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1
Introduction

1.1 Motivation

Pulmonary embolisms (PEs), more precisely pulmonary artery embolisms (PAEs), are blood
clots in the pulmonary arteries that obstruct them and thus prevent blood flow in the lungs.
They are life-threatening and must be detected early. The mortality rate is approximately
30%, but with early detection, through proper treatment, this can be reduced to 2%, [1]. The
state-of-the-art standard for diagnosing PEs are computed tomography angiography (CTA)
scans. This involves injecting a contrast agent according to specific protocols to achieve
a contrast in the pulmonary arteries. As a result, the blood clots become visible through
contrast recesses within the arteries, [2, 3, 4, 5].
Since the 21st century, different approaches have been made to identify PEs automatically,
so-called computer aided detection (CAD) systems for pulmonary embolism detection. First,
the focus laid more on classical approaches, [6, 7, 8], where image processing was applied
to extract certain features, which were then utilized for the classification of pulmonary
embolisms, for example with conventional machine learning techniques, such as decision
trees or k-nearest-neighbor (KNN), [8]. Due to the great success of deep learning (DL)
methods in other areas [9], the trend has moved towards combining feature extraction and
classification in deep end-to-end networks, [10, 11].
However, a major problem in evaluating the different approaches is that they are mostly
assessed only on private data sets. This makes an objective comparison impossible. Because
of this problem, annotated data sets such as the computer aided detection for pulmonary
embolism (CADPE) data set, [3], and the Ferdowsi University of Mashhad’s PE (FUMPE)
data set, [2], have been made available to the public. This allows a proper comparison of the
approaches. For example, Tajbaksh et al., [12], achieved in their publication a sensitivity of
83% at an average false positive (AFP) rate of 2 on their own data set, but only a sensitivity
40% at 2 AFP on the CADPE challenge. Furthermore, performing well on a public data set
also does not generally infer a good generalization in clinical applications. This requires a
high sensitivity on a wide range of data and a low false positive rate, especially on healthy
cases, which is a well-known challenge, due to the high amount of false positives (FPs), from
which CADPE systems suffer, [10, 13]. Mueller-Peltzer et al. tested their CAD system for PE
detection on data, collected over a three-year period in an emergency department. From a total
of 3331 predicted emboli, only 258 (8%) were true positives (TPs) and 3073 (92%) were FPs,
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4 Introduction

demonstrating the limitations of CADPE systems in the clinical usecase and the complexity
of this task, [13]. If the performance of CADPE systems can be improved, they could be used
in practice as follows. The CADPE system has access to computed tomography (CT) data
from various clinics and runs in the background. If a pulmonary embolism is suspected, an
alarm is triggered and a team of experts is alerted. They receive the suspicious CT and the
associated segmentations, which can be then examined in more detail.
The suspicion of PE often arises as an incidental finding on a CT scan in the context of another
diagnosis, as the symptoms of pulmonary embolisms are often nonspecific. Because of the
wide range of protocols in CT imaging, the image acquisition was likely not acquired with
the correct contrast protocol, so the patient will need to be exposed to further radiation for a
more accurate diagnosis. Computer automated tools are not suitable for low contrast images.
This is due to the fact that CADPE systems are only trained with CTA scans according to
PE protocols and thus do not generalize on different contrasts. Creating a large database
with different contrast PE images turns out to be difficult, not only because of the lack
of availability of medical data, but also because even for specialists the annotation in low
contrast images is hardly manageable, [14]. Therefore, so-called dual energy computed
tomography (DECT) data can be used. These are CT data taken simultaneously with low and
high x-ray energy spectra. This allows different image representations, including different
simulated contrasts. From one CT scan with associated label, multiple images with poorer
contrasts can be generated, [15, 16, 17]. Including these in training could enable contrast-
independent networks. Thus, the CADPE systemwould no longer be limited to CTA according
PE protocols, but could be applied on all available CT images.
In this work, we use a deep learning approach based on the 3DU-Net structure, [18]. This archi-
tecture is state-of-the-art for segmentation tasks and outperforms the prior used convolutional
neural networks (CNNs), for example by introducing this architecture, Ronneberger et al. won
two cell tracking challenges at IEEE international symposium on biomedical imaging (ISBI)
2015, [18]. Since then, many adaptations from this architecture were generated with which
various other challenges were won, such as the brain tumor segmentation (BraTS) challenge
2019, where substructures of brain tumours were segmented, [19], or the endoscopy computer
vision challenge (EndoCV) 2021 challenge, where colon polyps were detected and segmented,
[20]. In addition to detection, we also focus on segmentation, which makes the problem even
more complex. In particular, we investigate the generalization ability of the networks, for
which we use three different data sets, the public CADPE and FUMPE data set and a private
data set, named INHOUSE. In contrast to the public data sets that have been specifically
created for benchmarking CADPE algorithms, the INHOUSE data set results from collecting
data for three year in a university clinic. The acquired images are not dedicated pulmonary
embolism suspects, but are mostly diagnosed retrospectively as comorbidities, making this
data set much more challenging. Various experiments for performance improvement are
made based on changes in the network input and different training strategies. This is followed
by a detailed evaluation for more precise understanding of the network behavior and the
responsible factors for the generalizability. Since our INHOUSE data set is a DECT data
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set, we are able to generate different contrasts and investigate and improve the generalization
ability of the networks.

1.2 Research Questions

As already mentioned in the previous section, we use a network that is based on the 3D
U-Net architecture to segment PEs. Here, we investigate whether this network structure
is suitable for segmentation for pulmonary embolisms and compare the performance of
our method with other approaches in the literature. One of the main investigations is the
analysis of generalizability, examining how the trained networks perform on other data sets
and what factors play a role in performance in general and in generalizability. This includes
investigating how conventionally trained networks perform on different contrasts and how
this performance can be improved.
By answering these questions, the basic problems of pulmonary embolism detection and
generalization for clinical application will be highlighted. It should provide a basis for further
work to improve generalizability, especially with DECT data. There, we put emphasis on the
understanding of the network behavior and the influence of changes regarding the input, the
training and the evaluation. To sum up, the following questions will be answered in this work:

• To what extent is the 3D U-Net structure suitable for PE segmentation?
• Which factors influence the generalizability of the network?
• How do conventional networks perform on different contrast images?
• How can contrast-independent predictions be realized?

1.3 Thesis Outline

This section gives a short overview of how the thesis is structured. In Chapter 2, theoretical
background information is given, which is necessary to understand this work. First, a basic
medical knowledge about pulmonary embolism is provided. Second, the general concept
of CNNs and the used network structure are introduced. Third, the fundamentals of CT,
especially DECT are explained. Finally, a short summary of related research is given. In
Chapter 3 the used data sets are investigated in detail. This includes the analysis of the
quality of annotations and presenting the pre-processing steps, which are necessary for their
utilization for training and evaluation. In addition, it involves the precise investigation of
the statistics of the data sets. This is important for further interpretations of the behavior of
the networks that are trained with these data sets. Afterwards the metrics for performance
evaluation are explained. At the end of this chapter, the methodology approach is introduced.
The executed experiments are structured in experiments concerning the input of the network,
the training strategy and the evaluation. This should help to understand how different changes
in the individual components of the network influence the performance and impact the
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generalizability. In Chapter 4 the performed experiments are described in the same structure
with simultaneous interpretation of the results, starting with different experiments regarding
the input data, such as the influence of the used training sets on the generalizability or the
usage of additional information in form of lung or vessel masks on the overall performance.
Then, we analyse the effects of different changes in the hyperparameters and trying different
data augmentation strategies, first classical strategies and then an extension using DECT data.
Finally, an intensive evaluation follows, in which the network behavior is closely examined.
In Chapter 5, we summarize the main results of this work and discuss which further analyses
can be carried out in future research projects.



2
Theoretical Foundation

In this section, the necessary theoretical foundations for understanding this work are laid.
First of all, medical information about PEs in general is given in Section 2.1. Then, the basic
concept of CNNs is briefly explained and the network structure we use is shown, see Section
2.2. Here, we assume that the reader already has some basic knowledge in the field of deep
learning and neural networks. Section 2.3 contains general information about the generation
of CT, in particular DECT data. Finally, we briefly review the current state of research, see
Section 2.4.

2.1 Pulmonary Embolism

APE is a blockage of an artery in the lung, mostly caused by a blood clot, a so-called thrombus,
which obstructs the blood flow, shown in Figure 2.1. It usually occurs after vascular injuries
in order to close the damaged area in the vessel from inside. It originates either directly in the
lung arteries or it originates from different locations. In up to 80% of cases a PE is caused by
a deep vein thrombus (DVT), which is a blood clot in the leg that travels through the blood
stream from the deep veins of the leg or pelvis and via the inferior vena cava, the right atrium
and ventricle of the heart into both pulmonary arteries, [2, 3, 21].

Figure 2.1: Example illustration of a PE. Blood clot (red) obstructs part of the arterial tree, which
results in dead space within the lung (dark region).
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8 Theoretical Foundation

The thrombus causes congestion in the lung areas and the affected region can no longer
receive blood flow, resulting in a dead space. As a consequence, the lungs can no longer
fulfill their natural function of oxygenating the blood and releasing CO2, which leads to a
lack of oxygen supply to the organs and thus to the failure of important functions. In addition,
there is an increased pressure on the right heart, which can lead from shortness of breath to
complete right heart failure, e.g., heart insufficiency, and even death, [4]. The lethality rate
for pulmonary embolisms is about 30% but can be reduced to 2% with early detection, [10].
Each year, about 430 000 people in Europe are affected of PEs, in America there are about
300 000 - 600 000, 12 000 - 80 000 of which die from it, [3, 22]. Pulmonary embolism is the
third leading cause of cardiovascular death, after chronic ischemic and myocardial infarction,
[4].
Using Figure 2.2, we will now briefly present the clinical process, from symptoms, via
diagnosis, up to therapy.
Typical symptoms of pulmonary embolism are dyspnea, meaning difficult breathing, or
tachypnea, which stands for an increased respiratory rate, as a consequence of the increase
in functional dead volume. As a result of concomitant pleurisy or pulmonary infarction,
symptoms may include cough, hemoptysis (coughing up blood), and chest pain of a pleuritic
nature (worsened by breathing). Tachycardia (increase in heart rate above 100 min−1) may
occur due to the right heart strain, [21, 23, 24]. However, as the symptoms are often very
nonspecific, pulmonary embolism is one of the most common unexpected findings of an
autopsy, [25].

Symptoms Probability
Testing Imaging Therapy

Figure 2.2: Clinical course, starting with various symptoms of the patient, progressing to exclusion
procedures of PEs by probability tests, to imaging procedures, and if PE is successfully
diagnosed, to various therapy interventions.

After the symptoms have given a first suspicion of a pulmonary embolism, so-called probability
tests are first used to exclude a pulmonary embolism. One probability test is the Wells Score,
developed by Philip Steven Wells in 1995, which uses clinical criteria to determine the
likelihood of a pulmonary embolism, see Table 2.1, [21, 24, 26]. Another method to rule
out a PE are D-dimer tests. D-dimers are proteins formed during the degradation of fibrin, a
protein in the blood. During the body’s own process of degrading a blood clot, the fibrin is
split and the resulting D-dimers can then be detected by the test, which is an indication of
a blood clot. These tests usually have a high sensitivity but a low specificity, which means
that if the patient has a pulmonary embolism, they are likely to be positive. However, this
does not mean that if they have a positive test result, the patient has a pulmonary embolism,
[21, 23, 24, 26].
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symptoms points

clinically suspected DVT 3
alternative diagnosis is less likely than PE 3
tachycardia (heart rate > 100

min ) 1.5
surgery or immobilization (min. 3 days) within the last month 1.5
history of DVT or PE 1.5
hemoptysis (coughing up blood) 1
malignancy (under therapy or palliative therapy within last 6 months) 1

Table 2.1: The Wells Score predicts the likelihood of PE by considering different symptoms and
summing up the corresponding points. If the score > 4, then the risk of suffering from PE
is likely, if score ≤ 4, it is unlikely, [26].

Figure 2.3: Examples of CTA images with a riding thrombus (left) and multiple contrast cavities
(right) within the pulmonary arteries. The embolisms are marked in red.

As the first choice of imaging methods for the diagnosis of pulmonary embolisms, a CTA is
used. Here, an iodine-containing contrast agent is injected according to specific protocols
that specify the dose and time period between injection and image acquisition. Due to the
strong absorption property of iodine, the arteries become visible. Pulmonary embolisms can
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Figure 2.4: Schematic representation of the lung segments and pulmonary arteries, inspired from [2].
The right lung has three lobes and ten segments, while the left lung has only two lobes and
eight segments. Segment 1 and segment 2 are fused in the left lung and segment 7 (which
is omitted in the literature) is merged with segment 8, [28]. The lobes are separated by
gray lines and the segments are numbered.

be observed on a CTA as a filling defect surrounded by a contrast rim in a pulmonary artery,
see Figure 2.3, [4, 23, 26].
Figure 2.4 shows a sketch of the general structure of the lung and the arterial tree. The
inspection process is straight forward. Starting at the pulmonary trunk, encircled in red, and
walking along the arteries, tracing each arterial branch by examining contrast variations. The
average radiologist has a sensitivity between 77% and 94%, [27], depending on the experience,
the concentration and especially on the time that is taken to analyse a scan, making it difficult
to measure. Another imaging method is a ventilation-perfusion scan, also referred to as a
lung scintigraphy, in which the distribution of an inhaled radioactive gas is measured. The
thrombus can be identified by the observation that some areas are ventilated but not perfused.
This method is used, for example, in case of contrast material allergies or pregnancy due to
its lower radiation exposure, [4, 21, 23].
After the patient is diagnosed with pulmonary embolism, various treatment methods can
be applied, depending on the progression and severity of the embolism. Mostly treatment
of pulmonary embolisms relies on anticoagulant medications, such as lysetherapy, which
usually involves intravenous injection of heparin to dissolve the thrombi. Another option is
the use of so-called inferior vena cava (IVC) filters. These are inserted into the inferior vena
cava and prevent thrombi from reaching the lungs travelling from the lower extremities. In
severe pulmonary embolisms, surgical removal by embolectomy is also considered. The clot
is removed directly from the opened pulmonary arteries. To prevent further embolisms from
occurring, prophylactic measures are usually performed, such as administration of low-dose
heparin and also compression of the lower extremities, [23, 24].
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2.2 Convolutional Neural Networks

In this section, a short introduction to deep learning, in particular CNNs, is given. We explain
the basic concepts of training a neural network and introduce the U-Net structure on which
our later implemented networks are based.
In this work we focus on neural networks, especially CNNs from the area of supervised
learning, which means that for each input data, the correct label is available. Thereby, we
consider a segmentation task, where the input data are 3D CTA images and the corresponding
labels are the respective segmentation masks.
Our input data set can be described as the set {(Xi,Yi)}i=1,...,N , where N is the amount of data,
Xi ∈ Rhi×wi×di is the CT input image, measured in the so-called Hounsfield scale (HU), and
Yi ∈ Nhi×wi×di

0 is the corresponding label mask, with height hi, width wi and depth di.

fp

Input: X Output: fp (X) ≈ Y

Figure 2.5: The basic concept is to determine the function fp, predicting for the 3D input CTA X the
segmentation mask fp (X), which is compared to the ground truth segmentation mask Y.

The Hounsfield scale is used to describe the recorded attenuation of X-rays passing tissue
during a CT measurement. It is a relative quantitative measure, which is determined by a
linear transformation THU : R→ R of the attenuation coefficient µ ∈ R, defined as

THU(µ) = 1000
µ − µwater

µwater − µair
. (2.1)

The image with the calculated HU values is then usually displayed as a grayscale image.
Water, with an absorption coefficient of µwater = 0.192 1

cm always has a CT value of 0HU and
air with µair ≈ 0 1

cm corresponds to -1000HU, regardless of the X-ray spectrum. For all other
materials, the HU value depends on the used X-ray spectrum, see Section 2.3. A change of 1
HU corresponds to a change in X-ray attenuation of 0.1% relative to water. In practice, the
HU values of different materials are mostly covered by the interval [−1000, 3095], whose
4096 different integer values can be expressed by 12 bits, 212 = 4069, [29, 30, 31].



12 Theoretical Foundation

The label mask Yi of image Xi consists of Ncc,i ∈ N different connected components, which
can be interpreted as different embolisms. We define the set of all different connected
components as

N cc,i :=
{

1, . . . ,Ncc,i
}
. (2.2)

For simplification, we omit the index i in the following and consider only one tuple (X,Y) of
our data set. Each entry yi of the matrix Y, where i is the multi index, defined as i = (i, j, k),
can take the following values

yi =

{
cr , if yi belongs to the connected component cr ∈ N cc,
0, if yi is background.

