to
automatically extract a 1,001-dimensional feature vector from these images. Together, the labels and feature
vectors are used to train a ridge classifier that is then able to correctly predict the category of unseen
auroral images based on extracted features with 82% accuracy. If we only distinguish between a binary
classification aurora and no aurora, the true positive rate increases to 96%. While this study paves the way for
easy automatic classification of all auroral images from the THEMIS all-sky imager chain, we believe that the
methodology shown here is readily applied to all images from any other auroral imager as long as the data
are available in digital form. Both the neural network and the ridge classifier are free, off-the-shelf computer
codes; the simplicity of our approach is demonstrated by the fact that our entire analysis comprises about
50 lines of Python code. Automatically attaching labels to all available all-sky imager data would enable
statistical studies of unprecedented scope.

1. Introduction

Aurora Borealis and Aurora Australis are arguably the most impressive manifestations of solar
wind/magnetosphere coupling. They are caused by charged particles (mostly electrons but also protons)
originating from near-Earth space that have been accelerated along magnetic field lines toward Earth and
subsequently collide with neutral constituents (mostly atomic oxygen) of the upper atmosphere. Since the
vast space that is the magnetosphere maps along magnetic field lines into the upper atmosphere, it acts as
a screen onto which magnetospheric dynamics are projected. Hence, observing the aurora from the ground
allows one to study large-scale magnetospheric processes both on the day but also on the nightside.

Ground-based auroral data were instrumental in establishing the substorm concept (Akasofu, 1964), one
of the major modes by which the magnetosphere dissipates energy (Akasofu, 1981; Clausen et al., 2014).
As defined by Akasofu (1964), a substorm consists of two phases: the break-up phase and the recovery phase.
During breakup a single dim arc suddenly brightens and large regions of the nightside sky abruptly fill with
bright, discrete aurora, lasting for about 10 min or so. During the recovery phase, the break-up aurora dims,
becomes patchier and diffuse, and eventually completely fades. Later it was established (Bargatze et al., 1985;
McPherron et al., 1973) that a third phase precedes the break-up phase. Since during this first phase energy
is loaded into the magnetospheric tail through dayside magnetic reconnection, this phase has been termed
the growth phase. The arc that eventually becomes the break-up arc typically moves equatorward during
this time.

Since the aurora is formed through processes in near-Earth space, it is clear, then, that the morphology of
auroral forms as observed from the ground is integral to our understanding of magnetospheric dynamics.
It would therefore be desirable to automatically classify the vast amount of existing ground-based auroral
data in order to enable large statistical studies.

Automatic auroral image classification has already used a number of techniques from computer vision, pat-
tern recognition, and machine vision with a strong emphasis on hand-designed features. First attempts used
a two-step classification based on sparse edges and skeletons (Syrjasuo et al., 2001) for individual images.
Following up on these early approaches, k-nearest neighbor classification and principal component analysis
of shapes were used for auroral tracking (Syrjasuo & Donovan, 2002), which later allowed to automatically
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assess auroral occurrence statistics (Syrjasuo & Donovan, 2004). Finally, auroral features were further refined
to Fourier descriptors based on explicit shape models using contour and edge detection (Syrjasuo et al., 2007).
Once trained, the automatic classification strategies used in these studies were typically able to correctly
distinguish between images showing aurora and images not showing aurora in 85% to 96% of the cases.

Another line of work used features from local binary patterns and scale-invariant feature transforms which
were classified by a (nonlinear) support vector machine (Rao et al., 2014). Using color images from all-sky
imagers across Finland, they were able to achieve true-positive rates of about 90% when using the labels no
aurora, aurora, and cloudy.

Yang et al. (2012) used a hidden Markov model to classify data from an imager located on Svalbard. They
explicitly included information about temporal dynamics using sequences of auroral images. They found
that by this inclusion, they can achieve a detection rate of up to 85% depending on the length of the time
series. Their categories were arc, drapery, hot spot, and radial; due to the imager’s location, the last category
is somewhat specific to auroral images taken at cusp latitudes.

