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Abstract

We present a probabilistic viewpoint to multiple kernel learning unifying well-known regu-

larised risk approaches and recent advances in approximate Bayesian inference relaxations.

The framework proposes a general objective function suitable for regression, robust regres-

sion and classi�cation that is lower bound of the marginal likelihood and contains many

regularised risk approaches as special cases. Furthermore, we derive an e�cient and prov-

ably convergent optimisation algorithm.

Keywords: Multiple kernel learning, approximate Bayesian inference, double loop algo-

rithms, Gaussian processes

1. Introduction

Nonparametric kernel methods, cornerstones of machine learning today, can be seen from
di�erent angles: as regularised risk minimisation in function spaces (Schölkopf and Smola,
2002), or as probabilistic Gaussian process methods (Rasmussen and Williams, 2006). In
these techniques, the kernel (or equivalently covariance) function encodes interpolation char-
acteristics from observed to unseen points, and two basic statistical problems have to be
mastered. First, a latent function must be predicted which �ts data well, yet is as smooth
as possible given the �xed kernel. Second, the kernel function parameters have to be learned
as well, to best support predictions which are of primary interest. While the �rst problem is
simpler and has been addressed much more frequently so far, the central role of learning the
covariance function is well acknowledged, and a substantial number of methods for �learn-
ing the kernel�, �multiple kernel learning�, or �evidence maximisation� are available now.
However, much of this work has �rmly been associated with one of the �camps� (referred
to as regularised risk and probabilistic in the sequel) with surprisingly little crosstalk or
acknowledgments of prior work across this boundary. In this paper, we clarify the relation-
ship between major regularised risk and probabilistic kernel learning techniques precisely,
pointing out advantages and pitfalls of either, as well as algorithmic similarities leading to
novel powerful algorithms.

We develop a common analytical and algorithmical framework encompassing approaches
from both camps and provide clear insights into the optimisation structure. Even though,
most of the optimisation is non convex, we show how to operate a provably convergent
�almost Newton� method nevertheless. Each step is not much more expensive than a gradient
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based approach. Also, we do not require any foreign optimisation code to be available. Our
framework uni�es kernel learning for regression, robust regression and classi�cation.

The paper is structured as follows: In section 2, we introduce the regularised risk and the
probabilistic view of kernel learning. In increasing order of generality, we explain multiple
kernel learning (MKL, section 2.1), maximum a posteriori estimation (MAP, section 2.2)
and marginal likelihood maximisation (MLM, section 2.3). A taxonomy of the mutual
relations between the approaches and important special cases is given in section 2.4. Section
3 introduces a general optimisation scheme and section 4 draws a conclusion.

2. Kernel Methods and Kernel Learning

Kernel-based algorithms come in many shapes, however, the primary goal is � based on
training data {(xi, yi) | i = 1..n}, xi ∈ X , yi ∈ Y and a parametrised kernel function
kθ(x,x

′) � to predict the output y∗ for unseen inputs x∗. Often, linear parametrisations
kθ(x,x

′) =
∑M

m=1 θmkm(x,x
′) are used, where the km are �xed positive de�nite functions,

and θ � 0. Learning the kernel means �nding θ to best support this goal. In general, kernel
methods employ a postulated latent function u : X → R whose smoothness is controlled via
the function space squared norm ‖u(·)‖2kθ . Most often, smoothness is traded against data
�t, either enforced by a loss function `(yi, u(xi)) or modeled by a likelihood P(yi|ui). Let
us de�ne kernel matrices Kθ := [kθ(xi,xj)]ij , and Km := [km(xi,xj)]ij in Rn×n and the
vectors y := [yi]i ∈ Yn, u := [u(xi)]i ∈ Rn collecting outputs and latent function values,
respectively.

The regularised risk route to kernel prediction, which is followed by any support vector
machine (SVM) or ridge regression technique, yields ‖u(·)‖2kθ +

C
n

∑n
i=1 `(yi, ui) as criterion,

enforcing smoothness of u(·) as well as good data �t through the loss function C
n `(yi, u(xi)).