(2.3)

In contrast to detection problems, we can have several embolisms within one instance. The
objective is to detect and to segment them as accurate as possible. In Section 3.2 an overview
of different evaluation methods is given.
The objective is to generate a function fp : Rh×w×d → Rh×w×d , dependent on the parameters
p ∈ R� that approximates for each normalized input value X the exact label mask Y

fp(X) ≈ Y. (2.4)

According to the universal approximation theorem, for each function there exists a neural
network that can approximate it arbitrarily well. There are different mathematical proofs
about the needed restrictions of the network, as the number of layers, the number of neurons
or the properties of the activation function, to make this universality possible. For example
Cybenko shows in [32] that with a hidden layer any continuous function on a compactum can
be approximated arbitrarily well. But although we know that such a network exists that does
not mean that we are able to construct or even recognize such a network, [33].
To evaluate the quality of the network fp, we need a convex cost function C, which should be
zero if the prediction approximates the ground truth values for all data.
The objective of machine learning is to find the optimal parameters p ∈ R� of the function fp,
such that the costs C : R� → R will be minimized,

min
p∈R�

C(p). (2.5)

Therefore, we use the gradient descent algorithm. In each step we want to adapt the parameter
vector by ∆p, such that the cost function decreases. To do so, we assume that C ∈ C1 and
approximate the costs with a first-order Taylor polynomial around p

C(p + ∆p) ≈ C(p) + ∇C(p)T∆p, (2.6)
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where ∇C(p) denotes the gradient of the cost function, defined as

∇C(p) :=
(
∂C(p)
∂p1

, . . . ,
∂C(p)
∂pl

)T

. (2.7)

To minimize the costs, we want to choose ∆p such that ∇C(p)T∆p become as negative as
possible. According to the Cauchy-Schwarz inequality for any vectors u, v ∈ Rn, we have

− ‖u‖2‖v‖2 ≤ uTv ≤ ‖u‖2‖v‖2, (2.8)

where we can see that u has to be parallel to v to become as negative as possible. Thus we
choose

∆p = −η∇C(p), (2.9)

with suitable small learning rate η > 0. In each step of the gradient descent method, the costs
are reduced by ∆C ≈ −η · ‖∇C‖2, [34]. The choice of the learning rate plays an important role,
if the learning rate is too small, the convergence speed will be too low, if the learning rate
is too large, the linearisation from Equation (2.6) will not hold, and the costs might diverge,
[33].
We start the gradient descent method with a randomly initialized parameter vector p and
iterate

p← p − η∇C(p), (2.10)

until we meet a stopping criterion, [34]. There exist many different initialization strategies,
that we not discuss in the scope of this work. For more information see [35, 36].
After we have seen that the goal of training is to minimize the cost function and thus the
predicted values approach the exact labels, we now want to look at how our function fp, i.e.,
our neural network, is constructed. The network structure is shown in Figure 2.6. Based on
this, the main operations of a CNN are briefly explained below.
In this example we consider only one input image, i.e., the channel size is c = 1 and the
dimension of our input is 1 × h × w × d. Normally, in a gradient descent update step, a
mini-batch of size mb, i.e., several images are passed through the network at the same time.
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1 30 30

60 60

120 120 120

180 60

60 30 30 1

3 × 3 × 3 conv, leaky ReLU
copy and concatenate
1 × 1 × 1 conv

2 × 2 × 2 up-sampling

2 × 2 × 2 maxpool

Figure 2.6: The U-Net architecture consists of an encoder, which reduces the dimension of the
input space and captures the context of the image, and a decoder, which transforms the
dimensionally reduced data back to the original input size. The encoder contains three
blocks of two convolutional layers, followed by a maxpooling layer, except in the last block,
where no maxpooling layer exists. Above each output the number of channels is stated,
which is identical to the number of filters used. In each convolution block the number
of filters are doubled, starting with 30 filter in the first block. The decoder contains also
blocks with two convolutional layers, but followed by an up-sampling layer instead of
maxpooling. In the last layer a 1 × 1 × 1 convolution is used with sigmoid activation. The
sigmoid activation function returns the segmentation mask representing the pixel-wise
classification. The output of each encoder block has a shortcut connection to the input of
the corresponding decoder block.
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Convolutions: The main operations which are performed in a CNN are convolutions. These
are realized in PyTorch and TensorFlow through cross-correlations which can easily be
visualized by multiplying each element of the kernel with the receptive field of the image,
displayed in Figure 2.7. The output of the cross-correlation operation is called a feature map.
In a CNN in each convolutional layer many different filters are applied, which are excited
by different properties of the image. In our implementation, see Figure 2.6, we use filters of
size 3 × 3 × 3 and we pad the image with zeros such that the output images always have the
same size as the input images. We start by using 30 filters in the first convolutional block and
double it for each layer of the encoder. In [37], Zeiler et al. visualize the filters of the different
layers and by which part of the image they were stimulated. They found out that filters in the
first layers detect more coarse features, such as edges or colors. Some filters resemble the
Gabor filters known from image processing. The deeper one goes into the network, the more
complex are the features detected by the filters. Additionally, for each feature map a bias is
added. Note that the weights of the filters and the bias are the trainable parameters p. For
more information about the convolution operation in neural networks, see [38].

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

?

f1,1 f1,2

f2,1 f2,2
=

a1,1 f1,1 + a1,2 f1,2
+a2,1 f2,1 + a2,2 f2,2

a1,2 f1,1 + a1,3 f1,2
+a2,2 f2,1 + a2,3 f2,2

a2,1 f1,1 + a2,2 f1,2
+a3,1 f2,1 + a3,2 f2,2

a2,2 f1,1 + a2,3 f1,2
+a3,2 f2,1 + a3,3 f2,2

Figure 2.7: Visualization of the cross-correlation operation. The filter is superimposed on the image,
marked in blue. This field is called the receptive field. This region is multiplied with the
filter weights and summed up, resulting in an entry of the feature map. Then the filter is
shifted by the so-called stride s = 1 to the right. This process is repeated until the whole
image has been sampled.

Activation function: After the convolution operation and the added bias, an activation
function is applied. We use the leaky ReLu function Φ : R→ R, which is defined as

Φ(x) := max(x, 0) + min(0, αx) =

{
αx, x ≤ 0,
x, x > 0, (2.11)
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with α = 0.01. It should be mentioned that the leaky ReLu function is used although it is
not differentiable at x = 0, but it is at least piecewise differentiable. The derivative can be
expressed by the Heaviside function. The Heaviside function H : R→ R is defined as

H(x) :=
{

0, x ≤ 0,
1, x > 0. (2.12)

The piecewise defined derivative can then be expressed by

H(x) + αH(−x),∀x ∈ R\ {0} . (2.13)

Fortunately the case that we reach zero on a computer is unlikely, as long as we do not run out
of precision points. It is necessary that the activation function is a non-polynomial function
to learn more complex scenarios, otherwise all layers of the network would collapse into one
layer and only polynomial problems could be approximated, see [39, 40, 41].
Pooling: Another import layer is the pooling layer, which reduces the size of the feature maps.
A filter runs over the feature map and pools the data, for example by taking the maximum
value as the output. This reduces the size of the output image. Here, we use pooling filters of
size 2 × 2 × 2 and strides of the same size, which means that after a pooling layer the size is
halved, see Figure 2.8, [38].
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Figure 2.8: Visualization of a 2D maxpooling operation with an activation map of A ∈ R4×4 and a
pooling filter P ∈ R2×2, resulting in an output activation map of halved size.

Shortcut connection: It has been observed that in deep networks, the so-called vanishing
gradient problem occurs. This means that when adjusting the weights the gradient becomes
smaller and smaller with each propagation of the error to the previous layer, leading to a
vanishing gradient, which impedes learning, [42]. This can be overcome with so-called
shortcut connections. Here, the output of a previous layer is simply forwarded to the input of
a back layer by concatenating them, [42]. In the U-Net structure each output of an encoder
block is concatenated with the input of the corresponding decoder block, see Figure 2.6.
Up-sampling: Because the output size of the network has the same dimension as the input
size of the network, up-sampling techniques are needed to undo the dimension reduction by
the maxpooling operation. Thus, these layers increase the resolution of the output, [18].
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Backpropagation: The training of the network is done with the well-known backpropagation
algorithm. It consists of two steps: forward propagation and back propagation. In the forward
propagation, the input data is propagated forward through the network and the prediction
of the network is calculated. As already mentioned, the quality, e.g., error of the network
is determined by the cost function. In the backpropagation step, the error of the network
is propagated back through the network. There, the partial derivative of the cost function
according to each parameter of p is calculated. These can then be adjusted such that the cost
decreases, see Equation (2.9). For a more detailed description see [34].
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2.3 CT and DECT

In conventional CT, a single X-ray spectrum is used to image the human body based on
different attenuation of tissues within the patient. Figure 2.9 shows the main components
of a CT set-up. The source emits X-rays that pass through an object, where they are partly
absorbed. The attenuated beams are then measured at the detector, [43].

source

object

detector

s0 = 0

sD

Figure 2.9: A conventional CT setup consists of an X-ray source that irradiates an object (patient),
and a detector, measuring the attenuated radiation. The unit consisting of X-ray tube and
detector is called gantry and can be rotated around the object. We consider the X-ray
attenuation along the displayed line between the source at s0 = 0 and the detector at sD.

Let I : R→ R+ be the intensity of the X-ray. By travelling through an inhomogeneous object
along a line between the source and the detector, drawn in Figure 2.9, it is damped by the
attenuation µ. We consider the attenuation as a function µ : R→ R, where µ(s) describes the
attenuation along our X-ray beam between the source s0 and the detector sD. We assume that
µ(s) = 0 outside the considered object.
The decrease of the radiation intensity I of the X-ray beam by travelling through an inhomo-
geneous object can be described by

dI
I(s)

= −µ(s)ds, (2.14)

resulting in an ordinary differential equation. Using the initial condition I(0) = I0, which is
the X-ray intensity at the source, leads to the Beer-Lambert law

ID = I(sD) = I0e−
∫ sD

0 µ(s)ds, (2.15)

where ID is the intensity at the detector and sD is the source detector distance.
Converted, this results in the so-called projection p

p = − ln
(

ID

I0

)
=

∫ sD

0
µ(s)ds. (2.16)
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In a CT measurement, we want to determine the attenuation coefficient µ : R2 → R at each
point (x, y) of our patient coordinate system. For simplification we consider only one slice of
our CT measurement, resulting in a 2D image. The representation of the spatial distribution of
the absorption coefficient is our CT image, introduced in Section 2.2. As we have already seen
this cannot be measured directly. To reconstruct µ we have to measure different projections p.
To achieve this, the source and detector are rotated by at least 180◦ plus an fan angle around
the object, resulting in projection data p(ξ, γ) for different rotation angles γ at respective
detector voxels ξ. Figure 2.10 sketches the rotated gantry. Here, (x, y) is the fixed coordinate
system of the patient and (ξ, η) is the rotated coordinate system of the gantry.

x

y

ξ

η

detector

source γ

Figure 2.10: The (ξ, η) system is rotated by different angles γ relative to the fixed (x, y) system. The
dashed line is one example path of δξ,γ .

The relation between the projection data p and the attenuation coefficient µ can be expressed
by the Radon Transformation. In general the Radon transformation R maps a function on Rn

into the set of its integrals over its hyperplanes of Rn, [44]. Here, we consider the projection
along the path δξ,γ : [0, sD]→ R2, described by its distance ξ to the origin and the rotation
angle γ

p(ξ, γ) = R (µ(x, y)) =

∫
δξ,γ

µ(x, y)ds. (2.17)

The integration path is defined as follows,

δξ,γ = RT
γ

(
ξ
η

)
, (2.18)

where Rγ is the rotation matrix

Rγ =

(
cos(γ) − sin(γ)
sin(γ) cos(γ)

)
. (2.19)
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Equation (2.17) can be rewritten as follows using the transformation theorem

p(ξ, γ) = R (µ(x, y))

=

∫
δξ,γ

µ(x, y)ds

=

∫ sD

0
µ
(
δξ,γ(η)

)
‖δ′ξ,γ(η)‖2dη

=

∫ sD

0
µ(ξ cos(γ) − η sin(γ), ξ sin(γ) + η cos(γ))dη.

Without loss of generality, we can extend our integration limits by assuming that µ is zero
outside our considered object. Thus, for every ξ and every γ we get the following relation

p(ξ, γ) =

∫ +∞

−∞

µ (ξcos(γ) − ηsin(γ), ξsin(γ) + ηcos(γ)) dη. (2.20)

This defines a mapping of 2D data {µ(x, y) | x, y ∈ R} to the 2D data {p(ξ, γ) | ξ, γ ∈ R}. The
image µ(x, y), x, y ∈ R can be reconstructed with various methods, like the Fourier Based
Reconstruction, using the Fourier Slice theorem or the Filtered Backprojection [1, 44, 45, 46].
The aforementioned reconstruction methods are based on the Beer-Lambert law, see Equation
(2.15), where no energy dependencies are considered. Thus, we assume that the X-ray
spectrum is monochromatic, although in fact the emitted photons have different energies
resulting in a polychromatic spectrum, shown in Figure 2.11. The continuous spectrum
results mostly from the so-called "Bremsstrahlung" which originates from the deceleration of
an electron by the deflection at an atomic nucleus. Thereby, photons with arbitrary energy
between 0 and the complete kinetic energy of the electron can be produced. The characteristic
peaks result from the interaction of an electron with the K-shell: An electron of the K-shell is
ejected and leaves a hole, which is filled by an electron from an outer shell. Thereby, a photon
is emitted with exactly this characteristic energy that corresponds to the energy difference
between an outer and an inner shell [15, 46, 47].
Thus, the attenuation law of Equation (2.15) has to be adapted for polychromatic radiation by
integrating over the energy E

ID =

∫ Emax

0
I0(E)e−

∫ sD
0 µ(s,E)dsdE, (2.21)

which cannot be easily solved for µ as in the monochromatic case.
Assuming monoenergetic radiation as in traditional CT measurements, the energy information
of the attenuation coefficient is lost. In contrast to the so-called single energy computed to-
mography (SECT), spectral energy computed tomography (SPECT) or DECT take advantage
of this energy dependency for material differentiation and tissue characterization. Therefore,
they have to measure with more than one spectrum. The theoretical foundations were already
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Figure 2.11: Typical X-ray spectrum for tube voltage of 120keV, inspired from [1] and [15].

established in 1979 shortly after the invention of CT, but due to technical limitations at that
time, it could not be applied for the clinical use case. The terms DECT and SPECT are often
used mistakenly as interchangeable in literature: while SPECT is able to measure with more
than two spectra and therefore needs more advanced systems like photon counting detectors,
DECT uses only two spectra and is a subset of SPECT, [15, 43].
In this work we use DECT data. As already mentioned it contains projection data of two
different spectra, which are combined to get more information about the material. Mostly
X-ray tube voltages of 80 kV for the lower spectrum and 140 kV for the higher spectrum are
applied. It is desirable to have as little overlap of the spectra as possible, but simultaneously
the tube voltage must not be too low because then the radiation will be completely absorbed. If
the tube voltage is too high, it will result in an increased radiation exposure and the difference
in soft tissue attenuation might be lower, [15]. There are several methods to acquire low
and high energy spectra data, three of them are drawn in Figure 2.12 which shows typical
DECT configurations. Figure 2.12a shows a dual-source detector configuration, where the
same object is scanned by nearly perpendicular high and low energy spectral X-ray sources.
One advantage is that the spectra are generated in two different tubes independently from
each other, making separation of spectra simple. Disadvantages are limited space by using
two sources and detectors resulting in a smaller field of view and cross-scatter effect which
interferes with the respective other measurement. In addition it is vulnerable to motion
artifacts. Figure 2.12b shows a single source detector configuration which switches fast
between low and high energy spectra. The advantages are that this method is really fast and
robust against motion artefacts, but the projections of the two measurements are not perfectly
aligned, making material decomposition in the projection domain difficult. Figure 2.12c
displays a so-called sandwich detector, which consists of a two-layered scintillator detector,
where the first layer absorbs lower-energy and the second layer absorbs higher-energy photons.
This results in simultaneous measurements of the projection data which is robust to motion
artefacts and can be directly decomposed in the projection domain. One disadvantage is that
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(a) Dual-Source (b) Fast kV Switching (c) Sandwich Detector

Figure 2.12: Different DECT configurations, with two perpendicular sources and two detectors (Dual-
Source), one source and one detector (fast kV switching) or one source and two detector
layers (sandwich detector). The low energy is highlighted in yellow and the high energy
in blue.

the spectra can not be separated perfectly [15, 43, 48]. In this work, the images are captured
with a Philips IQon spectral CT scanner, which uses sandwich detectors for separating low-
and high-energy data.
Now, we take a closer look at how material characterization with two measured spectra is
realized. Due to the fact that DECT material characterization relies on the different energy
dependencies of attenuation for different materials, we investigate which factors contribute to
the attenuation within matter. The total attenuation can be decomposed into five summands
resulting from different physical effects

µtotal = µPE + µC + µR + µpair + µph,n, (2.22)

where µPE denotes the attenuation coefficient for photoelectric absorption, µC for Compton
scattering, µR for Rayleigh scattering, µpair for pair production and µph,n for photon-nuclear
reaction. Inmedical use cases, the predominant factors for attenuation result from the Compton
scattering and the photoelectric effect, [15, 46, 48]. Thus, Equation (2.22) simplifies to

µtotal ≈ µPE + µC . (2.23)