Over the last few years, the fields of computer vision and machine learning have seen a big methodologi-
cal paradigm shift: The focus from small-scale data sets and algorithms relying on hand-crafted features has
moved to large-scale data sets and learning machines that automatically extract the feature representation
from the raw data. Fueled by the widespread availability of curated data sets, associated benchmarks, fully
trained models, and well-designed software libraries, as well as the growing computational power of mod-
ern graphics cards, there has been a tremendous wave of excitement and success in these communities. As a
result, the entrance barrier for using deep neural network models in practice has become very low. In a neu-
ral network, artificial neurons are arranged in layers between the input (in our case an auroral image) and
the output (in our case an image classification). The term deep loosely refers to networks that benefit from
two improvements over earlier, normal networks. First, due to increasing computing power, deep neural net-
works can have significantly more layers than earlier; note, however, that there exists no fixed threshold in the
number of layers between a normal and a deep neural network. Furthermore, deep refers to networks that
have been trained using recent algorithms, that is, that benefit from recent research regarding the algorith-
mic implementation of neural networks. While the previous studies mentioned above use extensive amounts
of hand-crafted computer code, our analysis uses freely available, standard machine learning libraries, and
off-the-shelf tools. The results presented here are indeed produced by about 50 lines of Python code.

2. Methodology

Our goalis to train a machine such that it can automatically classify auroralimages depending on the observed
features. Due to its widespread use and convenient availability we choose data from the Time History of Events
and Macroscale Interactions during Substorms (THEMIS) all-sky imagers (Donovan et al., 2006); it should be
noted, though, that we believe that the results from this study are easily transferred to other auroral data sets.

The algorithms we use to classify auroral images all fall into the category of supervised learning; in supervised
learning the goal is to train a model from labeled training data. Once the model is optimized, it can be used
to make predictions about unseen or future data. The first step, then, is to create a training data set of labeled
auroral images.

2.1. Labels
Based on our experience, we choose to introduce L = 6 labels y € {0, 1,2,3,4,5} which cover the range of
phenomena observed in ground-based auroral imaging.

Although there is great overlap between our categories and those used in earlier studies, they are not exactly
congruent. For example, Syrjasuo and Donovan (2004) used four categories to describe the auroral displays
observed from the all-sky imager at Gillam: no aurora, arcs, patchy aurora, and omega-bands. Their patchy is
very similar to our diffuse, and the last category is the only one that differs from ours, although most of the
images identified as omega-band would in our scheme probably be classified as discrete.

2.2. Image Preparation

As mentioned above, the images in our training data set originate from the THEMIS all-sky imager network.
Using the quick-look plots available on the THEMIS website, we select by hand 84 intervals comprising 126
hr which represent all six of the phenomena listed above. In total, 5,824 images are selected at random from
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y Label Explanation

0 arc This label is used for images that show one or multiple bands
of aurora that stretch across the field-of-view; typically,
the arcs have well-defined, sharp edges.

1 diffuse Images that show large patches of aurora, typically with
fuzzy edges, are placed in this category. The auroral brightness
is of the order of that of stars.

2 discrete The images show auroral forms with well-defined, sharp edges,
that are, however, not arc like. The auroral brightness
is high compared to that of stars.

3 cloudy The sky in these images is dominated by clouds or the dome
of the imager is covered with snow.

4 moon The image is dominated by light from the Moon.

clear/noaurora This label is attached to images which show a clear

sky (stars and planets are clearly visible) without the appearance of aurora.

these intervals and then processed. In the first step of the processing the raw auroral image is cropped in
size by 15% in order to remove pixels that correspond to very low elevation angles. In order to enhance dim
features, the brightness of each image is scaled to a value in the interval [0, 1]. This is done by first calculating
the 1st percentile brightness value for each image individually and then subtracting this value from each pixel
within the image. Then, the 99th percentile brightness value is computed (from the now altered brightness
values of each image), and each brightness value is divided by it. Finally, all values below 0 are set to 0 and all
values above 1 are set to 1. The cropped, scaled version of each image is used to decide which of the six labels
y to attach to it.

In Figure 1 we show some examples from our training set. In panels (a) - (c) we show representative examples
from the cloudy, moon, and clear/noaurora category. Examples from the arc, discrete, and diffuse categories
are shown in the second row (panels (c)-(e)).

