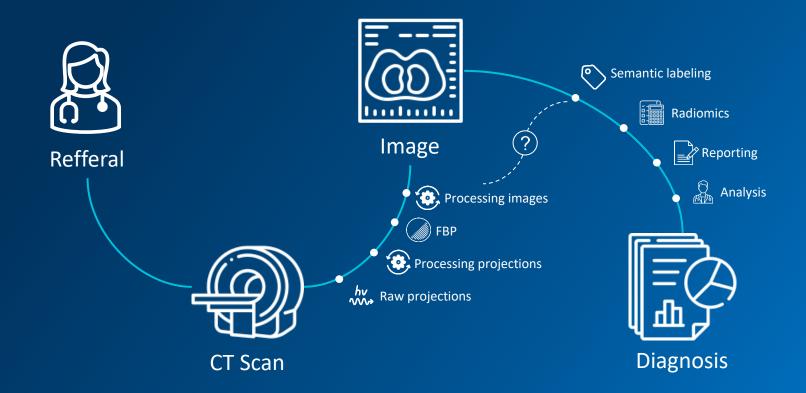


On TotalSegmentator's Performance on Low-Dose CT Images


Artyom Tsanda^{a,b,*}, Hannes Nickisch^a, Tobias Wissel^a, Tobias Klinder^a, Tobias Knopp^{b,c}, Michael Grass^a

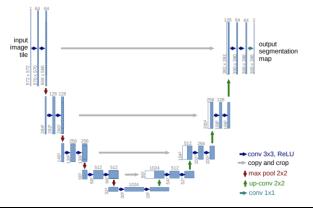
^a Philips Innovative Technologies, Hamburg, Germany
^b Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
^c Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
* Email: artyom.tsanda@tuhh.de

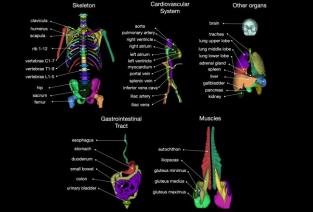
Presenter: Nikolas Schnellbaecher

19th February 2024

Segmentation Milestones

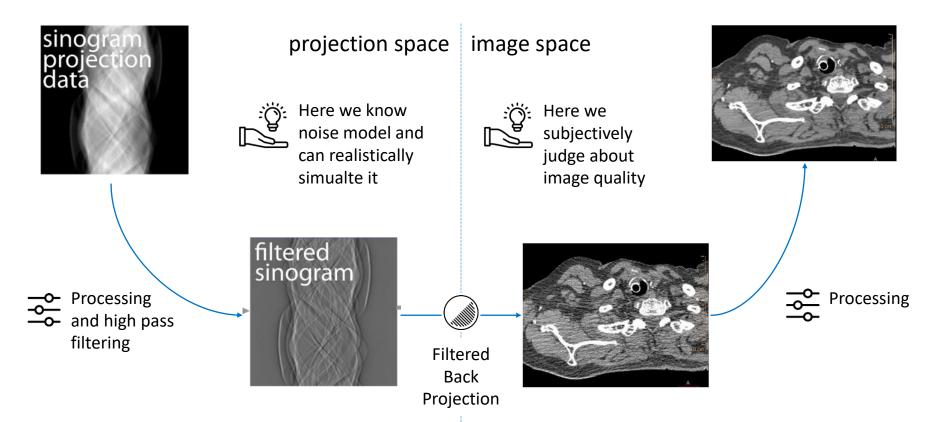
2015


U-Net: Convolutional Networks for Biomedical Image Segmentation A novel encoder-decoder architecture with skip-connections. Originally applied for segmentation of neuronal structures in electron microscopic stacks.

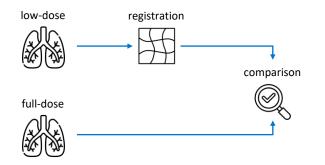

2018

nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

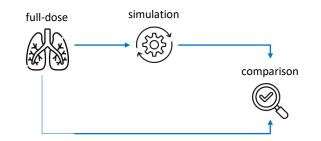
"nonew-Net". The method automatically configures itself, including pre-processing, network architecture, training and post-processing for any new task