Figure 2.13 contains the main principle of the Compton scattering and the photoelectric
effect. The Compton effect is a phenomenon in which an incoming photon collides with an
electron of the outer shell and is scattered. The electron thereby receives part of the energy
of the incoming photon and becomes a free electron. The Compton effect does not strongly
vary between different materials and is only weakly dependent on the photon energy. In the
photoelectric effect, the incoming photon collides with an electron of the K-shell. The photon
is completely absorbed and the electron receives the complete energy of the incoming photon,
which is sufficient to be ionized. An electron from the outer layer then falls back onto the
K-shell, emitting a photon with exactly the energy difference between the outer and inner
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Figure 2.13: Compton scattering (left) and photo effect (right), where the red circle stands for the
atomic nucleus and the gray circle represents the electrons in the different shells.

shell. Materials with small atomic numbers exhibit a low photoelectric effect, while materials
with large atomic numbers exhibit a very strong photoelectric effect. Moreover, if the incident
radiation is close to the K-shell binding energy, the probability of photoelectric activity is
highest and therefore the absorption spectrum has local maxima there, [46, 48].
The material decomposition is based on exactly these two effects, as they have different
strengths in different materials.
Mainly responsible for the material decomposition is the photoelectric effect, since it depends
very strongly on the energy and the atomic number. To distinguish between different materials,
they must differ in their atomic numbers. The Compton effect conversely depends mainly on
the electron density. For example, materials with higher atomic numbers such as calcium
(Z=20) and iodine (Z=53) can be easily distinguished from materials with lower atomic
numbers such as hydrogen (Z=1), carbon (Z=6), nitrogen (Z=7) and oxygen (Z=8), [15].
The attenuation can be written as a linear combination of energy dependent basis functions f
and energy independent coefficients ax, x ∈ {PE,C}

µ(x, y; E) = aPE(x, y) fPE(E)︸ ︷︷ ︸
µPE

+ aC(x, y) fC(E)︸ ︷︷ ︸
µC

, (2.24)

where
fPE(E) =

1
E3 , (2.25)

and fC(E) is the so-called Klein-Nishina function fKN (E)

fKN (E) =
1 + α

α2

[
2(1 + α)
1 + 2α

−
1
α

ln(1 + 2α)
]

+
1

2α
ln(1 + 2α) −

1 + 3α
(1 + 2α)2 , (2.26)
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with
α = α(E) =

E
510 · 975

keV. (2.27)

The coefficients of Equation (2.24) are approximately

aPE(x, y) ≈ K1
ρ(x, y)

A
Z4, ∀x, y (2.28)

and
aC(x, y) ≈ K2

ρ(x, y)
A

Z, ∀x, y, (2.29)

whereK1 andK2 are constants, ρ is the mass density andZ is the atomic number, [1, 17, 43, 49].
As we have seen in Equation (2.16) and (2.20), in conventional CT our measured raw data
are line integrals of the attenuation coefficient in beam direction. Here we also measured line
integrals of the energy-independent coefficients aPE and aC because the energy dependent
basis functions can be drawn out of the integral.∫

µ(x, y; E)ds = APE fPE(E) + AC fC(E), (2.30)

where
APE =

∫
aPE(x, y)ds and AC =

∫
aC(x, y)ds. (2.31)

Inserting Equation (2.30) into Equation (2.21) and exploiting the fact that we have taken two
measurements, one with low energy, and one with high energy X-ray spectra, results in the
following non-linear system of equations

Ilow(APE , AC) =

∫
I0(E)eAPE fPE (E)+AC fC (E)dE, (2.32)

Ihigh(APE , AC) =

∫
I0(E)eAPE fPE (E)+AC fC (E)dE. (2.33)

This system has to be solved for APE and AC; several approaches exists in current research,
which would go beyond the scope of this work. Assuming, that we have APE and AC, aPE
and aC can be reconstructed similar as in the conventional CT using a Radon transformation,
[1, 49].
Figure 2.14 shows some DECT representations in blue, which can be generated from the
low- and high-energy raw data (marked in red). In the first step the raw data is decomposed
into Compton and photo data and reconstructed to the Compton ac(x, y) and photo aPE(x, y)
images (Basic Decomposition). As shown in Equation (2.24) these can be combined linearly.
Evaluating the energy-dependent basis functions at different energy levels, different so-called
monoenergetic representations can be computed. Monoenergetic images simulate how the
actual image would look like if the data were measured with a monochromatic X-ray beam at
that energy and with the intensity corresponding to that energy. Thereby, different contrasts
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can be generated. For example iodine has a high atomic number and is highly energy-
dependent and illustrates the change within the monoenergetic images well. Due to the fact
that iodine has a K-edge of 33.2 keV the attenuation is highest at 40 keV and decreases at
higher energies. Thus the lower the energy, the higher the iodine attenuation and the better
the contrast, because low-Z materials are less energy-dependent. Usually, energies between
40 keV and 200 keV are considered [15, 16, 17, 48].

High
Energy
Data

Low
Energy
Data

Basic
Decomposition

Compton
Image

Photo
Image

Linear
Combination

Material
Decomposition

MonoE
Conventional

Image

VNC Ze f f
Iodine
Image

Figure 2.14: Different DECT representations, which can be constructed with material decomposition
or linear combination from the low and high energy data.

Unlike with the monoenergetic images, which have different contrast, but the same basic
anatomic information as in conventional CT images, different basic material decomposition
(BDM) images can also be constructed. The main principle of the material decomposition
is that different materials have different contributions to Compton and photo attenuation,
see aPH , aC in Equation (2.24). Figure 2.15 shows a qualitative sketch, how the material
decomposition can be performed. For example, an iodine-water material pair can be used.
The attenuation of pure water consists of the following contributions of photo and scatter
basis functions

µwater(E) = awater
PH fPE(E) + awater

C fC(E). (2.34)
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Figure 2.15: Material decomposition with iodine-water as the basis pair, inspired by [16]. Each
material can be decomposed by its proportions of iodine and water. Blood (red dot) has
no iodine proportion. An iodine solution (blue) has the same water contribution as blood
and an additional iodine proportion. Bone (green dot) has a high iodine as well as water
proportion.

Thus, the relative contribution of the photoelectric and Compton effect of water can be
represented on a line. While in water the Compton effect dominates, iodine has a higher
photoelectric effect and can be represented on another line within the Compton photo plot.
Now, each measured Compton and photo attenuation can be expressed by the water-iodine
basis pair

µBone(E) = aBone
PH fPE(E) + aBone

C fC(E) = aBone
waterµwater + aBone

I µI. (2.35)

The decomposition does not imply that the material physically consists of this proportion of
water and iodine, but that the attenuation of the material is the same as that of this combination
of water and iodine. In this way, only iodine components can be displayed in the image, or
the iodine component can be virtually suppressed to generate virtual non-contrast (VNC)
images. Looking at the coefficients in Equation (2.28) and Equation (2.29), one can see
that the attenuation can be parameterized by the effective atomic number Z . Thus, Z can be
determined as the ratio of the two coefficients.
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2.4 Related Research

In this section an overview of related research is presented. Different CAD approaches for
the automatic detection of PEs are compared. We differentiate between classical and deep
learning approaches.
Various efforts to detect PEs in CT scans have been made since the last decade [3]. While
first publications use classical approaches, e.g., [6, 7, 8], current papers put a stronger focus
on deep learning approaches, such as [10, 11, 12, 50], due to the great success in other
medical imaging areas [9]. Table 2.2 provides an overview of related research papers. In the
following, we briefly discuss the basic concepts. Classical approaches consist mostly of the
steps displayed in Figure 2.16.

Candidate
Detection

Feature
Extraction Classification

Figure 2.16: Key components of classical PE detection approaches. The candidate detection step
makes a preselection of suspicious regions, mostly implemented with classical image
processing techniques, on which different features, considering for example the intensity
or geometrics, are extracted. The hand-crafted features are then used to detect pulmonary
embolisms, mostly using classical machine learning algorithms.

The classical approach is realized for example in [6, 7, 8]. For candidate detection a vessel
segmentation is performed in all approaches, but realized differently. While Zhou et al. extract
the vessels via a clustering approach based on Expectation-Maximum [7], Bouma et al. apply
intensity and morphological operations [8]. The proposed candidates are determined based
on intensity values, the eigenvalue of the hessian matrix and morphology transformations,
[8]. From the candidates, different features are extracted. These include geometric features,
such as size or shape, intensity features or general location information. These features are
utilized for the PE classification, which can be realized with conventional machine learning
algorithms, such as KNN or decision trees, [8].
From Table 2.2 it can be seen that the earlier publications focused strongly on the classical
approach, while in the later publications these have been partially or completely replaced
by deep learning techniques. For example, in Tajbaksh et al., the feature extraction and
classification step was replaced by a CNN that combines both steps. Candidate selection is
still based on a classical approach. A novelty here is that the candidates are aligned by the
vessels, so that the most important 3D information from the cross-sectional and longitudinal
2D image can be included, which is then used for the classification. The vessel alignment
approach was also used by Yang et al. and Lin et al. In addition, it is evident from the table that
the trend is moving more and more towards end-to-end approaches. While the work of Yang
et al. still consists of two separate steps, Lin et al. implemented an end-to-end network. Also
Huang et al. implemented an end-to-end architecture called P-net, which has 3D inputs of the
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entire images, but with reduced slices, unlike the 2D CNNs which consider only the cross
sections, [11]. The end-to-end architecture eliminates the need for tedious and complicated
pre-processing.
Furthermore, it must be mentioned that in earlier papers, the evaluation was mostly done on
private data sets. Therefore, sensitivities of 100%, such as in Masutani et al. are difficult
to compare with other sensitivities. There, no concomitant disease or image artifacts were
included in the data set. Zho et al. has included such cases in their evaluation, whereby the
sensitivity becomes worse. In Bouma et al. they achieve a higher sensitivity at that time
despite using comorbidities.
Due to the lack of public data sets and poor possibility for comparison, annotated data sets,
e.g., in the form of the CADPE challenge or the FUMPE were published. For example, it can
be seen that Tajbaksh et al. achieves 83% on its own data set, but only 40% on the CADPE
data set. Also, the work of Yang et al. and Lin et al. was evaluated on the CADPE data set.
However, it must be added that here the data set was annotated independently, and thus the
comparison with the previous results is not fair.
As already mentioned, we use a deep learning approach in this work which is based on the 3D
U-Net structure. We train with three different data sets, the CADPE, FUMPE and INHOUSE
data set. The INHOUSE data set results from collecting data for three years in a university
clinic, where the PEs are diagnosed retrospectively as comorbidities. We investigate the
generalizability and make several efforts to improve it.
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Authors Year Approach Data set (#cases) Results (TPR)
Masutani et al.
[6]

2002 Classical: one of the first CAD publications for PEs
1. vessel segmentation, 2. feature extraction,
3. voxel-based initial candidate proposal
4. connected component-based classification

private 19
11 with 21 PE
wo comorbidities

private
100% at 7.7 AFP
85% at 2.6 AFP
100% casewise

Zhou et al.
[7]

2005 Classical: include comorbidities
1. vessel segmentation 2. region extraction 3. feature
extraction; 1,2 are based on EM segmentation

private
14 with 163 PE

private
52% at 11.2 AFP

Bouma et al.
[8]

2009 Classical: better generalization due to comorbidities
1. vessel segmentation 2. candidate detction
4. feature extraction 5. classification

private
39 train (202 PE)
19 test (116 PE)

private
63% at 4.9 AFP

Gonzales et al.
[3]

2013
2019

CADPE challenge: public data set for benchmarking
UA-2.5D: U-Net based segmentation network on
five slice input CT images
MeVis: classical approach that finds filling defects

public
20 train (105 PE)
20 test (130 PE)
40 postchallenge

Winner 2013
MeVis 40% at 1.35 AFP
Winner 2019
UA-2.5D 74% at 2 AFP

Tajbaksh et al.
[12]

2015 DL: CNNs for FP reduction
1. lung segmentation 2. candidate detection
3. vessel alignment 4. longitudinal and cross-sectional
image as CNN input

private
121 (326 PE)
public
CADPE

private
83% at 2 AFP
public
CADPE 40% at 2AFP

Yang et al.
[50]

2019 DL: two stage CNN for PE detection
1. 3D candidate proposal network
2. vessel alignment of each cube
3. 2D classification network of cross-sections

private
129 (269 PE)
public
CADPE

private
84.2% at 2 AFP
public
75.4% at 2 AFP

Lin et al.
[10]

2019 DL: end-to-end CNN for PE detection
1. 3D candidate proposal network
2. vessel alignment subnet
3. 2D classification network of cross-sections

private
129 (269 PE)
public
CADPE

private
80.7% at 2 AFP
public
86.8% at 2 AFP

Table 2.2: Related research of CAD algorithm of PEs. The overview contains next to the main author and the year of publication, a short key
point summary of the used approach. There, we mainly differentiate between classical and deep learning (DL) approaches.
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3
Methods and Materials

This chapter gives an overview of the methods and materials applied in this work. First of
all, in Section 3.1 a detailed description of the existing data sets is provided, followed by the
introduction of various evaluation metrics in Section 3.2 and concluded by presenting an
overview in Section 3.3 of the methods used and experiments performed in order to answer
the research questions of this work, see Section 1.2.

3.1 Data set

3.1.1 Overview

The data sets presented in the following contain CTA scans. The acquisition of these scans
usually consists of the following steps: injection of a contrast material and capturing of the
images. There exist standardized protocols which define the amount of contrast material
and time between contrast agent injection and image acquisition. Usually, for imaging the
pulmonary arteries, 20-30 ml of a 370 mg/ml iodine solution is injected as a contrast material.
To ensure that the pulmonary arteries are full of contrast material, a strictly defined time
interval of 6-13 seconds must pass between contrast material injection and image acquisition
[5]. To reduce motion artifacts the images are captured during a single breath-hold.
We examine a total of four different cohorts from three different sources. Two data sets result
from public challenges, the so-called FUMPE data set [2] and the CADPE data set [3]. The
remaining data sets are in-house data sets that were provided by the Uniklinik Köln (UKK).
Table 3.1 gives an overview of these data sets. Before we compare the data sets in more detail,
we first describe the data collection and processing steps.

Public data sets

The FUMPE data set, published in 2018, consists of 35 CTAs, while the CADPE data set
includes a total of 91 scans. The first subset of CTA scans from the CADPE data set was
published in 2013 for the CADPE challenge: 20 CTA scans were provided for training, while
20 were used for evaluation of the challenge. The other 51 scans were first made available
in 2019. Both the FUMPE data set and the CADPE data set have the same objectives: to
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create publicly available data sets for benchmarks of existing algorithms and to facilitate the
development of new algorithms, as well as the detection and segmentation of PEs. Most of the
CADPE systems developed earlier were evaluated on private data sets, making an objective
comparison between the algorithms difficult, [2, 3].
The FUMPE scans were made using a NeuViz 16 multi-slice helical CT scanner designed by
Philips and Neusoft Medical System Co. While some of the scanned patients suffered from
typical symptoms of pulmonary embolism such as dyspnea, tachypnea and pleuritic chest pain
with haemoptysis, other patients had non-specific symptoms like tachycardia, palpitations,
wheezing and cough, [2].
The CADPE data set was collected with SIEMENS Somatom Sensation 40 scanners at six
different hospitals belonging to the Unidad Central de Radiodiagnóstico in Madrid in Spain.
In addition to PEs there could be other pulmonary diseases within the data set, [3].
Both data sets were labelled with semi-automated software tools. The FUMPE data set was
annotated by a radiologist with 5 years of experience who marked the region of interests
(ROIs) in each scan, which were then passed to a segmentation software. Afterwards, a
radiologist with 18 years of experience approved the annotations. Unlike other published
data sets, FUMPE contains additional prognosis information such as right ventricular (RV)
and left ventricular (LV) ratio, the reflux of the contrast material into the IVC, the pulmonary
artery (PA) diameter and the Qanadli-score (Q-score), computing a weighted sum of the
number of clots within the arteries. The higher the Q-score, the higher the mortality and
morbidity rates, [2].
The CADPE data set was annotated by three advanced radiologists, each with more than 15,
20, and 19 years of experience, respectively. Each of them marked ROIs of PEs independently,
passed to a semi-automated tool for segmentation. At the end the multiple image segmenta-
tions were fused with the STAPLE algorithm, [51]. Afterwards, a manual inspection of the
combined segmentations was performed, [3].

In-House Data Sets

In 2021, we received a total of 169 CTA scans from the UKK, where 114 patients suffered
from PEs, denoted as the INHOUSE data set, and 55 were healthy, called the NORMAL
data set. The main difference from the scans of the public challenges is that these scans are
DECT scans, i.e., each scan consists of a photo, scatter and noise image in addition to the
conventional image, which allows for the calculation of different DECT representations.
Figure 3.1 illustrates the development of the data set from the UKK in a flow chart. There,
all steps from image acquisition up to the pre-processing are included.
Firstly, in the image acquisition step the DECT images were recorded with a Philips IQon
Spectral CT scanner. Secondly, the images were annotated. Scans without any PEs were
grouped together to form the NORMAL data set, and those with PEs to form the INHOUSE
data set, respectively.
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Image Acquisition

Annotation NORMAL

INHOUSE

Transfer 1

Correction

Transfer 2

Merge Masks

Dilated Merge

Figure 3.1: The development of the INHOUSE data set in a flow chart. The images are collected.
Scans without PEs are grouped together to the NORMAL dataset, scans with PEs are
grouped together to the INHOUSE dataset. The INHOUSE dataset are transmitted via
two transfers. After correction of the annotations from Transfer 1, the masks from both
transfers are merged. At the end a dilated merging is performed to get a consistent
clustering of the PEs.