By the representer theorem, the minimiser can be written as u(·) =
∑

i αikθ(·,xi), so that
‖u(·)‖2kθ = α>Kθα (Schölkopf and Smola, 2002). As u = Kθα, the regularised risk problem
is given by

min
u

u>K−1θ u +
C

n

n∑
i=1

`(yi, ui). (1)

A probabilistic viewpoint of the same setting is based on the notion of a Gaussian process
(GP) (Rasmussen and Williams, 2006): a Gaussian random function u(·) with mean func-
tion E[u(x)] = m(x) ≡ 0 and covariance function V[u(x), u(x′)] = E[u(x)u(x′)] = kθ(x,x

′).
In practice, we only use �nite-dimensional snapshots of the process u(·): for example,
P(u;θ) = N (u|0,Kθ), a zero-mean joint Gaussian with covariance matrix Kθ. We adopt
this GP as prior distribution over u(·), estimating the latent function as maximum of the
posterior process P(u(·)|y;θ) ∝ P(y|u)P(u(·);θ). Since the likelihood depends on u(·) only
through the �nite subset {u(xi)}, the posterior process has a �nite-dimensional represen-
tation: P(u(·)|y,u) = P(u(·)|u), so that P(u(·)|y;θ) =

∫
P(u(·)|u)P(u|y;θ)du is speci�ed

by the joint distribution P(u|y;θ), a probabilistic equivalent of the representer theorem.
Kernel prediction amounts to maximum a posteriori (MAP) estimation

maxu P(u|y;θ) ≡ maxu P(u;θ)P(y|u) ≡ minu u>K−1θ u− 2 lnP(y|u) + ln |Kθ|, (2)

ignoring an additive constant. Minimising equations (1) and (2) for any �xed kernel matrix
K gives the same minimiser û and prediction u(x∗) = û>K−1θ [kθ(xi,x∗)]i.
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Y Loss function `(yi, ui) P(yi|ui) Likelihood

{±1} SVM Hinge loss max(0, 1− yiui) @
{±1} Log loss ln(exp(−yiui) + 1) 1/(exp(−τyiui) + 1) Logistic

R SVM ε-insensitive loss max(0, |yi − ui|/ε− 1) @
R Quadratic loss (yi − ui)2 N (yi|ui, σ2) Gaussian

R Linear loss |yi − ui| L(yi|ui, τ) Laplace

Table 1: Relations between loss functions and likelihoods

The correspondence between likelihood and loss function bridges probabilistic and reg-
ularised risk techniques. More speci�cally, any likelihood P(y|u) induces a loss function
`(y,u) via

−2 lnP(y|u) = −2
∑
i

lnP(yi|ui) 
C

n

n∑
i=1

`(yi, ui) = `(y,u),

however some loss functions cannot be interpreted as a negative log likelihood as shown
in table (1) and as discussed for the SVM by Sollich (2000). If, the likelihood is a log-

concave function of u, it corresponds to a convex loss function (Boyd and Vandenberghe,
2002, Sect. 3.5.1). Common loss functions and likelihoods for classi�cation Y = {±1} and
regression Y = R are listed in table (1).

In the following, we discuss several approaches to learn the kernel parameters θ and
show how all of them can be understood as instances of or approximations to Bayesian
evidence maximisation. Although the exposition MKL section 2.1 and MAP section 2.2 use
a linear parametrisation θ 7→ Kθ =

∑M
m=1 θmKm, much of the results in MLM 2.3 and all

the aforementioned discussion are still applicable to non-linear parametrisations.

2.1 Multiple Kernel Learning

A widely adopted regularised risk principle, known asmultiple kernel learning (MKL) (Chris-
tianini et al., 2001; Lanckriet et al., 2004; Bach et al., 2004), is to minimise equation (1)
w.r.t. the kernel parameters θ as well. One obvious caveat is that for any �xed u, equation
(1) becomes ever smaller as θm →∞: it cannot per se play a meaningful statistical role. In
order to prevent this, researchers constrain the domain of θ ∈ Θ and obtain

min
θ∈Θ

min
u

u>K−1θ u + `(y,u),

where Θ = {θ � 0, ‖θ‖2 ≤ 1} or Θ = {θ � 0, 1>θ ≤ 1} (Varma and Ray, 2007). Notably,
these constraints are imposed independently of the statistical problem, the model and of the
parametrization θ 7→ Kθ. The Lagrangian form of the MKL problem with parameter λ and
a general p-norm unit ball constraint where p ≥ 1 (Kloft et al., 2009) is given by

min
θ�0

φMKL(θ), where φMKL(θ) := min
u

u>K−1θ u + `(y,u) + λ · 1>θp︸ ︷︷ ︸
ρ(θ)