It should be clear to anyone who has worked with ground-based auroral data that the categories introduced
above are by no way mutually exclusive, as the top two rows of Figure 1 might suggest. A few examples
of problematic images are shown in the bottom row where it is unclear whether the displayed auroral
phenomenon is arc or diffuse (panel g), diffuse or discrete (panel h), cloudy or moon (panel i). Ambiguity
notwithstanding, we assign the labels in our training set to the best of our abilities. It should also be noted that
to the trained human eye, there is a clear distinction between an image in any of the three auroral categories
(arc, discrete, and diffuse) and an image in any of the other three (cloudy, moon, and clear/noaurora).

In principle, we could now train a deep neural network with these labeled images. Training a deep neural
network from scratch, however, is very expensive both in terms of computational complexity and required
number of data points. We therefore, as a first step, choose to use a pretrained deep neural network to auto-
matically extract features from the cropped and scaled image. Furthermore, before feature extraction we also
rotate each image by a random angle around its center in order to not bias the feature selection toward a
certain orientation of structures like star constellations or east-west aligned arcs. These extracted features are
represented by a 1,001-element feature vector f.

2.3. Feature Extraction

We compute the feature vector f from each image x using TensorFlow™ (Abadi et al., 2015), an open-source
software library for numerical computation originally developed by researchers and engineers from the
Google Brain Team within Google’s Machine Intelligence research organization for the purposes of conduct-
ing machine learning and deep neural networks research. We use the latest Inception-v4 (Szegedy et al.,
2017) pretrained neural network (dated 9 September 2016), which offers the best compromise between
classification accuracy and computational complexity to date. The neural network has been trained on the
ILSVRC-2012-CLS image classification data set (Russakovsky et al., 2015) which contains about 1.2 million
labeled images of objects from 1,000 different categories like pandas, container ships, and dandelions.
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Figure 1. In panel (a) through (f) we show examples of processed auroral images for the categories cloudy, moon,
clear/noaurora, arc, discrete, and diffuse. The bottom row shows examples where the category to assign to each image is
ambiguous.

As described above, the idea behind using a pretrained neural network as feature extractor ¢ for the auroral
images x; with i = 1...5824 is to compute a feature representation p(x;) =: f; € RF. Hence, all N = 5824
images need to be pushed through the pretrained network and the output is collected in a matrix of size
5824 x 1001. For later computations, the images x; are no longer needed. Once f; is computed, one of the
possible discrete labels y; € {0, 1,2, 3,4, 5} is assigned to each f; to form the pairs (f;, y,). It is these pairs (f;, y;)
that are then used to train another machine (distinctively different from the feature extraction neural network)
to compute the mapping from the features f; to the class labels y;. This process is schematically shown in
Figure 2.

2.4. Ridge Classification

There are a variety of supervised learning machines for classification. We use a method called ridge classifi-
cation; although this method is standard within the machine learning community (e.g., Raschka, 2015a), we
repeat its salient features here.

Ridge classification is a linear method extending and generalizing ordinary linear regression in two aspects:
First, the added ridge improves the generalization capabilities of the method and second; it deals with binary
labels rather than real-valued labels. Given a set of N F-dimensional input vectors f; € R and N measurements
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Figure 2. Schematic flow of the data, from the original raw image to the automatically attached label.

y; € R, (ordinary) linear regression aims to find parameters w € RF —called weights—that minimize the
least squares cost function C;; measuring the agreement between labels y; and linear prediction w'f;

N
Cis(w) = %, Z(Yi ~w'f)? m
=

where the superscript T denotes the matrix transpose. Note that a bias term w'f; + b can be included in the
weight vector w by appending a constant entry to the feature vector f; < [f;; 1]. When the number of features
Fis large and approaching the number of measurements N, ordinary linear regression risks to produce a model
(i.e., a set of weights) that represents the training data set (f;, y;) well; however, it performs poorly when pre-
dicting labels of unseen data; in machine learning parlance this is called overfitting. In order to counterbalance
overfitting in ordinary regression, several strategies are available. In ridge regression the strategy—called
regularization—is to penalize large values of w measured by the squared L2 norm wTw yielding the ridge
regression cost function

N
1
CoaW) = A-w'w + m ;(y,» —w'f)?, AeR,. 2

Regularization in ridge regression thus limits the magnitude of the weights w (and hence the complexity of
the learning machine). The scalar parameter A balancing data fit and regularization is found through cross
validation.