34 Methods and Materials

The review of the INHOUSE data set has shown that it was prone to label inconsistencies and
missing annotations. The following paragraph provides detailed information on how these
were addressed by manual correction and a data re-transfer.
The so-called INHOUSE data set was transmitted via two transfers: Transfer 1 (April 2021)
and Transfer 2 (November 2021). The first transfer resulted in 66 scans with corresponding
annotations. We noticed that some annotations were missing, presumably due to transmission
losses. Therefore, all data were checked and corrected if necessary. For this purpose, the
data set was divided among three Philips employees. Each person checked and corrected the
annotations in their part. To go through all slices of a scan takes about 30 min. In case of
uncertainties, the scans were noted and discussed together. At the end, all notations were
gone through a second time and checked by one person. The complete process took a total of
one month.
The left image of Figure 3.2 shows an example of a transmitted annotation, where a huge
proximal thrombus is missing in the main pulmonary artery. The right image displays the
same scan with our corrected annotation.

Figure 3.2: Axial view of CT scan and label mask overlay (green) with a missing annotation in the
left main pulmonary artery (left image) and correction (pink) of the missing embolus
(right image).

The second data transfer consists of 56 scans that had already been transferred during Transfer
1, but with novel annotations and 48 completely new scans. The 56 annotations from Transfer
2 were compared with the already-transmitted and corrected annotations from Transfer 1.
Cases in which the annotations differed from each were identified automatically. These
were then manually checked and merged (Merge Masks). Although the transmissions of
Transfer 2 were loss-free, some PEs added during the correction were still missing in the
label masks. However, many of the embolisms added in the correction step were present in
the new annotations of the second transmission.
We have noticed that in the new transferred cases, the way of annotations differs from each
other, e.g., some cases consists of several embolisms, but each embolism is annotated with the
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same label, see Figure 3.3. Such inconsistent labelling methods obstruct a correct evaluation
of the network performance. If one embolism is marked with several labels, and the network
predicts only a part of the clot, it seems that the network does not detect all embolisms, when
it actually does. The other way around, if several embolisms are marked with the same label,
it seems that the network detects all existing embolism, although it only detects one of them.
To overcome that, we used a dilated merging procedure as the last post-processing step to
generalize the annotations. We applied this step not only to the 48 new cases of Transfer 2,
but also to our 56 merged intersections of the corrected data from Transfer 1 and Transfer 2,
and to 10 corrected cases of Transfer 1 that were missing in Transfer 2, resulting in our 114
processed cases of the INHOUSE data set, see Figure 3.1.
Let Y ∈ Nw×h×d be the label mask of the image X ∈ Rw×h×d , w, h, d ∈ N. For each label Y of
our data set, we compute the connected component label mask C ∈ Nw×h×d that contains the
connected components c j , j = 1, . . . ,Ncc, Ncc ∈ N.
For each mask C, we compute the dilation with the structuring element B

D = C ⊕ B :=
⋃
b∈B

Cb, (3.1)

where Cb is translation of C by b. Afterwards, the connected component label mask Ĉ of the
dilated label mask D is determined, with the new connected components ĉk, k = 1, . . . , N̂cc ≤

Ncc. In order to determine which components c j belong to the same embolism, we define the
set Sĉk , containing all labels c j ∈ Sĉk that are equivalent to ĉk, meaning they are part of the
same embolism. All elements of the same equivalence class c j ∈ Sĉk get the same new label
ĉk assigned.

Cc j ← ĉk ∀c j ∈ Sĉk , (3.2)

where
Cc j :=

{
1, if ci = c j ,
0, otherwise, (3.3)

where i is the multi index of the array element. Thereby,

c j ∈ Sĉk if Cc j ∩ Ĉĉk
6= ∅. (3.4)

Figure 3.4 shows the CT images from Figure 3.3 after applying the dilated merging algorithm.
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Figure 3.3: One label (red) for all embolisms in case 268 (left) and several labels (coloured overlay)
for one embolism in case 288 (right) from the new transmitted data set.

Figure 3.4: Images from Figure 3.3 after dilated merging. Different embolisms that have been marked
with the same label were separated (left) and embolisms that had several labels were
merged (right).
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Figure 3.5: Comorbidities, such as cancer in the right lung (left and right) and infiltration (right).
Separation of vessels is more challenging, due to less contrast to neighboring artefact
tissue. Pulmonary embolisms are hardly visible.

During the data processing steps we noticed that there exist many cases within the INHOUSE
data set with comorbidities, which all were marked as comorbidity cases. Two examples are
shown in Figure 3.5 where it is obviously difficult to detect embolisms within. These were
labeled as comorbidities and account for approximately 30% of the data set and can later be
manually excluded from the training and/or evaluation.

Data Set Comparison

data set year N NPE
NPE
N DECT µ

[
cm3

]
σ
[
cm3

]
rµ
[
cm2 × cm

]
INHOUSE 2021 114 552 4.84 yes 1.44 4.55 0.772 × 0.5
NORMAL 2021 52 0 0 yes - - 0.772 × 0.5
FUMPE 2018 35 110 3.14 no 4.24 8.73 0.642 × 0.91
CADPE 2013/19 91 317 3.48 no 4.4 9.63 0.72 × 0.84

Table 3.1: Overview of the used data sets, where N is the number of cases and NPE the number of
embolisms in total, µ the mean and σ the variance of the embolism volume and rµ the
average resolution of the 3D scans.

Table 3.1 shows that the public data sets have approximately the same number of embolisms
per scan with 3.14 embolisms per case in the FUMPE data set, 3.48 embolisms per case in the
CADPE data set, except for the INHOUSE data set, where the average number of embolisms
is much larger, with 4.84 embolisms per case. Another metric by which we can estimate the
complexity of the data set is the mean volume of the embolisms. One can easily imagine that
if the data set consists of a few large proximal embolisms they will be more easily detected
than many small peripheral embolisms. Related to that, the CADPE data set has the largest
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thrombi with a mean volume of 4.4 cm3, closely followed by FUMPE with 4.24 cm3. Both
are roughly 3 times larger than the mean PE volume of the INHOUSE data set with 1.44 cm3.
In order to get a better understanding of the appearance of PEs within the three data sets, we
created box plots, overlayed with violin plots of the volume distribution in Figure 3.6. Here,
the distribution of the range between the minimum and the third quartile without outliers is
displayed. Considering the distribution of the data sets one can observe that the INHOUSE
data set consists of many more small embolisms than the public data sets. Although the
CADPE data set has the largest mean value, it seems that the FUMPE data set has more larger
embolisms between 3 cm3 and 7 cm3. In all data sets the volume range of the embolisms is
widespread, e.g., INHOUSE, where 4.54 mm3 is the smallest and 65 235.14 mm3 ≈ 65.24 cm3

is the largest embolism, see Table 3.2. This large range of the search space illustrates the
complexity of the problem, because CAD systems have to detect different appearances of
embolisms. By comparing embolisms with smallest volume, it becomes noticeable that the
minimum of the public data sets is much smaller than the minimum volume of the INHOUSE
data set, although the majority of the embolisms have a smaller volume than those of the
public data sets, which becomes evident through comparison of the first quartile, the median
and the third quartile. FUMPE has the largest embolisms between the first and third quartiles,
but the outliers are much smaller than those in the CADPE and INHOUSE data sets.
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Figure 3.6: Volume box plots and violin plots of the used data sets, where only the range between the
minimum and third quartile is shown. The orange line shows the median value and the
dotted green line shows the mean value for the respective data set.
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data set min
[
mm3

]
Q1
[
mm3

]
median

[
mm3

]
Q3
[
mm3

]
max

[
mm3

]
INHOUSE 4.54 82.61 190.2 536.87 65235.14
FUMPE 0.5 185.86 697.03 3171.75 46271.03
CADPE 0.34 104.55 390.36 2123.84 63645.34

Table 3.2: The five-number summary contains both extrema of the data set (min, max), the first
quartile (Q1), the median and the third quartile (Q3).

We have examined the embolisms with the smallest volumes from the public data sets in more
detail, and found that these mostly result from poor annotation. Figure 3.7 demonstrates some
examples where embolisms with smallest volumes are marked in red. Obviously, these result
from bad labelling and do not indicate an additional embolism. To give an example in Figure
3.7a and 3.7c some embolisms are not even located inside an artery. While both embolisms
of Figure 3.7a lie within the pleural cavity below the lung, the red label of Figure 3.7c lies
within the aorta descendens. Both are obviously not embolisms. In all other cases it seems
that the red marked label belongs to the adjacent embolism, marked in blue or green. Because
the label masks are from public challenges, we decided to keep them for benchmarking with
other methods.

(a) Case 34, V = 0.5mm3 (b) Case 16, V = 0.83mm3 (c) Case 3, V = 2.21mm3

(d) Case 69, V = 0.34mm3 (e) Case 49, V = 0.38mm3 (f) Case 41, V = 0.96mm3

Figure 3.7: Embolisms with smallest volume V of the FUMPE data set (first row) and of the CADPE
data set (second row) are marked in red. Adjacent annotations within the image cutout
are marked in blue and green.
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3.1.2 Peripheral and Proximal

To get a better understanding of the complexity of the different data sets we investigated
the apperance of proximal and peripheral embolisms within the data sets. Table 3.3 gives
an overview of the percentage, mean volume, and variance of the peripheral and proximal
embolismswithin the INHOUSE, FUMPE andCADPE data set. Due to the fact that peripheral
embolisms are smaller, we can say as a rule of thumb that the more peripheral embolisms
are within a data set, the more complex is the data set. But it should be noted that besides
the volume, the contrast is another indication for the complexity. In this work we did not
categorize embolisms in proximal and peripheral manually, but automatically. We generated
additional lung masks for each image and determined the proportion of each thrombus lying
inside and outside of the lung mask. If the majority of voxels was located outside the lung
mask, we labeled the embolus as proximal; if a larger volume was located inside the lung
mask, we labeled it as peripheral, see Figure 3.8.

Figure 3.8: CT image (left) and lung mask (right) with label overlay. The blue embolism lies within
the main pulmonary artery, which is not captured by the lung mask, which we use as an
indicator for separating proximal and peripheral embolism, while the red embolism lies
within the lung mask, specifically within a peripheral artery and is therefore a peripheral
embolism.

Table 3.3 contains an overview of the peripheral and proximal embolisms in the data sets.
One can immediately see that the INHOUSE data set has the highest percentage of peripheral
embolisms, followed by the CADPE data set. In contrast, the FUMPE data set contains more
proximal embolisms. The INHOUSE data set has the smallest mean volume of proximal and
peripheral emboli, therefore it is the most challenging data set. In contrast to the FUMPE data
set, the CADPE data set has few proximal embolisms, but these have a significantly larger
volume, although we have already observed that this is mainly due to some large outliers.
The FUMPE data set, on the other hand, has many more proximal embolisms, but these have
a slightly smaller volume than those of the CADPE data set.
Figure 3.9 contains the histograms of the volume distribution of peripheral and proximal
embolisms of all three data sets. Here it can be identified that in all three data sets the
distribution of the peripheral embolisms in a logarithmic scale looks normally distributed.
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Figure 3.9: Volume distribution of the peripheral embolism (left) and the proximal embolism (right)
of the INHOUSE (red), FUMPE(green) and CADPE (blue) data set using a logarithmic
scaled x-axis.

The proximal embolisms are more distributed over the larger volumes; however, there are also
some proximal embolisms that have a smaller volume and also some peripheral embolisms
with a larger volume.

data set NProxi NPeri
NProxi
NPE

NPeri
NPE

µProxi µPeri σProxi σPeri

unit [%] [%]
[
cm3] [

cm3] [
cm3] [

cm3]
INHOUSE 131 421 23.73 76.27 5.07 0.31 8.34 0.47
FUMPE 67 43 60.91 39.09 6.59 0.58 10.55 0.76
CADPE 117 200 36.91 63.09 10.72 0.71 13.59 1.55

Table 3.3: Ni denotes the number of proximal and peripheral embolisms within the data set, µi the
mean volume and σi the variance, i ∈ {Proxi,Peri}.

In summary, due to the variable appearance of pulmonary embolisms, detection and segmen-
tation of pulmonary embolisms is a challenging task. In addition, we have determined that
the annotations require several processing steps before they can be used for training. After a
closer analysis of the data sets, it seems that due to the large number of peripheral embolisms,
the small volume and other difficulties, such as the comorbidities, the INHOUSE data set is
the most challenging.
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3.2 Evaluation

As already mentioned, various evaluation metrics will be used to quantify the network
performance. We will use free-response-receiver-operating-characteristic (FROC) curves
to characterize the performance of the networks at different possible decision thresholds
τ. In a FROC curve the sensitivity is plotted against the AFP rate, unlike the conventional
receiver-operating-characteristic (ROC) curve where the sensitivity is plotted against the FP
rate. While the ROC curve is suitable when there is a binary classification (diseased and not
diseased), the FROC curve is suitable for problems in which several findings can be present
in one object, i.e., a detection task.
The sensitivity or true positive rate (TPR) is defined as the number of true positives divided
by the total amount of positive values on a per embolus basis

TPR =
TP

TP + FN
. (3.5)

The AFP rate is defined as the number of false positives divided by the number of considered
cases N :

AFP =
FP
N
. (3.6)

The FROC is determined by computing the pair (TPR,AFP) depending on a free parameter τ
for the threshold. At the lowest threshold, we accept all proposed predictions. This results in
the highest number of TP, but also in the highest amount of FP (upper right point in FROC).
The highest threshold for τ rejects more proposal predictions which results in the lowest
number of TPs, but also less FP (lower left point in FROC). Here we select for the lower
threshold τ = 0.5 and for the upper threshold τ = 1, e.g., τ ∈ [0.5, 1]. Figure 3.10 shows
several examples of FROC curves. In the ideal case we will have a sensitivity of 100% at an
AFP of zero.

Figure 3.10: In a FROC curve the TPR is plotted against the AFP. The objective is to reach the left
upper corner, having the highest possible TPR with the smallest amount of AFP.
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In the following we explain how the pair (TPR, AFP) is determined for a given limit τ. Let
Y ∈ Nh×w×d

0 be our label mask with connected components cr ∈ N cc, with N cc = {1, . . . ,Ncc},
introduced in Section 2.2. Analogously, we define the network segmentation mask Ỹ ∈ Nh×w×d

0
with Ñcc different connected components c̃s ∈ Ñ cc with Ñ cc =

{
1, . . . Ñcc

}
as the set of

predicted connected components.
For every connected component cr ∈ N cc, we define an index set Icr for which holds

Icr =
{

i
∣∣ yi = cr , yi ∈ Y

}
(3.7)

and analogously the index set for each c̃s ∈ Ñ cc,

Ic̃s =
{

i
∣∣ ỹi = c̃s, ỹi ∈ Ỹ

}
. (3.8)

The network output is actually P ∈ [0, 1]h,w,d which values can be interpreted as probabilities,
denoting the network confidence. In our FROC curve, we use the average probability of
each connected component as a decision criterion for including it in the calculation of the
(TPR, AFP) pair. For each predicted connected component c̃s ∈ Ñ cc we compute the average
probability

pc̃s =
∑
i∈Ic̃s

pi∣∣Ic̃s

∣∣ (3.9)

If pc̃s > τ, the connected component c̃s will be considered by computing the pair (TPR, AFP)
belonging to this threshold τ.

1

2
3

0.8

0.5
1

Figure 3.11: Connected component mask with c̃1 = 1, c̃2 = 2, c̃3 = 3 and average probabilities
p1 = 0.8, p2 = 0.8, p3 = 1.

Figure 3.11 shows a sketch of a mask with three connected components and the respective
average network probability. With a threshold of τ = 0.7, only the components c1 and c3
would be considered as network predictions and included in the calculation.
To compute the TPR, we have to count how many of our connected components of our label
mask Y are detected from our network. To count cr ∈ N cc as a TP, there has to be at least one
match with a connected component c̃s ∈ Ñ cc of our predicted label mask Ỹ. Therefore, we
define a matcher function

MÑcc(cr) =

{
1, if

∑
c̃s∈Ñcc

m(cr , c̃s) > 0,
0, otherwise, (3.10)
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where m(cr , c̃s) defines the matching criterion. We have a match between cr and c̃s if a
matching criterion is fulfilled, meaning that the corresponding matching function f outputs a
greater value than a given matching threshold θ

m(cr , c̃s) =

{
1, if f (cr , c̃s) > θ,
0, otherwise. (3.11)

In this work, we will use the one-pixel intersection (OPI) as a matching criterion, meaning
that we have a match if there is at least one pixel overlap between cr and c̃s. That is fulfilled if
the intersection of the index sets contains at least one element

fOPI(cr , c̃s) =
∣∣Icr ∩ Ic̃s

∣∣ > 0 = θ. (3.12)

Figure 3.12: Four different scenarios where the OPI counts a match between the ground truth con-
nected component (green) and the network predicted connected component (blue). In the
most left image the prediction and reference label fits well, while in the other scenarios
there is a spatial shift between them, or the network prediction is much smaller or larger.