, λ > 0. (3)

Since, the regulariser ρ(θ) for the kernel parameter θ is convex, the map (u,K) 7→
u>K−1u is jointly convex for K � 0 (Boyd and Vandenberghe, 2002) and the parametrisa-
tion θ 7→ Kθ is linear, MKL is a jointly convex problem for θ � 0 whenever the loss function
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Figure 1: Convex upper bounds on (the concave non-decreasing) ln |Kθ|
By Fenchel duality, we can represent any concave non-decreasing function and hence the log
determinant function by ln |Kθ| = minλ�0 λ

>|θ|p − g∗(λ). As a consequence, we obtain a
piecewise polynomial upper bound for any particular value λ.

`(y,u) is convex. Furthermore, there are e�cient algorithms to solve equation (3) for large
models (Sonnenburg et al., 2006).

2.2 Joint MAP Estimation

Adopting a probabilistic MAP viewpoint, we can minimise equation (2) w.r.t. u and θ � 0:

min
θ�0

φMAP(θ), where φMAP(θ) := min
u

u>K−1θ u− 2 lnP(y|u) + ln |Kθ|. (4)

While equation (3) and equation (4) share the �inner solution� û for �xed Kθ � in case
the loss `(y,u) corresponds to a likelihood P(y|u) � they are di�erent when it comes to
optimising θ. The joint MAP problem is not in general jointly convex in (θ,u), since
θ 7→ ln |Kθ| is concave, see �gure 2. However, it is always a well-posed statistical procedure,
since ln |Kθ| → ∞ as θm →∞ for all m.

We show in the following, how the regularisers ρ(θ) = λ ‖θ‖pp of equation (3) can be
related to the probabilistic term f(θ) = ln |Kθ|. In fact, the same reasoning can be applied
to any concave non-decreasing function.

Since the function θ 7→ f(θ) = ln |Kθ|, θ � 0 is jointly concave, we can represent it
by f(θ) = minλ�0 λ

>θ − f∗(λ) where f∗(λ) denotes Fenchel dual of f(θ). Furthermore,

the mapping ϑ 7→ ln |
∑M

m=1
p
√
ϑmKm| = f( p

√
ϑ) = g(ϑ), ϑ � 0 is jointly concave due to

the composition rule (Boyd and Vandenberghe, 2002, �3.2.4), because ϑ 7→ p
√
ϑ is jointly

concave and θ 7→ f(θ) is non-decreasing in all components θm as all matrices Km are positive
(semi-)de�nite which guarantees that the eigenvalues of Kθ increase as θm increases. Thus
we can � similarly to Zhang (2010) � represent ln |Kθ| as

ln |Kθ| = f(θ) = g(ϑ) = min
λ�0

λ>ϑ− g∗(λ) = min
λ�0

λ>|θ|p − g∗(λ).

Choosing a particular value λ = λ · 1, we obtain the bound ln |Kθ| ≤ λ · ‖θ‖pp − g∗(λ · 1).
Figure 1 illustrates the bounds for p = 1 and p = 2. The bottom line is that one can
interpret the regularisers ρ(θ) = λ ‖θ‖pp in equation (3) as corresponding to parametrised
upper bounds to the ln |Kθ| part in equation (4), hence φMKL(θ) = ψMAP(θ,λ = λ · 1),
where φMAP(θ) = minλ�0 ψMAP(θ,λ). Far from an ad hoc choice to keep θ small, the
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ln |Kθ| term embodies the Occam's razor concept behind MAP estimation: overly large θ
are ruled out, since their explanation of the data y is extremely unlikely under the prior
P(u;θ). The Occam's razor e�ect depends crucially on the proper normalization of the prior
(MacKay, 1992). For example, the weighting parameter C of k (k = Ck̃) can be learned by
joint MAP: if C = ec, then equation (4) is convex in c for any �xed u. If kernel-regularised
estimation equation (1) is interpreted as MAP estimation under a GP prior equation (2),
the correct extension to kernel learning is joint MAP: the MKL criterion equation (3) lacks
prior normalization, which renders MAP w.r.t. θ meaningful in the �rst place. From a non-
probabilistic viewpoint, the ln |Kθ| term comes with a model and data dependent structure
at least as complex as the rest of equation (3).