As the name suggests, ridge regression is used to estimate continuous real-valued y;; however, ridge regression
is easily turned into ridge (multiclass) classification where the model output is a set of L discrete values rather
than a real number. This is done by combining L binary logistic regressors with weights w, trained on binary
labels y; € {0, 1} in a one-against-the-rest fashion where y; = 6, _; this results in one set of weights w,
per class.

=ci

Using the nomenclature of our N = 5824 feature vectors f; and auroral class labels y; and combining the
weights per class w, into a matrix W = [w,, w,, ..., w, ], the ridge classification cost function takes the form

N
1
Coc(W) = 2 - tr(WTW) + N ,Z‘ Hle,,, softmax(W'f,)] 3)

where H[p,q] = —p' logq — (1 — p)Tlog(1 - q) = — Z;] [p logq, + (1 — p.)log(1 — g1 is the binary
cross-entropy function, e, is a unit vector in dimension k and softmax(z) = %X(:()z) is the softmax function.
The cost function is minimized using a second-order gradient descent algorithm (like Newton-Raphson)
to find—in the above least squares sense—the optimal W. Once the optimal weights W are found,
unseen auroral images x can be classified by first extracting the feature vector f and then calculating the

class probabilities

p = softmax(W'f) € [0, 1]*; ()

the class yielding the highest probability is then chosen as the predicted label.

Although multiclass classification seems disconnected from the (pretrained) neural network, it is possible (and
common), to interpret the classifier as the last layer of a combined neural network. In other words, we have
simply trained a neural network where only the parameters W of the last layer have been adjusted.
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Table 1
Confusion Matrix of the Trained Ridge Classifier for One Particular Partion of the Training Set— Other Partitions Produce Very
Similar Results

Observed
Arc Discrete Diffuse Cloudy Moon Clear/noaurora
Predicted Arc 138 30 50 1 1 11
Discrete 24 251 56 0 0 13
Diffuse 26 31 353 1 0 2
Cloudy 0 2 3 237 3 2
Moon 0 0 2 3 188 3
Clear/noaurora 15 10 13 0 0 278

It is worth emphasizing that TensorFlow™ including the feature extractor and the Inception-v4 checkpoint
are freely available and can be run even on simple hardware. The ridge classification was done using the (also
freely available) machine learning codes of the scikit-learn Python modules (Raschka, 2015b). Using these
tools the code to extract features, train the ridge classifier, and classify unseen images comprises about 50
lines of code.

3. Results

In order to test the performance of any machine learning pipeline, one standard procedure (based on boot-
strap resampling and similar to cross validation) is to partition the training set (f;,y;) randomly into two
subsets: one is used for training as described above (typically 70% of the data points) and one subset (the
remaining 30%) is used to compare the predictions of the trained machine with the actual labels. This pro-
cess is repeated five times with different random partitions to obtain a measure of the model variance. Since
the actual labels of all auroral images in the data set are known, we can compute what is called the confusion
matrix (for one particular instance of the ridge classifier), shown in Table 1.

The values along the diagonal of the confusion matrix give the number of times the correct label was pre-
dicted. Off-diagonal values show where the model failed to predict the correct label. It can be seen from
Table 1 that the model does particularly well in distinguishing between the nonauroral categories cloudy,
moon, and clear/noaurora, that is, it rarely confuses an image of the Moon with one that shows clouds (or vice
versa); it does less well in distinguishing between the different auroral labels. Intuitively, this is expected, as
the feature overlap between the different auroral forms is larger.

Overall, we find that our model predicts 81.7 + 0.1% of the cases correctly. When lumping the three auroral
labels into one class and the nonauroral labels into a second class, our models correctly predicts the image
label 95.60 + 0.03% of the time.

3.1. Test Case

As a qualitative test of our model, we train the ridge classifier with the entire training data set and then classify
577 auroral images from Rankin Inlet selected at random between 0100 and 1000 UT on 21 January 2006. A
keogram of the selected auroral images is shown in the lower panel of Figure 3. In the beginning of the interval,
the sky is clear with a single arc forming within the field-of-view of the instrument which moves equatorward.
At 0200 UT the arc disappears and the sky becomes clear again. Around 0333 UT an auroral activation occurs
above the instruments, and the auroral activity continues until about 0800 UT. Soon after light cloud cover
starts to drift into the field-of-view from the south.