Using the OPI all cases from Figure 3.12 are counted as a hit. Another more rigorous criterion
could be the dice score (DC), which is generally defined as

DC =
2|X ∩ Y |
|X | + |Y |

S (3.13)

considering the sets X,Y . Using a lower threshold for the DC to determine if there is a match
between prediction and ground truth, results in the following matching function

fDC(cr , c̃s) = 2
∣∣Icr ∩ Ic̃s

∣∣∣∣Icr

∣∣+∣∣Ic̃s

∣∣ > θ. (3.14)

When using the dice coefficient we use θ = 0.2 as a lower bound. Here only the most left
images would be interpreted as a match, making the dice coefficient a much stricter criterion.
Depending on whether we focus more on segmentation or detection, either the OPI or the
DC metric can be used.
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In conclusion, the TPR can be computed by counting all matches of all images i = 1, . . . ,N
and dividing by the number of connected components of the reference images

TPR =

∑
i
∑

r MÑcc,i (cr)∑
i Ncc,i

. (3.15)

The false positive rate can be computed by counting all connected components of the network
prediction which have no match with a reference label and dividing by the number N of
considered cases

FPR =

∑
i
(
Ñcc,i −

∑
s MNcc,i (c̃s)

)
N

. (3.16)
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3.3 Methodology Approach

In this section the methodology approach is explained using the illustration in Figure 3.13.
To answer the research questions structurally, the experiments are divided into three different
parts. First, investigations where we focus on the input of the network, see Section 4.1, second,
experiments where we intervene directly in the training, see Section 4.2, and third, different
evaluations to assess the results in more detail are made, see Section 4.3.
First of all, in Section 4.1.1 a naive experiment is presented. This should provide a reference
for comparison with all subsequent experiments and introduce the complexity of the problem.
Afterwards in Section 4.1.2, the influence of the input data shall be examined in more detail
by assessing the impact of the revision of the INHOUSE data set from Section 3.1.1 on the
network performance. Furthermore in Section 4.1.3, we want to analyse how the choice of
the data set determines the behaviour of the network and how well networks trained with a
certain data set generalize to other data sets, followed by the usage of a combined data set for
training, see Section 4.1.4. In addition, lung masks are used during trainings to reduce the
number of false positives outside the region of interest. To further improve the performance,
we also investigate the extent to which vessel masks can be used in this context, see Section
4.1.5. All these experiments are based on the input of the network, by passing different data
sets, annotations and additional masks to the network.
In order for the networks to achieve good performance on their own data, we first tune the
hyperparameters, see Subsection 4.2.1. We process in such a way that we change only one
parameter at a time based on the initial values and examine its influence on the performance.
Additionally in Section 4.2.2, classical data augmentation is used to create more variance in
the data. Different geometric and intensity transformations, filters and the addition of noise
are investigated. To analyse how the networks perform on images with different contrasts, we
evaluate the networks on different monoenergetic energy levels, see Section 4.2.3. Afterwards,
these are additionally introduced into the training to obtain a contrast-independent prediction.
The last part focuses more precisely on the evaluation. In addition to the metrics already used,
such as the OPI and the DC, the center of mass for each predicted connected component is
determined in order to compare our approach with the approaches of the CADPE challenge,
see Section 4.3.6. Further experiments are the evaluation of the network on healthy images
without pulmonary embolisms, see Section 4.3.1, and the differentiation between peripheral
and proximal embolisms within the evaluation, see Section 4.3.2 . To understand the network
behaviour in more detail, we take a closer look at the cases in which the network fails, i.e.,
how the false positive predictions of the network look like. We also take a closer look at
embolisms, where the network has difficulties to detect them, see Section 4.3.4. Finally, we
look at some examples where the networks fail without the DECT data augmentation, but the
non-contrast networks succeed, see Section 4.3.5.
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Figure 3.13: Methodology approach of the performed experiments to answer the research questions.
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4
Experiments and Interpretation

In this chapter, the experiments performed are presented and the results are interpreted.
We use Figure 3.13 from Section 3.3 as a guideline to answer the research questions step
by step. Section 4.1 contains a naive approach and a detailed analysis of the influence of
changes concerning the input of the network. This is followed by the investigation of different
training strategies, such as testing different hyperparameters, classical data augmentation
approaches andDECT augmentation, see Section 4.2. We conclude this chapter with a detailed
evaluation of the performance of our networks in Section 4.3 to get a better understanding of
their behaviour.

4.1 Input

In this section, we perform various experiments with different approaches regarding the input
data. First, we present the experimental setup, having a closer look on a naive approach.
Extending on this basis, we do further experiments to investigate and improve the performance
and generalizability.

4.1.1 Naive Approach

To get an understanding of the problem and its complexity, the results of the first naive
approach are presented. As a first experiment, we trained the network with the obtained
data from Transfer 1 without our correction, see Figure 3.1. Additionally, this training ran
with our first choice of hyperparameters, listed in Table 4.1. During this work, we adapt the
hyperparameters step by step, see Section 4.2.1.
In order to understand the network behaviour, we have a closer look at the training behaviour
and the FROC, which are displayed in Figure 4.1 and Figure 4.2. As we can see in the training
plot, Figure 4.1, the validation loss decreases while the validation metric increases, meaning
that the network is learning. Nevertheless, the performance of the network is bad. First of
all, we can see in Figure 4.2 that both training and evaluation FROC curve are overall quite
low. Moreover, the network generalizes very poorly, which can be seen from the large gap
between them. Considering the sensitivity, which is defined in Section 3.2, at an AFP of 5
the OPI is 48.73% for training and 22.92% for testing.

49
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Hyperparameter Setting

Epochs ep 1000
Mini-batch Size mbs 8
Learning Rate lr 8
Patch Size ps 72 × 72 × 72

Loss C
CrossEntropy +

DiceLoss
Optimizer AdaDelta

Augmentation
Parameters mixture

Flip x-axis
Rotate
Logarithmic Scale

Table 4.1: Setting of the hyperparameters in the naive approach. In all experiments, we use the sum
of CrossEntropy and DiceLoss as the cost function and AdaDelta for optimization, which
is an extension of the gradient descent algorithm. A detailed investigation of different
hyperparameters and different data augmentation strategies can be seen in Section 4.2.1
and Section 4.2.2.

Figure 4.1: Training behaviour of the naive approach with real (low opacity) and smoothed (high
opacity) training loss in blue, real validation loss in cyan, real (low opacity) and smoothed
(high opacity) training metric in purple and real validation metric in pink. The training
and validation metrics increase while the training and validation losses decrease.
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Figure 4.2: FROC curves of the naive approach. Training curve (blue) and validation curve (red) are
still too low. The huge gap between them indicates overfitting.

This can have several reasons. First, poor choice of hyperparameters can negatively affect
training, so one approach would be to examine these. Another approach would be to examine
the data, as poorly labelled or complex cases that are already difficult for humans to recognize
can impede training.
To further investigate the network behaviour, we have selected some cases where the network
shows poor performance, see Figure 4.4. There, two effects stand out. One of them is that the
network tends to detect sharp edges outside the ROI. For example, the edges on the ribs were
detected (displayed in the first row) or parts of the CT device, see second row. However, FPs
lie not only outside, but also inside the ROI, which is displayed in the last row. This shows
that the network has not yet learned the right parameters for detecting PEs, but rather realizes
a kind of edge detection.
This naive approach shows that the detection of PEs is not a trivial task and gives a guideline
for improving network performance. Firstly, to omit FPs outside the ROI, for each image, the
respective lung mask is generated and the image is cropped based on it. Figure 4.3 displays
an example of an original scan, its corresponding lung mask and the cropped image.
Secondly, the performance has to be increased in general and generalization has to be improved.
Thus as the next step, the annotations will be investigated and the hyperparameters will be
tuned.
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Figure 4.3: Original image, lung mask and cropped image of case 290 (axial view). Based on the
segmentation mask, a bounding box is determined such that the complete lung mask fits
in it. Using this bounding box, the image was then cropped without margins.

(a) Axial view (b) Coronal view (c) Rendering

(d) Axial view (e) Coronal view (f) Rendering

(g) Axial view (h) Coronal view (i) Rendering

Figure 4.4: Axial and coronal views of case 1, 257 and 99 with network predictions as overlay (a),(b)
and renderings of the lung with false negatives (FNs) in green, FPs in red and TPs in blue
(c). The rendering shows a 2D representation of the 3D image, the opacity indicated the
density of the object.
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4.1.2 Annotation Analysis

In this subsection, we perform experiments regarding the INHOUSE annotations. As men-
tioned in Section 3.1.1, there were two batches of the INHOUSE data set. Additionally, the
data were processed in different steps: the labels were corrected, comorbidity cases were
marked and annotations were standardized. To investigate the influence of these steps and the
influence of the quality of the data in general on the stability of training and performance, the
following experiments are conducted.
First of all, we use 4-fold cross-validation to investigate the performance difference between
various splits. Here, we have used the annotations from Batch 1 before we correct them. The
data set is split into four equal parts, where one part is used for testing and the remaining
three parts are used for training. Each of the four parts was used once for testing, resulting in
four trained networks. Cross-validation is usually used to examine how the method performs
in general on different test sets. We use it to study how the data influences the training. Figure
4.5 shows the four different training curves of the splits. One can observe that there is a large
difference in performance between the splits, especially between split 1 and split 2. While
in the first split, the training is successful, in the second split the validation loss does not
decrease properly and also the validation metric does not seem to increase. The OPI of these
two splits is pictured in Figure 4.6 (a). While small variations between different splits are
normal, with an OPI of 60% in split 1 and only 28.33% in split 2, the variance is quite high.

Figure 4.5: Training curves of the splits by using 4-fold cross-validation with real (low opacity)
and smoothed (high opacity) training loss in blue, real validation loss in cyan, real (low
opacity) and smoothed (high opacity) training metric in purple and real validation metric
in pink.

This large variance could be due to the fact that the nature of the test data from split 2 is poorly
conditioned. However, if the training is reproduced with the same splits, there will be a large
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variance between the individual trainings. This means that the training is quite unstable. To
investigate which factors in training lead to this instability, we analysed all random operations.
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Figure 4.6: OPI of different trainings with different representations of the data from Transfer 1 and
Transfer 2 (split 1 in blue and split 2 in orange)

Experiment (a) (b) (c) (d) (e)
Annotation T1 T1 (corrected) T1 (corrected) T1 (corrected) T2
Training × × × − ×

Evaluation × × − − ×

OPI 44.17 56.35 61.83 58.49 67.01

Table 4.2: Data setup and corresponding mean OPI over the two splits of the experiments from Figure
4.6. The annotation row indicates whether the data are from Transfer 1 with or without
corrected labels or Transfer 2. If comorbidity cases were used for training and/ evaluation
it is marked with a cross.

In training, there are three factors that introduce randomness: network initialization, patch
selection and data augmentation. In the case of poor network initialization, it should be
possible to stabilize the training by adjusting the choice of hyperparameters, especially the
learning rate. We can exclude data augmentation as the disturbing factor, because the same
behavior occurs also without data augmentation. It is much more likely that the choice of
patches strongly affects the stability of the training. First, we have seen that the appearance of
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pulmonary embolisms is highly variable. If patches are randomly selected in which embolisms
are poorly visible even to humans, this may have a negative effect on the training. In addition,
if some annotations are missing, i.e., the network receives a patch with a pulmonary embolism
but it is not labeled, performance drops sharply. This makes the training very unstable and
hugely dependent on the quality of the patches. With a large amount of data, such outliers
in the annotations may not have much impact, but here the amount of data is not enough to
compensate.
As mentioned in Section 3.1.1 we had gone through all cases of batch 1 and corrected if
necessary. Afterwards, we repeated the training with our new annotations which is shown in
Figure 4.6 (b). As we can see, the performance increases on both splits. Note that the training
and test cases in experiments (a) and (b) are exactly the same, only the annotations differ.
In contrast, the data in the two splits in experiments (c), (d) and (e) differ from each other and
also from those in (a) and (b). In experiment (c), we included the comorbidity cases only in
the training data and excluded them from the evaluation data, due to the fact that pulmonary
embolisms are very difficult to detect here. In experiment (d), these cases were excluded from
both training and evaluation. At last, we trained again the same network with our complete
processed INHOUSE data set from Transfer 1 und Transfer 2, see Figure 3.1. Because more
data are available here, comorbidity cases were not treated differently. Table 4.2 shows the
data used for the different experiments from Figure 4.6 and the mean OPI of the two splits.
It can be seen that the correction of the annotations has greatly increased the performance.
Also, the evaluation of the two splits no longer shows such a large difference. The exclusion
of the comorbidity cases is also recommended, since these already have a large influence on
the evaluation with small amounts of data. After preserving the data from the second transfer,
we have enough data to compensate for outliers.
Overall, these experiments have shown that the conditioning of the data has an enormous
impact on the performance and stability of the training. By processing the data in different
ways, Figure 3.1, we were able to increase the mean OPI by more than 20 percentage points
(pp). Despite improvement of the data, there still remains a variance between repeated
trainings, due to the strong influence of the chosen patches. In order to be able to compare the
experiments in the following, seeds have to be set for all random operations. Otherwise, no
precise statements can be made as to whether the improvement was achieved by the chosen
methods or by the random choice of the patches.

4.1.3 Across Data Sets

In order to investigate the generalizability of the individual data sets, we trained the same
network separately with the three different data sets: INHOUSE, FUMPE and CADPE. After
training, we evaluated each network on each data set separately. To also analyse the stability
of the data sets, we always trained two splits. In addition, we trained the same experiment with
three different seeds (s ∈ {0, 13, 42}) to investigate the scatter between different replications,
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resulting in 3 · 2 · 3 = 18 different networks. Each network is evaluated on its own test data
set but also on the test sets of the other data sets .
Each column of Figure 4.7 contains networks that have been trained with one of the three
data sets. The rows indicate the data sets on which the networks have been evaluated. The
results of all networks trained with the INHOUSE data set are shown with red bars, FUMPE
with green bars and CADPE with blue bars. Additionally, the first black horizontal line in
each bar indicates the value of the DC, the second one indicates the OPI.
Table 4.3 contains the mean OPI metric and the mean DC of all splits and seeds. It makes
sense to investigate both metrics, because as we have seen in Section 3.2, evaluating the dice
score gives more information about the segmentation and evaluating the OPI gives more
information about the detection ability. To ensure that the networks do not tend to predict too
large regions only to get a high OPI both metrics should be considered.
Considering the individual plots, for example the evaluation on the respective own test data
set (see plots on the diagonal), it is noticeable that not only with the INHOUSE data set the
performance varies depending on the split and different seed. In the INHOUSE data set, the
largest difference of the OPI is between training with seed 13 and seed 42 in split 1, which is
around 30 pp. But also in FUMPE we have a similar strong scatter considering for example
the performance difference of split 1 trained with seed 0 and seed 13. In contrast, the results
when training with the CADPE data set are less variable. Here, the difference between the
best and worst results is only around 10 pp. The training seems to be more stable with the
CADPE data set.
The plots outside the diagonals show how well the individual networks generalize, i.e., how
well they perform on the other data sets. It can be clearly seen that there is good generalization
for most of the networks. For example, the INHOUSE and CADPE networks perform even
better on the FUMPE data than on their own data. FUMPE on the other hand, generalizes
the worst of all the networks. This is not surprising, since already in the data analysis in
Section 3.1.1 we saw that FUMPE is the less variable data set, for example, it has much less
peripheral embolisms than INHOUSE and CADPE. This can also be deduced from the fact
that all networks perform best on the FUMPE data set. Consequently, this data set appears to
be the easiest of all three data sets, but is not suitable for training as a result. In contrast, the
mean performance of all three data sets is worst on the INHOUSE data set. Again, this is
not surprising, as we have seen that this data set is the most challenging with the smallest
embolisms on average and additional comorbidity cases. Interestingly, CADPE performs
even better on the INHOUSE data set than INHOUSE itself. CADPE seems to be the most
suitable for training among all data sets.
Comparing the OPI and DC metric, it is noticeable that the DC is always slightly smaller
than the OPI, as the latter is a more strict metric. In general, however, the DC seems to be
proportional to the OPI in most cases. For example, when training and evaluating using
INHOUSE (first row first column), it is easy to see that when the OPI is large, there is also
a larger DC. Some FUMPE networks have a larger difference between OPI and DC. For
example, for training and evaluation with FUMPE (middle plot), for split 1 (left bar, dark
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green), seed s = 0 and seed s = 42 the OPI is much larger than the DC. This is because the
FUMPE networks tend to have larger predictions most of the time. We have a closer look on
this in Section 4.3.3.
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Figure 4.7: Separate training and evaluation with the INHOUSE, CADPE and FUMPE data sets. In
each column of the 3 × 3 plots the networks were trained with the same data set, red
indicated training with INHOUSE, green FUMPE and blue CADPE. The rows denote
the data set on which the networks were evaluated. Note that in each row, the same test
data set is used for all columns. With each data set the training was repeated with three
different seeds s ∈ {0, 13, 42} each for two different splits on the data set, marked with a
darker color for split 1 and a lighter color for split 2. The first bar indicates the value for
the DC and the second for the OPI.
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data set INHOUSE FUMPE CADPE

OPI DC OPI DC OPI DC

INHOUSE 58.60 49.15 50.25 36.52 66.07 52.65
FUMPE 79.79 69.19 73.19 57.28 84.09 70.20
CADPE 68.19 50.16 60.28 38.65 80.28 68.55

Table 4.3: Mean OPI and DC over all seeds and both splits of each plot from Figure 4.7. The rows
indicates on which data set the networks were evaluated, the columns indicates with which
data set the networks were trained. On all data sets, networks trained with the CADPE data
set have the highest OPI and DC on average.