While the MKL objective, equation (3), enjoys the bene�t of being convex in the (linear)
kernel parameters θ, this does not hold true for joint MAP estimation, equation (4), in
general. We illustrate the di�erences in �gure 2. The function ψMAP(θ,u) is a building
block of the MAP objective φMAP(θ) = minu[ψMAP(θ,u)− 2 lnP(y|u)], where

ψMAP(θ,u) = u>K−1θ u︸ ︷︷ ︸
ψ∪(θ,u)

+ ln |Kθ|︸ ︷︷ ︸
ψ∩(θ)

≤ ψMKL(θ,u)−g∗(λ·1), ψMKL(θ,u) = u>K−1θ u+λ ‖θ‖pp .

More concretely, ψMAP(θ,u) is a sum of a nonnegative, jointly convex function ψ∪(θ,u) that
is strictly decreasing in every component θm and a concave function ψ∩(θ) that is strictly
increasing in every component θm. Both functions ψ∪(θ,u) and ψ∩(θ) alone do not have
a stationary point due to their monotonicity in θm. However, their sum can have (even
multiple) stationary points as shown in �gure 2 on the left left. We can show, that the map
K 7→ u>K−1u + ln |K| is invex i.e. every stationary point K̂ is a global minimum. Using
the convexity of A 7→ u>Au− ln |A| (Boyd and Vandenberghe, 2002) and the fact that the
derivative of A 7→ A−1 for A ∈ Rn×n, A � 0 has full rank n2, we see by Mishra and Giorgi
(2008, theorem 2.1) that K 7→ u>K−1u + ln |K| is indeed invex.

Often, the MKL objective for the case p = 1 is motivated by the fact that the optimal
solution θ? is sparse (e.g. Sonnenburg et al., 2006), meaning that many components θm are
zero. Figure 2 illustrates that φMAP(θ) also yields sparse solutions; in fact it enforces even
more sparsity. In MKL, φMAP(θ) is simply relaxed to a convex objective φMKL(θ) at the
expense of having only a single less sparse solution.

Intuition for the Gaussian Case

We can gain further intuition about the criteria φMKL and φMAP by asking which matrices

K minimise them. For simplicity, assume that P(y|u) = N (y|u, σ2I) and n/C = σ2,
hence `(y,u) = 1

σ2 ‖y − u‖22. The inner minimiser û for both φMKL and φMAP is given by

K−1θ û = (Kθ + σ2I)−1y. With σ2 → 0, we �nd for joint MAP that ∂
∂KφMAP = 0 results in

K̂ = yy>. While this �nonparametric� estimate requires smoothing to be useful in practice,
closeness to yy> is fundamental to covariance estimation and can be found in regularised
risk kernel learning work (Christianini et al., 2001). On the other hand, for tr(Km) = 1
and hence ρ(θ) = λtr(Kθ) = λ ‖θ‖1,

∂
∂KφMKL = 0 leads to K̂2 = λ−1yy>: an odd way of

estimating covariance, not supported by any statistical literature we are aware of.
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Figure 2: Convex and non-convex building blocks of the MKL and MAP objective function

2.3 Marginal Likelihood Maximisation

While the joint MAP criterion uses a properly normalised prior distribution, it is still not
probabilistically consistent. Kernel learning amounts to �nding a value θ̂ of high data
likelihood, no matter what the latent function u(·) is. The correct likelihood to be maximised
is marginal : P(y|θ) =

∫
P(y|u)P(u|θ)du (�max-sum�), while joint MAP employs the plug-in

surrogatemaxu P(y|u)P(u|θ) (�max-max�). Marginal likelihood maximisation (MLM) is also
known as Bayesian estimation, and it underlies the EM algorithm or maximum likelihood
learning of conditional random �elds just as well: complexity is controlled (and over�tting
avoided) by averaging over unobserved variables u (MacKay, 1992), rather than plugging in
some point estimate û

φMLM(θ) := −2 ln
∫
N (u|0,Kθ)P(y|u)du. (5)

The Gaussian Case

Before developing a general MLM approximation, we note an important analytically solvable
exception: for Gaussian likelihood P(y|u) = N (y|u, σ2I), P(y|θ) = N (y|0,Kθ + σ2I), and
MLM becomes

φGAU(θ) := y>(Kθ + σ2I)−1y + ln |Kθ + σ2I|. (6)