Above the keogram in Figure 3 we show the probabilities the ridge classifier predicts for the six categories;
the thicker the color at each time step, the larger the probability that the image belongs to this particular
category.

When the arc appears just before 0200 UT, the probability of arc and diffuse increase significantly, while the
probability of clear/noaurora decreases. This is in agreement with the first exemplary auroral image show in
the top row. Once the arc disappears, the probability of clear/noaurora increases again, before decreasing
again when the auroral activation is observed. Throughout the auroral activation at the center of this interval,
the cumulative probability of the three auroral categories is around 80%.
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Figure 3. The bottom panel shows a keogram from auroral data collected on 21 January 2006 at Rankin Inlet. The
middle panel shows the probabilities for the six categories as predicted by the ridge classifier trained with the entire
training data set. At the top we show, for comparison, auroral images at different times.

The thin cloud cover toward the end of the interval is less well represented by the model; however, the
cumulative probability of the auroral categories decreases to below 50%.

4. Summary and Outlook

From the THEMIS all-sky imager data set we have, based on the displayed features, manually labeled 5,824
auroral images from 84 representative intervals with one of the following categories: arc, discrete, dif-
fuse, cloudy, moon, and clear/noaurora. We then used the feature detection mechanism of the pretrained
TensorFlow™ deep neural network to extract a 1,001-dimensional feature vector f from each image. These
5,824 feature vectors were then used to train a ridge classifier such that it is able to predict a label for unseen
images. We find that the trained ridge classifier is able to predict 81.7 + 0.1% of the image labels correctly.
When only distinguishing between the presence and the absence of aurora (binary classification), our models
correctly predict the image label 95.60 + 0.03% of the time.

We believe that the methodology outlined in this study can easily be transferred to the entire THEMIS all-sky
imager data set and also other auroral data sets. The advantage of our effort compared to earlier efforts in
automatic classification of auroral images is, we believe, its reliance on battle-tested, ready-to-use software
(TensorFlow™, Inception-v4, and the scikit-learn module) that is already in operational use in many commer-
cial and scientific contexts. When applying the methodology outlined here to large data sets like that from the
THEMIS all-sky imagers, the bottleneck will not be getting the software up and running. The bottleneck will be
the speed of the feature vector extraction. For this study a standard laptop with an Intel i7 CPU was used for
the feature extraction and classification. On this computer the feature extraction ran at about 1.5 images per
second, such that the features of the entire training data set were extracted in about 1 hr. Here, however, sig-
nificant speed-up can be expected through the use of powerful and optimized hardware. Training the ridge
classifier on the same laptop is a matter of seconds.

The flexibility of the used software also allows a rapid implementation of different classifications. The labels
used in this study are meant as suggestions, and clearly other labels could be used. Additional labels like
auroral activity with moon contamination, east-west aligned arc, or north-south aligned arc could also be intro-
duced. Even geolocation could be included in the labeling process in order to distinguish between poleward
boundary arcs and polar cap arcs. All that would be needed is a training data set containing a few thousand
images since both the automatic feature extraction and the ridge classifier training is independent of the used
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classifiers. We encourage the community to have a discussion about the appropriate classifications before a
large undertaking such as automatically labeling all images within the THEMIS data set is started.

We did not yet exploit the fact that auroral images are captured as a time series rather than independent
images in our experiments, which leaves room for further accuracy improvements, for example, by hidden
Markov models or recurrent neural networks exploiting temporal correlations between subsequent images
and labels. In particular, we expect improvements from temporal smoothness, that is, labels do typically not
change at a rapid pace and labels tend to change in a particular order meaning that some label transitions
are more likely than others a priori.

We believe that an automatic classification—using whatever set of labels appropriate— of large auroral data
sets like the THEMIS all-sky imager data set would facilitate statistical studies of unprecedented scope, using
literally tens of millions of images. Conceivably, this could change the way we use ground-based auroral
images in magnetospheric research.
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