In summary, generalizability depends on the nature of the data. While the networks that
have been trained with the FUMPE data set with the least number of cases and also the least
peripheral embolisms generalizes the worst, networks that have been trained with the CADPE
data set performs the best on its own and on all other data sets. In addition, we have seen that
performance is also highly dependent on the complexity of the data sets. While all networks
perform well on FUMPE, the detection of embolisms is most challenging on the INHOUSE
data set.

4.1.4 Combined Data Set

In this section we trained the network with a combined data set to investigate the influence of
the amount of data on the performance and generalizability. Due to the incorrect annotations
within the INHOUSE data set at this time, we only use the FUMPE and CADPE data sets for
the combined training.
Because of the different number of images in the data sets, we need to consider whether to
balance between data sets or between the individual cases. Balancing between data sets means
that when the mini-batches are created, the probability of selecting cases from both data sets is
equal. Thus, with 91 cases from CADPE and 35 cases from FUMPE, each case from the first
data set has a weight of wC = 91

91+35 = 0.28 and from the second data set wF = 35
91+35 = 0.72.

Another approach would be to balance between cases, meaning that each scan is equally
likely and thus a CADPE case is used more often than a FUMPE case for training. In this
experiment, each case would have a weight of w = wF = wC = 0.5.
It can be observed that combined training improves performance on both data sets. However,
an equal distribution between the individual cases is better suited than between the data sets,
because as we have already seen in the last section, the FUMPE data set does not generalize
quite as well and should therefore not be weighted so heavily. In general the more data is
available the better it is for training, but the weighting should be according to the quality of
the data set.
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wF 1 0.72 0.64 0.57 0.5 0
wC 0 0.28 0.36 0.43 0.5 1

CADPE 60.92 77.50 77.50 80.00 80.00 71.25
FUMPE 66.67 73.81 66.67 73.81 73.81 72.73

Table 4.4: OPI evaluation on FUMPE and CADPE test data of combined training with different
weights wF for training cases from the FUMPE data set and wC for training cases from the
CADPE data set.

4.1.5 Vessel Mask

In order to improve the sensitivity and to reduce the average number of FPs, we create the
vessel masks and include them into training. The different approaches are listed in Table 4.5
and described below in detail.
The initial idea behind this was to reduce the search space by searching for pulmonary
embolisms only within the vessel mask. However, the vessel mask mainly includes only the
peripheral embolisms and many proximal embolisms are not included.
Instead, we performed two other experiments using the vessel mask. One was to reduce the
number of false positive predictions within the veins, to use the vein mask as a second label so
that the network not only learns what an embolism appears like, but also what a healthy vein
looks like. Therefore we merged the vessel mask and the embolism mask. Figure 4.9 shows
an example of the resulting label mask, where the vessel has the label 2 and the embolism
has the label value 1.
As a last strategy we add the vessel mask as an additional channel to the input images. Due
to the fact that many PEs lie within the vessel mask, this should help the network to locate
the blood clots. We used two approaches to do this. The first was to add the vessel mask as
a binary image as a second channel. The second approach was to multiply the input image
with the vessel mask. Figure 4.10 displays the binary and multiplied vessel masks used as a
second input channel in the network.
To compare the different approaches, we again define seeds in all experiments so that all
random processes behave the same. For comparison, we also show the same training without
using the vessel mask. Table 4.5 contains the OPI of the different experiments run and
evaluated once with the CADPE data set and once with the FUMPE data set.
It can be inferred that the approach of taking the vessel mask as the second label slightly
degrades the performance on both data sets. The network is possibly too focused on learning
what a healthy vein looks like. More experiments with more complex network structures
would need to be performed to gain further insights.
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(a) Axial view (b) Coronal view

(c) Axial view with vessel mask overlay (d) Coronal view with vessel mask overlay

Figure 4.8: CTA window (ww = 900HU, wl = 100HU) on case 4 from CADPE data set (a), (b) and
with vessel mask overlay (c), (d) in red.

Figure 4.9: Merged label and vessel mask, axial view (left) and coronal view (right).
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Figure 4.10: Binary (left) and multiplied (right) vessel masks, used as a second input channel of the
network, coronal view

Experiment
Data set

CADPE FUMPE

Separate training without vessel mask 71.25% 66.67%
Vessel mask as a second label 69.81% 61.91%
Binary vessel mask as additional input channel 80.00% 71.43%
Multiplied vessel mask as additional input channel 81.25% 61.90%

Table 4.5: Results of different experiments with vessel mask compared to the training without vessel
mask, performed with the CADPE and FUMPE data set. As evaluation metric the OPI is
used.

When using the vein mask as an additional input channel, the performance increases by 10
pp when training with the CADPE data set. On the FUMPE data set, the performance only
increases when using the vessel mask as a binary image.
In summary, this section has shown that using the vein mask as a binary additional input
channel can improve performance. This helps the network to localize the embolisms more
accurately.
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4.2 Training

In this section, different experiments regarding the training strategies are presented. At first,
hyperparameters are tuned to stabilize the training and to obtain the best possible performance.
After that, different data augmentation techniques are applied to increase performance and
the generalization ability. First, we use classical methods like geometric or intensity methods,
then we train the network with DECT representations with the objective to make the network
more robust against contrast variations.

4.2.1 Hyperparameter Tuning

At the beginning of this work, different experiments in order to find the best hyperparameters
were performed. As already mentioned in Section 4.1.1, wrong hyperparameters destabilize
training. In addition, we have seen that the hyperparameters were not yet optimal in the
first experiment, and thus the performance suffers. The right choice of hyperparameters is
essential for the network to learn properly.
We have seen in Figure 4.1 that the loss has not yet gone into saturation. To make the loss
converge, we increase the number of epochs from 1000 to 2000. As a result, the OPI increased
by around 10 pp. As already mentioned, we cropped the images within the lung region, which
highly improves the network performance too.
In order to make the training less stochastic, we increase the mini-batch size from 8 to 10,
due to memory limits, the mini-batch size cannot be enlarged further when the patch size
stays constant.
To investigate the impact of the hyperparameters, in all random operations the seed will be set
fixed at s = 0. As we have already observed, the selected patches have an enormous influence
on the performance which leads to a huge variance in the result. With the seed fixed, we can
trace the performance change back to the modification of the hyperparameters.
As a starting point, we train two experiments with different hyperparameter settings. One
with a large learning rate, a small mini-batch size, and a moderate patch size, the other with a
small learning rate, a large mini-batch size and a much smaller patch size, see Table 4.6. All
other remaining hyperparameters are set like in Table 4.1. The OPI from Setting 1 is about
12 pp higher than in Setting 2.
To investigate how the individual hyperparameters influence the training, we repeat the
training several times by changing only one parameter. We concentrate mostly on the patch
size ps and learning rate lr. The mini-batch size is set to mbs = 10 and the number of epochs
to ep = 2000, as in Setting 1, see Table 4.6.
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Hyperparameter Setting 1 Setting 2 Naive Approach

Epochs ep 2000 2000 1000
Mini-batch size mbs 10 32 8
Learning rate lr 10 1 8
Patch size ps 64 × 64 × 64 40 × 40 × 40 72 × 72 × 72

OPI at 5 AFP 70.96% 58.04% 22.92%

Table 4.6: Comparison of two different hyperparameter settings and the setting from the naive ap-
proach, which differ in mini-batch size, learning rate and patch size. Note that the naive
approach had been trained before we corrected the annotations of batch 1.

Figure 4.11 shows the impact of the patch size on the performance. There, the same training
with different patch sizes (ps = 323, 403, 503, 643) was realized. This was performed twice,
once with a learning rate of lr = 4 and once with a learning rate of lr = 10. In both cases, the
best results were achieved with a patch size of ps = 643, showing that for detection of PEs,
information about the environment is necessary.

Figure 4.11: Comparison of different patch sizes, ps = 643 (black), ps = 503 (blue), ps = 403 (red),
ps = 323 (green) trained with a learning rate of lr = 4.

While with a learning rate of lr = 4 at an average of 2 FP, it seems that the performance
increases with larger patch size, this relation does not hold for all AFPs per case, e.g., at 4
AFP we have a higher performance with ps = 323 as with ps = 403, see Figure 4.11. At
a threshold of τ = 0.5 (upper left point in the FROC curve) all networks achieve a similar
performance, but it is noticeable that with decreasing patch size, the AFP rate increases
strongly. The same behaviour can be observed with a learning rate of 10.
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In both cases at an AFP rate of 5 with patch size ps = 643 we get roughly an at least 10 pp
better result than with the worst patch size. Thus, in the following experiment we will always
use ps = 643 for the patch size.
Considering the average resolution of the INHOUSE data set in Table 3.1, a patch size of
ps = 323 would result in a volume ofV = 323 ·0.772 ·0.5mm3 = 9.71 cm3, which corresponds
to a cube with a side length of a = 2.12cm. That seems to be too small to get enough context
information, e.g., regarding the mean volume of proximal embolisms of 5.07 cm3, see Table
3.3 .
In another experiment, the influence of the learning rate is investigated. Figure 4.12 shows
several FROC curves where each network is trained with a different learning rate. Considering
the learning rates lr = 1, 4, 8, 10 it becomes clear that the performance increases with
increasing learning rates. However, if the learning rate is set too high, for example to lr = 20,
the performance drops again.

Figure 4.12: Comparison of different learning rates, lr = 10 (black), lr = 8 (green), lr = 6 (red),
lr = 1 (blue), lr = 20 (orange).

In summary, we have seen that the choice of hyperparameters influences the network perfor-
mance strongly. Several investigations show that we achieve best results with Setting 1 of
Table 4.6. Thus, in the following experiments an epoch number of ep = 2000, a mini-batch
size of mb = 10, a learning rate of 10 and a patch size of ps = 643 is always used. Having
a good performance on the test data set is necessary before generalization ability can be
investigated.
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4.2.2 Classical Data Augmentation

To get more variance in the data set and thus increase generalizability, we use classical
data augmentation techniques. These include geometric transformations, such as scaling,
translations, rotations and reflections, intensity operations, for example gamma correction or
intensity shifts. Other augmentation techniques are noise injections, like adding white noise
to the images, or filtering methods, like sharpening or blurring. Figure 4.17 shows an example
image once in its original form and after applying different data augmentation techniques.
We tried some of these data augmentation techniques on the CADPE and the corrected
INHOUSE data set of batch 1 and investigate their influence on the training.
Figure 4.13 shows the influence of different rotation angles on the network performance. We
trained once with the CADPE data set (blue lines) and once with the INHOUSE data set
(red lines). For comparison, we trained completely without data augmentation techniques
(see dashed lines). Afterwards, during training the images were randomly rotated with a
probability of p = 50%. The rotation angle followed a normal distribution, where we changed
the standard deviation in different experiments. Figure 4.13 shows the OPI for four different
trainings with different rotation angles σα = 5◦, 10◦, 20◦, 30◦.
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Figure 4.13: Influence of different random rotation angle on the performance (OPI), trained with
the CADPE data set (blue) and INHOUSE data set (red), compared to the performance
without data augmentation (dotted lines).

It can be observed that rotation shows no improvement when training with the CADPE data set.
The performance here is even slightly worse, compared to training without data augmentation.
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However, this may be due to the fact that the training was performed without seeds and
may be related to the variability in the training. In contrast, rotation during training leads
to a significant improvement in the INHOUSE data set. While with a standard deviation of
σα = 5◦ the performance with an OPI of 33.87% is still very similar to the one without data
augmentation (OPI = 35.49%), it increases very strongly with larger rotation angles. With a
standard deviation of σα = 20◦ the performance increases by 23 pp to an OPI of 56%.
The large difference in the influence of rotation between the two data sets is probably due to
the fact that the CADPE data set is with its 91 cases much larger than the INHOUSE data
set. In addition, the comorbidity cases were removed, so that only 45 images were available,
which corresponds to only half of the CADPE data.
Figure 4.14 shows the influence of different scaling factors on the network performance, where
the scaling factor σS = 1.25, 1.5, 1.75 defines the standard deviation for normal sampling.
When training with the CADPE data set as well as with the INHOUSE data set, small scaling
factors σS < 1.5 do not have a great impact, ignoring small variations within the training,
whereas with scaling factors σS ≥ 1.5, this influences the training negatively. With a scaling
standard deviation of σS = 1.75, performance drops by 8 pp from 38.71% to 30.65% for
INHOUSE and 10 pp from 75% to 65% for the CADPE data set, compared to a scaling factor
of σS = 1.25.
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Figure 4.14: Influence of scaling on the performance, trained with the CADPE data set (blue) and with
the INHOUSE data set (red), compared to the performance without data augmentation
(dotted lines).
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The influence of Gaussian white noise is investigated on the CADPE data set. Three networks
are trained with different standard deviations σN = 0.1, 0.2, 0.3, which is displayed in Figure
4.15. It is clearly visible that the noise has a negative impact on the performance. Even with a
standard deviation of σN = 0.1, the performance is 7.5 pp worse than when training without
noise. At σN = 0.3, the performance is even 30 pp worse. In contrast to other problems,
where the noise makes the networks more robust, the detection of pulmonary embolisms is
very sensitive to noise.
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Figure 4.15: Influence of gaussian white noise on the performance, trained with CADPE, compared
to the performance without data augmentation (dotted line).

As a last experiment, we investigated different intensity transformations. Figure 4.16 shows
the impact of gamma distribution (blue) and intensity shifts (black) on the performance.
Firstly, we trained the network where the intensities are shifted by a normally-distributed
random value. Here, we tried the three different standard deviations σI = 0.1, 0.2, 0.3. Small
intensity shifts like σI = 0.1 do not worsen the performance, but also do not improve it. With
increasing σI , the performance decreases from 77.5% to 68.8%. Secondly, the intensity is
changed via a gamma transformation, defined as

Iout = Iγin, (4.1)

where the input values are raised to the power γ. With γ < 1, dark regions are strongly
lightened, the entire image looks brighter, but with less contrast. With γ > 1, brighter
areas are darkened. We applied the gamma transformation to the image with different values
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γ = 0.75, 0.95, 1.05, 1.25. As you can see, the performance for γ < 1 decreases much
more than for γ > 1. For gamma close to 1, the performance is approximately equal to the
performance without data augmentation. Even for γ = 1.25 the performance decreases only
slightly. However, no improvement can be achieved this way.
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Figure 4.16: Influence of different intensity transformations, like intensity shifts (black line) and
gamma transformation (blue line) on network performance, compared to training without
data augmentation (dotted line) for the CADPE data set.