2022 TotalSegmentator: robust segmentation of 104 anatomical structures in CT images

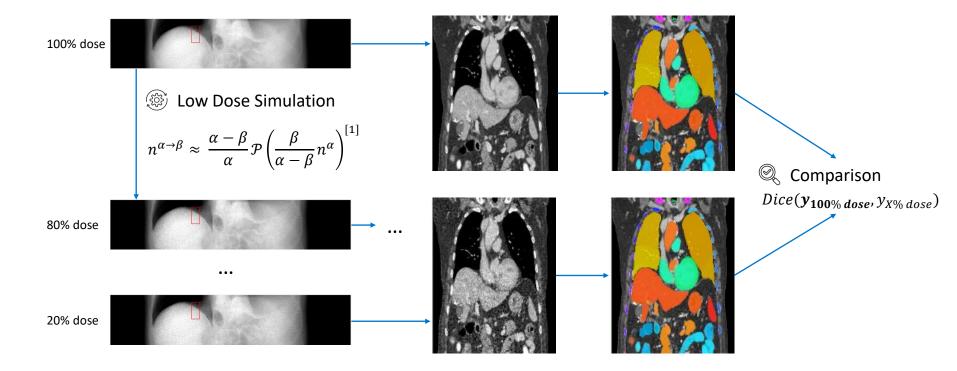
CT Image Formation



Approaches to the analysis of dose robustness



- acquisitions
- Leads to unpaired low- and full-dose images •
- Low quantity •



- Perfectly registered
- Accurate simulations require raw data and information about a CT system

Method

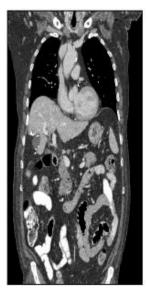
[1] Žabić, Stanislav, et al. "A low dose simulation tool for CT systems with energy integrating detectors." Medical physics 40.3 (2013): 031102.

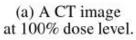
Experiment

- 42 patients, 99 CT scans
- Raw projections of the abdominal area in helical geometry with 8 cm collimation and pitch factor 1.38
- Reconstructed using 420mm field of view with pixel numbers along X and Y set to 512
- 5 dose levels: 20%, 40%, 60%, 80%, 100%
- TotalSegmentator model consisting of 5 models for different body parts

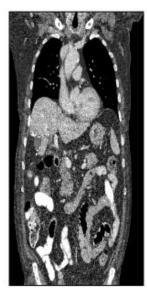
Results

Table 1. Dice scores calculated between segmentations of full- and low-dose CT images for different dose levels. Since the full-dose segmentation was used as a reference, the scores for the 100% dose level equal 1.0.


Model Name	Dose Level				
	20%	40%	60%	80%	100%
totsegm-all	0.983 ± 0.008	0.990 ± 0.005	0.993 ± 0.003	0.996 ± 0.002	1.000 ± 0.000
totsegm-organs	0.987 ± 0.011	0.992 ± 0.007	0.995 ± 0.004	0.997 ± 0.003	1.000 ± 0.000
totsegm-vertebrae	0.988 ± 0.002	0.993 ± 0.002	0.995 ± 0.001	0.997 ± 0.001	1.000 ± 0.000
totsegm-cardiac	0.982 ± 0.010	0.989 ± 0.006	0.993 ± 0.004	0.996 ± 0.002	1.000 ± 0.000
totsegm-muscles	0.986 ± 0.004	0.992 ± 0.003	0.995 ± 0.002	0.997 ± 0.001	1.000 ± 0.000
totsegm-ribs	0.974 ± 0.006	0.984 ± 0.004	0.990 ± 0.002	0.994 ± 0.002	1.000 ± 0.000


- The median and the median absolute deviation aggregate the results across multiple CT images as some scores are falling into the extreme of the value range
- The absolute decline does not exceed 3%, even at the 20% dose level.

Results



(b) Segmentation results at 100% dose level

(c) A CT image at 20% dose level.

(d) Segmentation results at 20% dose level

(e) Differences between the segmentation results

Summary & Conclusion

- We analyzed the robustness of the TotalSegmentator model for anatomical segmentation with respect to lower doses in CT imaging.
- By employing raw CT projections, we could accurately simulate low-dose CT data that were intrinsically registered with the original CT images.
- The results reveal surprising robustness of the model even at 20% dose level
- The study is limited due to absence of the ground-truth segmentations
- Future work may include analysis of segmentation models for pathologies

Questions

Please, send your questions to the corresponding author: Artyom Tsanda <u>artyom.tsanda@tuhh.de</u> Thank you!