Even if the primary purpose is classi�cation, the Gaussian likelihood is used for its analytical
simplicity (Kapoor et al., 2009). Only for the Gaussian case, joint MAP and MLM have an
analytically closed form. From the product formula of Gaussians (Brookes, 2005, �5.1)

Q(u) := N (u|0,Kθ)N (y|u,Γ) = N (y|0,Kθ + Γ)N (u|m,V),

where V = (K−1θ + Γ−1)−1 and m = VΓ−1y we can deduce that

− 2 ln

∫
Q(u)du = ln |K−1θ + Γ−1|+min

u
[−2 lnQ(u)]− n ln |2π|. (7)

Using σ2I = Γ and minu[−2 lnQ(u)] = −2 lnQ(m), we see that by

φMAP/GAU(θ) :
c
= φGAU(θ)− ln |K−1θ + σ−2I| c= y>(Kθ + σ2I)−1y + ln |Kθ| (8)
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MLM and MAP are very similar for the Gaussian case.
The �ridge regression� approximation is also used together with p-norm constraints in-

stead of the ln |Kθ| term (Cortes et al., 2009)

φRR(θ) := y>(Kθ + σ2I)−1y + λ ‖θ‖pp . (9)

Unfortunately, most GP methods to date work with a Gaussian likelihood for simplicity, a
restriction which often proves short-sighted. Gaussian-linear models come with unrealistic
properties, and bene�ts of MLM over joint MAP cannot be realised.

Kernel parameter learning has been an integral part of probabilistic GP methods from
the very beginning. Williams and Rasmussen (1996) proposed MLM for Gaussian noise
equation 6, �fteen years ago. They treated sums of exponential and linear kernels as well
as learning lengthscales (ARD), predating recent proposals such as �products of kernels�
(Varma and Babu, 2009).

The General Case

In general, joint MAP always has the analytical form equation 4, while P(y|θ) can only be
approximated. For non-Gaussian P(y|u), numerous approximate inference methods have
been proposed, speci�cally motivated by learning kernel parameters via MLM. The simplest
such method is Laplace's approximation, applied to GP binary and multi-way classi�cation
by Williams and Barber (1998): starting with convex joint MAP, lnP(y,u) is expanded to
second order around the posterior mode û. More recent approximations Girolami and Rogers
(2005); Girolami and Zhong (2006) can be much more accurate, yet come with non-convex
problems and less robust algorithms (Nickisch and Rasmussen, 2008). In this paper, we
concentrate on the variational lower bound relaxation (VB) by Jaakkola and Jordan (2000),
which is convex for log-concave likelihoods P(y|u) (Nickisch and Seeger, 2009), providing a
novel simple and e�cient algorithm. While our VB approximation to MLM is more expensive
to run than joint MAP for non-Gaussian likelihood (even using Laplace's approximation),
the implementation complexity of our VB algorithm is comparable to what is required in
the Gaussian noise case equation 6.

More, speci�cally, we exploit that super-Gaussian of likelihoods P(yi|ui) can be lower
bounded by scaled Gaussians Nγi of any width γi:

P(yi|ui) = max
γi>0
Nγi = max

γi>0
exp

(
βiui −

u2i
2γi
− 1

2
hi(γi)

)
,

where βi ∝ yi are constants, and hi(·) is convex (Nickisch and Seeger, 2009) whenever the
likelihood P(yi|ui) is log-concave. If the posterior distribution is P(u|y) = Z−1P(y|u)P(u),
then lnZ ≥ Ce−ψVB(θ,γ)/2 by plugging in these bounds, where C is a constant and

φVB(θ) := min
γ�0

ψVB(θ,γ), ψVB(θ,γ) := h(γ)− 2 ln

∫
N (u|0,Kθ)e

u>(β− 1
2
Γ−1u)du, (10)

h(γ) :=
∑

i hi(γi), Γ := dg(γ). The variational relaxation1 amounts to maximising the lower
bound, which means that P(u|y) is �tted by the Gaussian approximation Q(u|y;γ) with co-

1. Generalisations to other super-Gaussian potentials (log-concave or not) or models including linear cou-
plings and mixed potentials are given by Nickisch and Seeger (2009).
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variance matrix V = (K−1θ +Γ−1)−1 (Nickisch and Seeger, 2009). Alternatively, we can inter-
pret ψVB(θ,γ) as an upper bound on the Kullback-Leibler divergence KL(Q(u|y;γ)||P(u|y))
(Nickisch, 2010, �2.5.9), a measure for the dissimilarity between the exact posterior P(u|y)
and the parametrised Gaussian approximation Q(u|y;γ).