In addition, the extent to which the reflection of the images influences the training was also
investigated. Here we have the same performance for both data sets as without the data
augmentation. Accordingly, this does not affect the performance on the test data.
We also trained two networks with the CADPE data set, where we randomly blurred the
images with a gaussian filter with standard deviation σB = 0.1, 0.2. This also did not have an
impact on performance.
In summary, different data augmentation techniques were investigated. By examining the
two different data sets, it became very clear that data augmentation is particularly useful
when there is few data available. When there is already a lot of data available, as with the
CADPE data set, data augmentation does not necessarily harm performance, but also does not
provide a significant improvement. In conclusion, the following data augmentation methods
are recommended: Rotation with standard deviation σα ≤ 30◦, scaling with factors σS < 1.5,
small intensity transformations like intensity shifts with σI = 0.1 or gamma transformations
with gamma close to 1, flipping and Gaussian blurring with σB < 0.2.
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(a) Original image

(b) Flipping (c) Rotation (d) Scaling

(e) Intensity Shift (f) Gamma γ = 1.5 (g) Gamma γ = 0.5

(h) Blurring (i) Sharpening (j) Gaussian Noise

Figure 4.17: Original image and transformed images after applying different classical data augmenta-
tion techniques.
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4.2.3 Dual-Energy CT Augmentation

In this section, the generalization of the already trained networks to images with different
contrasts is investigated. For this purpose, we create different contrasts using the DECT
representations by generatingmonoenergetic images with different energy levels. As described
in Section 2.3, the higher the energy level, the lower the contrast.
Figure 4.18 shows conventional CT image and monoenergetic images with energy levels
e ∈ {50 keV, 70 keV, 100 keV, 150 keV, 200 keV}.
To improve generalizability, we randomly generated monoenergetic images at different en-
ergy levels on the fly during training, thus realizing online data augmentation with DECT
data. These were generated uniformly distributed between different energy levels within
the interval [emin, emax]. Here we used the following intervals I1 = [60 keV, 80 keV], I2 =

[50 keV, 100 keV], I3 = [50 keV, 150 keV] and I4 = [50 keV, 200 keV]. While training with
interval I1 produces images similar to the conventional ones, intervals I2, I3 and I4 produce
increasingly low-contrast images. All networks were trained once without and once with
data augmentation. As our classical data augmentation technique, we used rotation with a
normally distributed rotation angle with standard deviation σα = 10◦ in x and z direction,
flipping along the x-axis, and a random scaling following a normal distribution with standard
deviation σS = 1.25.
To allow for comparison of the networks, the seed of all random operations was set to zero
for all networks trained with the INHOUSE data set. Thus, each networks receives exactly
the same patches, only the contrast differs. In addition, we also tested how well the networks
trained with the FUMPE and CADPE data set perform on the monoenergetic data. For this
we used the best networks from Section 4.1.3.
Considering the networks trained without DECT data augmentation, see Figure 4.18 CADPE
(blue), FUMPE (green) and INHOUSE (red), one can see that the performance of CADPE
and INHOUSE is very good on the conventional data. Since the monoenergetic images with
70 keV are of the same contrast as the conventional images, the performance here is equivalent.
The performance on the monoE50 images is mostly quite similar. On the one hand, one would
assume that the performance is improved, since the contrast is better, but also the noise in
the image is increased, which can in turn have a negative effect. CADPE and INHOUSE
get slightly worse here, FUMPE increases a bit. FUMPE has poor generalization capability,
which we have already seen in Section 4.1.3.
As the energy level increases, the performance drops very sharply. For the monoE200 images,
the performance of INHOUSE and CADPE drops by two thirds compared to the monoE70
images from 55.34% and 59.33% to 20% and 14.67%.
This shows that the networks perform only on similar contrasts and do not work on CTs
acquired without a contrast agent.
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Figure 4.18: Performance comparison on conventional and monoenergetic images with networks trained with and without DECT data augmen-
tation. The DC is determined for a network trained separately with the CADPE (blue), FUMPE (green) and INHOUSE (red) data
set without DECT, but with classical data augmentation. Furthermore, networks with DECT data augmentation are trained with
(brighter bar) and without (darker bar) additional classical data augmentation. The energy range increases (red color gradient),
from low to high contrast variations.
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To improve generalizability, we trained networks with monoenergetic data. These were trained
once without additional classical data augmentation (darker bar) and once with classical data
augmentation (lighter bar), see Figure 4.18. Without classical and only with DECT data
augmentation, the performance is already very poor on the conventional images. This could
be due to the fact that the network concentrates more on detecting the different contrasts and
thus the filters generally become simpler, i.e., contrast-independent edge detectors are formed
which generalize poorly.
Beside the generally poor performance, two effects can be seen. First, the network trained
with the interval I1, i.e., with a lower contrast deviation from the conventional images, has the
highest DC on the conventional data. On the other hand, the performance decreases the most
with decreasing energy level, with a reduction factor of 2. In contrast, the DC for the training
with the largest contrast variation is 12 pp lower on the conventional data, but decreases only
by a factor of 1.35.
For DECT training with additional classical data augmentation, the performance increases
strongly. This shows that DECT data augmentation is only promising in combination with
classical data augmentation. In order for the network to focus not only on the contrast variation,
but also on the complexity of the actual problem, a large variance in the data is essential.
Considering the network trained with the energy interval I1, the performance on the conven-
tional data is even increased by 4 pp, compared to the performance of the network trained
only with conventional images.
Additionally, we can see that the performance on the conventional, monoE50 and monoE70
data decreases slightly with increasing contrast variation within the training. However,
evaluating on images with an energy level of 100 keV onwards, this effect seems to be
reversed and the performance increases with a larger energy range in training. At 100 keV,
training with the interval I3 results in a 10 pp higher DC compared to the network trained with
the interval I1, at 150 keV and 200 keV the performance is even 20 pp larger. It is noticeable
that the performance with the network trained with I3 was slightly better on the monoE200
data, even though it was extended only to 150 keV, in contrast to the performance with I4,
whose interval went to 200 keV. It is probably more difficult to extract information from the
images with high energy levels, since the pulmonary embolisms are difficult to see at such
poor contrasts.
Overall, two statements can be made. DECT Augmentation with slight contrast variation
improves the performance on the conventional data with a small improvement on different
contrasts. DECT augmentation with stronger contrast variation gives very good generalization
on different contrasts. Thus, DECT data augmentation is highly recommended to obtain a
contrast-independent prediction.
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4.3 Evaluation

Although in the previous sections the networks have already been evaluated and compared, in
this section we will examine some evaluations in more detail and perform additional analysis
to gain an even better understanding of the characteristics of the trained networks.

4.3.1 Healthy Cases

First and foremost, we want to investigate how our trained networks respond to healthy cases.
It would be desirable that they do not segment false positives on healthy CT images at all.
However, since the networks have some false positive predictions and have not yet been
trained with the healthy cases, the first expectation would be that the number of false positives
would be much lower on the healthy cases than on the diseased cases.
To examine the relationship between the average false positives on the healthy cases and the
average false positives on the diseased cases, we plotted the former as a function of the latter
in Figure 4.19. For each value of the respective number of false positive predictions on the
sick cases, the corresponding threshold τ was taken and for this threshold the amount of false
positives on the healthy cases was calculated and plotted.
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Figure 4.19: AFP of healthy cases against AFP of diseased cases.

It can be seen that for all three networks, the number of false positives on the healthy images
is significantly lower than on the diseased images. With a mean false positive rate of AFP = 5
(dotted line) on the diseased cases, CADPE has 1.86, FUMPE 1.88 and INHOUSE only 1.14
false positives on average. Thus, all curves are clearly below the bisector.
Furthermore, the amount of healthy cases was determined, where the network predicts no
segmentations at all. These make up 34.69% of the healthy cases for FUMPE, 36.73% for
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CADPE and 51.02% for INHOUSE. This means that although we have much less false
positive predictions on the healthy cases overall, we still have little cases where not a single
embolus is detected at all. This is an undesirable result, since all cases where at least one
embolus is segmented would have to be manually checked. For clinical usage, the number of
casewise FP predictions has to be further reduced.
In summary, the fact that the networks have much less false positives on the healthy cases
than on the diseased images is a positive, but the number of false positives is still too high.
To reduce this further, the healthy cases could also be included in the training. Another
suggestion would be to retrain the network and to sample more often at the locations of the
false positives.

4.3.2 Evaluation on Peripheral and Proximal Embolisms

We have only seen the performance on the whole test data set. Another interesting point would
be to investigate to what extent the performance differs on the peripheral and the proximal
emboli. Therefore, we evaluated these separately, see Figure 4.20.
Surprisingly, all FUMPE and CADPE networks show similar performance on both proximal
and peripheral emboli. With different seeds, the overall performance on both types of thrombi
varies. For the INHOUSE data set, however, the difference in performance between the
peripheral and proximal embolisms varies strongly. While training with seed 42 achieves
good performance on both types of emboli, training with seed 13 performs three times worse
on the peripheral data than on the proximal data. Only the performance on the peripheral
embolisms varies significantly, on the proximal thrombi the OPI is quite similar in all cases.
This means that the strong variance in training with the INHOUSE data set is related to the
detection of the peripheral emboli. This is strongly dependent on the patches used for training.
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Figure 4.20: Separate evaluation on peripheral and proximal embolisms. Evaluation of the networks
from Figure 4.7, trained with cross-validation split 1, and different batches on the
respective test data set. Here, the evaluation on peripheral embolisms (darker left bar)
and on proximal embolisms (brighter, right bar) is considered individually. The red
bars represent training with the INHOUSE data set, green with FUMPE and blue with
CADPE.

4.3.3 Segmentations of Separate Trained Networks

In this subsection we take a closer look at the segmentations of the separately trained networks
from Section 4.1.3. First we will investigate the segmentations of the networks trained with
the different data sets on the INHOUSE data set. Then we will show the segmentations of the
individual networks on their own data set with render plots.
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The histograms in Figure 4.21 show the volume of the ground truth embolism in blue and the
respective volume of the segmented connected components of the networks trained separately
with the INHOUSE, FUMPE and CADPE network in orange. It can be seen that all networks
have more difficulties to detect smaller embolisms with a volume below 0.03cm3. This would
correspond to a cube-shaped embolus with an edge length of 3mm. The predicted volumes of
INHOUSE and CADPE correlate better with the ground truth values than those of FUMPE.

10−2 10−1 100 101
cm3

0

2

4

6

8

10

12

(a) INHOUSE

10−2 10−1 100 101
cm3

0

2

4

6

8

10

12

(b) FUMPE

10−2 10−1 100 101
cm3

0

2

4

6

8

10

12

(c) CADPE

Figure 4.21: Histograms of ground truth embolus volume of the INHOUSE data set (blue) and
connected component embolus volume (orange) in cm3 predicted by a network at an
AFP of 5, trained separately with the INHOUSE (upper left), FUMPE (upper right) and
CADPE (lower) data sets.

Figure 4.22 shows renderings to visualize the segmentations of the networks. We selected
four cases from the own test data set with the best performance. These give a visual insight
of the segmentation characteristics of the networks. It can be observed that the connected
components of the CADPE networks match accurately with the ground truth data, while



Experiments and Interpretation 77

for example the FUMPE network exhibits a higher false positive rate. It is noticeable that
the embolisms of the FUMPE network are mostly larger than the reference components.
This could be due to the fact that FUMPE has the most proximal embolisms and tends to
overestimates the area of the embolus.

Figure 4.22: Renderings with lung mask (gray values), FN pixels (green), TP pixels (blue) and FP
pixels (red) of the INHOUSE (first row), FUMPE (second row) and CADPE (third row)
network.
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4.3.4 FP and FN Examples

In this subsection, we take a closer look at where the network fails. That means, on the one
hand, where the network makes predictions that are actually not embolisms (FP) and, on the
other hand, which embolisms the network does not detect (FN).
To do this, we manually examine these cases in the test data. Considering the false positives,
three different types stand out. First there exist cases where the predictions make no sense
because they do not even lie within the ROI. Figure 4.23 displays some examples where
pulmonary embolisms are predicted that are not located within the pulmonary trunk (left
and right images). In the left image, the prediction seems to be located within the vena cava
superior (VCS) and in the right image, it lies between the esophagus, trachea and left main
pulmonary artery. In the middle image, the prediction lies outside the body. These examples
show that the context information in the single patches is not sufficient to avoid predictions in
such nonsensical areas. The network would either have to receive more global information in
order to learn in which areas the embolisms are located or would have to sample even more
often over the individual patches where the false positive predictions are located so that it
learns the local difference even more precisely.

False Positive Predictions

Figure 4.23: Example cases where the predictions does not lie inside of the ROI. FP marked in red lie
in VCS (left image), outside the human body (middle image) or between the esophagus,
trachea and left main pulmonary artery.

Fortunately, the network only suffers from a few of these predictions outside the ROI. It is
much more frequently the case that the network segments within the pulmonary arteries,
mainly in the small peripheral arteries. On closer examination, we noticed that many of
the FP predictions are not false positives at all, but overlooked pulmonary emboli. Figure
4.24 shows three examples of false positives from our test data set which we would mark as
embolisms.
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False Positive Predictions

Figure 4.24: Examples without (upper row) and with (lower row) network prediction overlay (red),
where the detected regions count as FP segmentations, but seem to be real embolisms.

False Positive Special

(a) Branches (b) Infiltration

(c) Contrast variations (d) Fragment embolus

Figure 4.25: Examples without (left) and with (right) network predictions overlay (red) that contain
special cases of FP predictions, like segmentations of branches (a) where a small intensity
drop is visible, of surrounding comorbidities like infiltration (b), small contrast variation
within peripheral veins (c) and fragments of an embolus which are not included in the
annotations mask (d).
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Figure 4.25 shows different special cases of FP segmentation. Common mistakes include
segmentation of branches (4.25a), surrounding infiltrates (4.25b), or small contrast variations
in peripheral arteries (4.25c) that are all no emboli.
One special case that can easily be omitted is displayed in Figure 4.25d. Here the two red
regions are counted as FPs, but obviously they are fragments of the huge proximal embolism
whose label was not drawn broadly enough. This can easily be avoided by a subsequent
post-processing.
Last but not least, we examine in more detail the embolisms that the network did not detect,
i.e., the FN predictions. We compared the best INHOUSE network with the best CADPE
network, where INHOUSE failed to detect a total of 25 embolisms and CADPE had 26 false
negatives. The intersection of both false negatives consists of 18 emboli, which we analysed
manually in more detail. Of these 18, we found only 6 that were clearly recognizable to us as
embolism. We would not recognize the remaining 12.
Figures 4.26 and 4.27 contain several examples of FN examples. The left image of Figure
4.26 shows one peripheral embolism, which is a borderline case because the artery is so thin
that it is difficult to make a statement here. Right next to it, a proximal thrombus was not
detected, but it looks like a false label because it lies between the arterial branches. The
two right images contain clearly recognizable embolisms, which are not detected, where the
rightmost embolism seems to be a fragment of the embolism below.

False Negative Predictions

Figure 4.26: Example images without (upper row) and with (lower row) ground truth overlay, which
were not detected by the network, like border cases in small peripheral arteries (most
left), regions that were wrongly annotated (left), embolisms with low contrasts (right) or
not detected fragments of other embolisms (most right).
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Figure 4.27 contains FN examples that we would not label as embolism. The two leftmost
images show comorbidity cases, where in the leftmost image, not even the artery is visible.
But also in the two rightmost images, a thrombus is not visible.

False Negative Predictions

Figure 4.27: Example images without (upper row) and with (lower row) ground truth overlay that
were not detected by the network that we would not annotate. Both in the two leftmost
images which are strongly affected by comorbidities and in the better visible rightmost
images, no embolisms are recognizable to us, despite the annotations.

In summary, we see that the network still makes many false positive segmentations. However,
only a portion of these are predictions that do not make sense because they are outside the
ROI. This should be corrected in future work. However, many other FP predictions have
detected further emboli. Borderline cases, such as detected tissue or branching, are common
errors that are very difficult to correct.
In addition, we have also seen that many labels are still not correct, or represent borderline
cases. Segmentations that are not visible to humans cannot be recognized by the network
either, as is the situation with comorbidity cases, for example. Regarding the comorbidity
cases, it should be noted that INHOUSE segmented far fewer false positives on these. CADPE
detected 40 false positives on one case, whereas INHOUSE segmented only 9. This is probably
because there are more of these cases included in training with the INHOUSE data set and
apparently not in the CADPE data set.
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4.3.5 Evaluation on Monoenergetic Images

We have identified that the performance without DECT data augmentation decreases rapidly
with increasing energy level on the monoenergetic data, i.e., as soon as the contrast de-
creases. We will now investigate in more detail what the networks segment on the different
monoenergetic images.
Table 4.7 contains rendering images of different cases, once evaluated on monoE70 and once
on monoE200 images. Thereby, networks were examined, which were trained without DECT
data augmentation and additionally a network, where during the training monoenergetic data
between 50 keV and 150 keV were also generated.
All networks perform well despite a few false positive predictions on the monoE70 images. It
should be mentioned that when creating the render plots, the limit for detecting an embolism
was set to τ = 0.5, which yields a larger number of false positives in the image.

Figure 4.28: Example images with embolisms, which were not detected by networks trained with
conventional data on the low contrast monoE150 images (second row), but by networks
trained with DECT data. Predictions of the DECT networks are marked in red (third
row) and ground truth in the last row. In addition the monoE50 images are displayed in
the first row, where the contrast variation due to the embolisms is quite well visible.



Experiments and Interpretation 83

70 keV 200 keV 70 keV 200 keV

CA
D
PE

case 115 case 281

FU
M
PE

case 302 case 281

IN
H
O
U
SE

case 302 case 127

M
on

oE
[5

0
ke
V
,1

50
ke
V

]

case 302 case 127

case 115 case 281

Table 4.7: Render plots of different cases on two monoenergetic energy level (70 keV, 200 keV),
evaluated once with networks trained separately on CADPE, FUMPE and INHOUSE
without and once on INHOUSE with DECT data augmentation. TP voxel are marked in
blue, FN voxel in green and FP voxel in red.
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When evaluating the networks trained without DECT data augmentation on the monoE200
images, two phenomena occur. First, a mayor part of the embolisms that were detected on the
70 keV images (blue region) are no longer detected on the monoE200 images (green region).
Second, the networks tend to segment much of the vessel tree. It appears that the network no
longer detects contrast variations within arteries, but is only excited by edges of a complete
artery.
Considering the network trained on monoenergetic data, the segmentation on the monoE200
data differs not so much from the segmentations on the monoE70 data. Although the embolus
is no longer segmented as accurately as on the monoE70 data, see case 115, case 281 and case
127, the intersection of prediction and ground truth has decreased. However, the embolisms
are still detected for the most part and the network does not tend to segment the complete
vessels here.
In addition, Figure 4.28 shows three examples, where the conventional trained INHOUSE
network does not detect the ground truth values at an AFP rate of 5, but the monoenergetic
network does. In the first row, the corresponding section of the monoE50 image is displayed,
because here the embolisms are best visible. Below, the same section from the monoE150
image is visible. Here, the embolism is very difficult to recognize. In the last two rows, the
prediction of the monoenergetic network is shown in red and the reference label in blue. The
INHOUSE network does not segment anything in these areas. Although the segmentation is
somewhat coarser, the monoenergetic network still recognizes all three emboli.

4.3.6 Center of Gravity - Comparison with CADPE Challenge

Additionally, we want to compare our general approach for detecting pulmonary embolisms
with other methods. For this purpose, we compared our networks trained only with the
CADPE data set with the methods of the CADPE challenge of [3].
In the CADPE challenge, FROC curves, in which the sensitivity was plotted against the
average false positive rate, were also used. However, no segmentation of embolisms was
performed, but detection instead: the networks predict only individual key points. If a key
point lies within the embolism, this counts as a true positive. If multiple key points lie within
an embolism, the key point with the greatest confidence is taken. All key points that lie
outside the reference embolism are counted as false positives.
Figure 4.29 shows the FROC curves of the different methods that have been benchmarked
in the CADPE challenge on 20 test images (left) and two of our networks, trained with the
CADPE data set evaluated on two different splits (right). Of course the evaluation will vary
slightly on different test images.
The performance of the three best networks UA-2D, UA-2.5D and UA-3D, all from [27], is
listed in Table 4.8. Figure 4.29 from [3] shows all participants of the challenge and later
submitted approaches, except the UA-3D network, which was later published in [27].
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AFP cv1 cv2 2D 2.5D 3D

1 63.8 65.5 47.5 69 68
2 68.8 62.8 52.5 74 72
4 72.5 73.6 62.5 75 75

Table 4.8: Sensitivity in % at different AFP rates of our networks (cv1, cv2) compared to the UA-
2D,2.5D and 3D networks, which were developed by the winner of the CADPE challenge.

The networks of the challenge winner, UA-2D, UA-2.5D and UA-3D, all are based on the
U-Net structure [18]. In the UA-2D network axial slices of the data are used as input while
the output is a 2D embolism segmentation mask. The 2.5D network, on the other hand, is
based on the 2D network, but uses a composition of five input slices, namely the target slice,
two slices below and above it. Again, the single slice segmentation mask was used as the
output. The 3D network uses the same structure as the 2.5D network, but with slices from
the axial, coronal and sagittal plane. For each target scan, three predictions with different
input slices from different planes are made and the three predictions are merged, taking the
maximum of each pixel.
Although our approach is also based on a U-Net architecture, one main difference is that we
use 3D patches as input and 3D segmentation masks as output. In this case, we only consider
a small area at a time, but have much more information from the near environment. While in
the UA approach, they consider one complete axial slice, but have less information about the
environment in the other dimensions.
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Figure 4.29: Comparison of differentmethods from the CADPE challenge (left),[27], and our networks
trained and evaluated with two different splits of the CADPE data set (right).

One can see that our networks are close behind the UA-3D and UA-2.5D approaches and
ahead of the UA-2D approach. An important difference is the way of evaluation: while we
calculated the center of mass for each connected component and determined its probability
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as the average over the network’s output of all pixels within the connected component, the
UA approaches used the following post-processing steps. First of all, a closing operation was
applied to the binary segmentation mask before the connected components were determined.
Instead of determining only the center of mass, the shortest distance to the perimeter was also
determined for each pixel. From the points with the largest distance to the perimeter, those five
were determined which were closest to the center of mass. This means that, in contrast to our
approach, several candidates for each component are available here and thus the probability
of a hit could be greater. It would be interesting to see if the same post-processing would
improve our evaluation.



5
Conclusion

In this section, the results of the previous experiments are summarized and discussed, with
which the research questions from Section 1.2 are answered. Furthermore, we want to discuss
which future research questions have arisen from this work.
First of all, in our naive approach in Subsection 4.1.1, we have seen that the segmentation
of pulmonary embolisms is a complex problem due to the large variability of location, size,
shape and appearance and that a naive training without a more detailed study of the data and
the right choice of training strategy is not sufficient to get a good performance.
In Subsection 4.1.2, it was found that the nature of the data set has a major impact on
performance and generalization. At one point, the INHOUSE data set was considered
separately, as it is the most challenging due to missing annotations and the presence of the
large amount of comorbidities. We saw that by correcting the data and using the comorbities
only in training, we can can increase performance by 17.66 pp, see Table 4.2. In addition, the
effect of the size of training data set on performance became apparent when increasing the
size of the data set from 66 cases to 114 cases, caused a 10 pp performance improvement.
In the separated training and evaluation, in Subsection 4.1.3, it was found that the CADPE
data set generalizes best of all data sets, followed by the INHOUSE data set and FUMPE
data set, which generalizes the worst. This is probably due to the small number of images
in the data set, the large number of proximal embolisms, and although FUMPE has fewer
outliers, the distribution is denser for the large embolisms than for the other data sets, see
Subsection 3.1.1. By this characteristic, all networks have a high sensitivity on FUMPE. On
the INHOUSE data set instead, all networks show the worst performance. This implies that
the FUMPE data set is the easiest and that the INHOUSE data set is the most challenging.
The INHOUSE data set with 112 cases and 552 embolisms is larger than the CADPE data set
with its 91 cases and 317 data (see Subsection 3.1.1), the latter generalizes better. Although
both data sets cover a similar range of volumes in the range, INHOUSE contains many more
peripheral embolisms and has a smaller mean volume. Combined training also improves
performance, but data sets should be weighted according to their quality to achieve the best
possible result.
With these experimental results we are able to answer the research question, what factors
influence the generalizability. First, we need a sufficient amount of data, but the nature of the
data is much more important for generalization. The number of comorbidities, the size of the
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embolisms, the distribution of peripheral and proximal embolisms in the data set, and the
distribution of volumina all are important factors influencing the generalizability. In addition,
a proper and standardized annotation is very important and an intensive pre-processing is
necessary.
In the training section, a performance increase of 13 pp was achieved by examining the
hyperparameters, see Subsection 4.2.1. Here it turned out that in particular a larger learning
rate and a larger patch size is advantageous. For the latter, a negative correlation with the
number of average false positives was seen. It seems that the network benefits from more
regional information. This leads to the question whether approaches like in P-NET, [11],
where a wider image range, but a lower amount of slices (199 × 199 × 24) are used as input
or UA-2.5D where several cross sections are generated, could extract due to the higher size in
two dimensions more regional information compared of using 3D cubes with same sizes in
all dimensions.
In a direct comparison with the UA-2.5 network in Subsection 4.3.6, the winner of the CADPE
challenge, our approach came very close to their result, although it must be said that our
result might still be improved by a similar post-processing. Although the evaluation on two
different test data sets makes a good statement about the general behavior, the same test data
have to be used for a fair comparison.
This answers the research question, that the 3D U-Net architecture is suitable for the detection
and segmentation of pulmonary embolisms, but there is still a demand for improvement. This
is especially visible in the evaluation section. Although on the healthy data, our networks
predict significantly fewer false positives on average, the number of casewise false positive
predictions is still too high for clinical applications. Also, closer examination of the false
positives has shown that in some cases the location is outside the ROI. This is probably due to
the lack of spatial information due to the use of the 3D patches. Again, it would be interesting
to try other network structures to overcome this. For example using an approach similar to
Lin et al., [10], in which a region proposal network first proposes candidate, after which
our 3D network could then be applied for segmentation. It would also be interesting to see
whether a vessel alignment in combination with a 2.5D network getting the cross sections as
input or our 3D network where 3D cubes are used as the input would perform better.
Classical data augmentation, which was investigated in Subsection 4.2.2, had little effect on
performance. On a smaller data set, rotation was found to provide a significant improvement.
Other operations had little or no impact.
The analysis on the monoenergetic data in Subsection 4.2.3 has shown that the networks
trained with conventional data perform very poorly on different contrasts. A more detailed
analysis of the segmentations showed that they tend to segment the entire vessel structure
due to the poor contrast, see Subsection 4.3.5. This answers the research question how
conventionally trained networks perform on different contrasts.
By online data augmentation with the monoenergetic data it stood out that this performs very
poorly without additional classical data augmentation, even though the augmented images
in the range of [60 keV, 80 keV] are not very different from the conventional images. This
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suggests that spectral training focuses more on the different contrasts during learning and
not on the original problem, thus generating very simple but contrast-independent filters.
Nevertheless, in combination with classical data augmentation, the performance could be
significantly improved, which answers the last research question how a contrast-independent
prediction can be realized. Two conclusions can be derived from this experiment. A small
contrast variation in training increases the performance on the conventional data slightly.
Training with exactly the same patches, only with a higher contrast variation, increased the
performance on the conventional data by 3 pp, with little improvement on the monoenergetic
data with contrasts close to the augmentation range. The greater the contrast variation in
training, the worse the results on conventional data (and near conventional data), but the
better the result on low contrasts. With spectral training in the range of [50 keV, 150 keV],
the performance compared to the training without DECT augmentation on the conventional
data decreases only by 1.34 pp; however, compared to the DECT training with the interval
[60 keV, 80 keV] by 4 pp, the performance on the higher energy levels doubles from 20% to
40%, see Subsection 4.2.3.
Depending on the application, either improvement on conventional can be realized or gener-
alization on different contrasts.
In summary, a comprehensive analysis regarding generalizability in pulmonary embolism
detection was performed in this work. We have seen that the problem is very complex and
the training is very unstable. The quality and statistics of the data sets have a crucial impact
on the training. Using DECT data augmentation, we have managed to make the network
more robust to different contrasts. However, many other research questions have arisen in
the process. Besides the investigation of different network structures, training with further
data sets is of interest. One famous data set is known from the Radiological Society of North
America (RSNA) pulmonary embolism detection challenge, [52], which is the largest public
annotated data set with more than 12 000 annotated cases, but it is only suitable for detection
tasks. This data set could be used to first train a casewise detection network, followed by a
segmentation network. Furthermore, we have shown that DECT data augmentation is suitable
for performance enhancement on the conventional data as well as for generalization. Here,
more training strategies could be pursued with other DECT representations, such as the VNC
images. Furthermore, the networks could be trained using only the photo and scatter images,
allowing the optimal transformations to be learned by the network independently. Again,
it would be of interest to train with a larger DECT data set. Unfortunately, these are to our
knowledge not yet publicly available.
We conclude that if some improvements are made, such as training with more conventional
data, but also with more DECT data for data augmentation, and reducing the false positive
rate through various approaches, such as combining a region proposal network or a casewise
detection network with our segmentation network, a PE segmentation network can be used
for clinical applications. The CADPE system should have access to CT data from different
clinics. It runs in the background and triggers an alarm when a pulmonary embolism is
detected and segmented. This information can then be passed on to a team of experts, which
can then confirm the diagnosis and enable early treatment.
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[21] Jan Bĕlohlávek, Vladimír Dytrych, and Aleš Linhart. Pulmonary embolism, part I:

Epidemiology, risk factors and risk stratification, pathophysiology, clinical presenta-
tion, diagnosis and nonthrombotic pulmonary embolism. Experimental and clinical
cardiology, 18:129–38, 06 2013.

[22] Galinier Michel Elenizi Khaled, Alharthi Rasha. Pulmonary embolism originating from
germ cell tumor causes severe left ventricular dysfunction in a healthy young adult with
full recovery: a case report. BMC Cardiovascular Disorders, 05 2021.

[23] Steven E. Weinberger, Barbara A. Cockrill, and Jess Mandel. 13 - pulmonary embolism.
In Steven E. Weinberger, Barbara A. Cockrill, and Jess Mandel, editors, Principles
of Pulmonary Medicine (Sixth Edition), pages 179–188. W.B. Saunders, Philadelphia,
sixth edition edition, 2014.

[24] Stavros V. Konstantinides. Management of Acute Pulmonary Embolism. Springer, 2007.
[25] Meredith L. Turetz, Andrew Sideris, Oren A. Friedman, Nidhi Triphathi, and James M.

Horowitz. Epidemiology, pathophysiology, and natural history of pulmonary embolism.
Seminars in interventional radiology, 35 2:92–98, 2018.

[26] Alastair Moore, Jason Wachsmann, Murthy Chamarthy, Lloyd Panjikaran, Yuki Tanabe,
and Prabhakar Rajiah. Imaging of acute pulmonary embolism: An update. Cardiovas-
cular Drugs and Therapy, 8, 12 2017.

[27] Carlos Cano-Espinosa, Miguel Cazorla, and Germán González. Computer Aided De-
tection of Pulmonary Embolism Using Multi-Slice Multi-Axial Segmentation. Applied
Sciences, 10(8), 2020.

[28] Lechner G. Breitenseher M., Pokieser P. Lehrbuch der radiologisch-klinischen Diag-
nostik. Breitenseher Publisher, 2012.

[29] Johanna DenOtter, Tami D. anf Schubert. Hounsfield Unit. StatPearls, 2021.
[30] T.M. Buzug. Einführung in die Computertomographie: Mathematisch-physikalische

Grundlagen der Bildrekonstruktion. Springer Berlin Heidelberg, 2011.
[31] D R Dance, Stelios Christofides, Andrew D A Maidment, I D McLean, and Kwan-

Hoong Ng. Diagnostic Radiology Physics. Non-serial Publications. INTERNATIONAL
ATOMIC ENERGY AGENCY, Vienna, 2014.

[32] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems (MCSS), 2(4):303–314, December 1989.

[33] Michael A. Nielsen. Neural Networks and Deep Learning. Determination press, 2015.
[34] Catherine F. Higham and Desmond J. Higham. Deep Learning: An Introduction for

Applied Mathematicians. ArXiv, abs/1801.05894, 2019.
[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification. In 2015 IEEE
International Conference on Computer Vision (ICCV), pages 1026–1034, 2015.



94 Bibliography

[36] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, vol-
ume 9 of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[37] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional
Networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International
Publishing.

[38] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning, 2016.

[39] Tomasz Szandala. Review and comparison of commonly used activation functions for
deep neural networks. CoRR, abs/2010.09458, 2020.

[40] Arun Kumar Dubey and Vanita Jain. Comparative Study of Convolution Neural Net-
work’s Relu and Leaky-Relu Activation Functions. In Sukumar Mishra, Yog Raj Sood,
and Anuradha Tomar, editors, Applications of Computing, Automation and Wireless
Systems in Electrical Engineering, pages 873–880, Singapore, 2019. Springer Singapore.

[41] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer
Feedforward Networks with a Non-Polynomial Activation Function Can Approximate
Any Function. New York University Stern School of Business Research Paper Series,
1993.

[42] Humaidi A.J. et al. Alzubaidi L., Zhang J. Review of deep learning: concepts, CNN
architectures, challenges, applications, future directions. Journal of Big Data, 2021.

[43] Richard Garnett. A comprehensive review of dual-energy and multi-spectral computed
tomography. Clinical Imaging, 67, 08 2020.

[44] Frank Natterer. The Mathematics of Computerized Tomography. Society for Industrial
and Applied Mathematics, USA, 2001.

[45] Harrison H Barrett. Iii the radon transform and its applications. In Progress in optics,
volume 21, pages 217–286. Elsevier, 1984.

[46] Martin Berger, Qiao Yang, and Andreas Maier. X-ray Imaging: An Introductory Guide.
Springer, 08 2018.

[47] Carsten Schirra, Bernhard Brendel, Mark Anastasio, and Ewald Roessl. Spectral ct: A
technology primer for contrast agent development. Contrast media molecular imaging,
9:62–70, 01 2014.

[48] Anushri Parakh, Manuel Patino, and Dushyant V Sahani. Spectral ct/dual-energy ct. In
Multislice CT, pages 59–79. Springer, 2017.

[49] Robert Alvarez and AMacovski. Energy-selective reconstructions in x-ray computerized
tomography. Physics in medicine and biology, 21:733–44, 10 1976.



Bibliography 95

[50] Xin Yang, Yi Lin, Jianchao Su, Xiang Wang, Xiang Li, Jingen Lin, and Kwang-Ting
Cheng. A Two-Stage Convolutional Neural Network for Pulmonary EmbolismDetection
From CTPA Images. IEEE Access, 06 2019.

[51] S.K. Warfield, K.H. Zou, and W.M. Wells. Simultaneous truth and performance level
estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE
Transactions on Medical Imaging, 23(7):903–921, 2004.

[52] Errol Colak, Felipe Kitamura, Stephen Hobbs, Carol wu, Matthew Lungren, Luciano
Prevedello, Jayashree Kalpathy-Cramer, Robyn Ball, George Shih, Anouk Stein, Safwan
Halabi, Emre Altinmakas, Meng Law, Parveen Kumar, Karam Manzalawi, Dennis
Rubio, Jacob Sechrist, Pauline Germaine, Eva Lopez, and John Mongan. The RSNA
Pulmonary Embolism CT (RSPECT) Dataset. Radiology: Artificial Intelligence, 3, 01
2021.


	List of Abbreviations
	Introduction
	Motivation
	Research Questions
	Thesis Outline

	Theoretical Foundation
	Pulmonary Embolism
	Convolutional Neural Networks
	CT and DECT
	Related Research

	Methods and Materials
	Data set
	Evaluation
	Methodology Approach

	Experiments and Interpretation
	Input
	Training
	Evaluation

	Conclusion