Finally, note that by equation (7), ψVB(θ,γ) can also be written as

ψVB(θ,γ) = ln |K−1θ + Γ−1|+ h(γ) + min
u
R(u,θ,γ) + ln |Kθ|, (11)

where R(u,θ,γ) = u>(K−1θ +Γ−1)u−2β>u. Using the concavity of γ−1 7→ ln |K−1θ +Γ−1|
and Fenchel duality ln |K−1θ + Γ−1| = minz�0 z>γ−1 − g∗θ(z) = ẑ>θ γ

−1 − g∗θ(ẑθ), with the
optimal value ẑθ = dg(V), we can reformulate ψVB(θ,γ) as

ψVB(θ,γ) = min
z�0

[z>γ−1 − g∗θ(z)] + h(γ) + min
u
R(u,θ,γ) + ln |Kθ|,

which allows to perform the minimisation w.r.t. γ in closed form (Nickisch, 2010, �3.5.6):

φVB(θ) = min
z�0

ψVB(θ, z), ψVB(θ, z) = min
u

u>K−1θ u + ˜̀
z(y,u)− g∗θ(z) + ln |Kθ|, (12)

where ˜̀
z(y,u) := 2β>(v−u)−2 lnP(y|v) and �nally v = sign(u)�

√
u2 + z. Note that for

z = 0, we exactly recover joint MAP estimation, equation (4), as z = 0 implies u = v and
˜̀
z(y,u) = `(y,u). For �xed θ, the optimal value ẑθ = dg(V) corresponds to the marginal
variances of the Gaussian approximation Q(u|y;γ): Variational inference corresponds to
variance-smoothed joint MAP estimation (Nickisch, 2010) with a loss function ˜̀(y,u,θ)
that explicitly depends on the kernel parameters θ. We have two equivalent representations
of the loss ˜̀(y,u,θ) that directly follow from equations (11) and (12):

˜̀(y,u,θ) = min
γ�0

[ln |K−1θ + Γ−1|+ h(γ) + u>Γ−1u− 2β>u], and

˜̀(y,u,θ) = min
z�0

[2β>(v − u)− 2 lnP(y|v)− g∗θ(z)], v = sign(u)�
√

u2 + z.

Our VB problem is minθ�0,γ�0 ψVB(θ,γ) or equivalently minθ�0,z�0 ψVB(θ, z). The inner
variables here are γ and z, in addition to u in joint MAP. There are further similarities: since
ψVB(θ,γ) = −2 ln

∫
e−R(u,γ,θ)du+h(γ)+ln |2πKθ|, (γ,θ) 7→ ψVB−ln |Kθ| is jointly convex

for γ � 0, θ � 0, by the joint convexity of (u,γ,θ) 7→ R and Prékopa's theorem (Boyd and
Vandenberghe, 2002, �3.5.2). Joint MAP and VB share the same convexity structure. In
contrast, approximating P(y|θ) by other techniques like Expectation Propagation (Minka,
2001) or general Variational Bayes (Opper and Archambeau, 2009) does not even constitute
convex problems for �xed θ.

2.4 Summary and Taxonomy

In the last paragraphs, we have detailed how a variety of kernel learning approaches can
be obtained from Bayesian marginal likelihood maximisation in a sequence of nested upper
bounding steps. Table 2 nicely illustrates how many kernel learning objectives are related
to each other � either by upper bounds or by Gaussianity assumptions. We can clearly see,
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Name Objective function

Marginal Likelihood Maximisation φMLM(θ) = −2 ln
[∫
N (u|0,Kθ)P(y|u)du

]
Variational Bounds φVB(θ) = minγ�0 ψVB(θ,γ) ≥ φMLM(θ) by P(yi|ui) ≥ Nγi
Maximum A Posteriori φMAP(θ) = −2 ln [maxuN (u|0,Kθ)P(y|u)] = ψVB(θ, z = 0)

Multiple Kernel Learning φMKL(θ) = φMAP(θ) + λ ‖θ‖pp − ln |Kθ| = ψMAP(θ,λ = λ · 1)

General P(yi|ui) Gaussian P(yi|ui)
φMLM(θ), eq. (5) −→ φGAU(θ), eq. (6)

Super-Gaussian Bounding ↓ ↓ Bound is tight
φVB(θ), eq. (10) −→ φGAU(θ), eq. (6)

Maximum instead of integral ↓ ↓ Mode ≡ mean
φMAP(θ), eq. (4) −→ φMAP/GAU(θ), eq. (8)

Bound ln |Kθ| ≤ λ ‖θ‖pp − g∗(λ1) ↓ ↓
φMKL(θ), eq. (3) −→ φRR(θ), eq. (9)

Table 2: Taxonomy of kernel learning objective functions
The upper table visualises the relationship between several kernel learning objective func-
tions for arbitrary likelihood/loss functions: Marginal likelihood maximisation (MLM) can
be bounded by variational bounds (VB) and maximum a posteriori estimation (MAP) is a
special case z = 0 thereof. Finally multiple kernel learning (MKL) can be understood as an
upper bound to the MAP estimation objective λ = λ · 1. The lower table complements the
upper table by also covering the analytically important Gaussian case.

that φVB(θ) � as an upper bound to the negative log marginal likelihood � can be seen
as the mother function. For a special case, z = 0, we obtain joint maximum a posteriori
estimation, where the loss functions does not depend on the kernel parameters. Going
further, a particular instance λ = λ·1 yields the widely use multiple kernel learning objective
that becomes convex in the kernel parameters θ. In the following, we will concentrate on
the optimisation and computational similarities between the approaches.

3. Algorithms

In this section, we derive a simple, provably convergent and e�cient algorithm for MKL,
joint MAP and VB. We use the Lagrangian form of equation (3) and `(y,u) := −2 lnP(y|u):

ψMKL(θ,u) = u>K−1u + `(y,u) + λ · 1>θ, λ > 0,

ψMAP(θ,u) = u>K−1θ u + `(y,u) + ln |Kθ|, and

ψVB(θ,u) = u>K−1θ u +min
z�0

[
`(y,v) + 2β>(v − u)− g∗θ(z)

]
+ ln |Kθ|,

where v = sign(u)�
√

u2 + z.

Many previous algorithms use alternating minimization, which is easy to implement but
tends to converge slowly. Both φVB and φMAP are jointly convex up to the concave
θ 7→ ln |Kθ| part. Since ln |Kθ| = minλ�0 λ

>θ − f∗(λ) (Legendre duality, Boyd and
Vandenberghe, 2002), joint MAP becomes minλ�0,θ�0,u φλ(θ,u) with φλ := u>K−1θ u +
`(y,u) + λ>θ − f∗(λ) which is jointly convex in (θ,u). Algorithm 1 iterates between re�ts
of λ and joint Newton updates of (θ,u).

9
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Algorithm 1 Double loop algorithm for joint MAP, MKL and VB.

Require: Criterion ψ#(θ,u) = ψ̃#(θ,u) + ln |Kθ| to minimise for (u,θ) ∈ Rn × RM+ .
repeat

Newton minu ψ# for �xed θ (optional; few steps).
Re�t upper bound: λ← ∇θ ln |Kθ| = [tr(K−1θ K1), .., tr(K

−1
θ KM )]>.

Compute joint Newton search direction d for ψλ := ψ̃# + λ>θ:
∇2

[θ;u]ψλd = −∇[θ;u]ψλ.

Linesearch: Minimise ψ#(α) i.e. ψ#(θ,u) along [θ;u] + αd, α > 0.
until Outer loop converged

The Newton direction costs O(n3+M n2), with n the number of data points and M the
number of base kernels. All algorithms discussed in this paper require O(n3) time, apart
from the requirement to store the base matrices Km. The convergence proof hinges on the
fact that φ and φλ are tangentially equal (Nickisch and Seeger, 2009). Equivalently, the
algorithm can be understood as Newton's method, yet dropping the part of the Hessian
corresponding to the ln |K| term (note that ∇(u,θ)φλ = ∇(u,θ)φ for the Newton direction
computation). Exact Newton for MKL.

In practice, we use Kθ =
∑

m θmKm + εI, ε = 10−8 to avoid numerical problems when
computing λ and ln |Kθ|. We also have to enforce θ � 0 in algorithm 1, which is done by
the barrier method (Boyd and Vandenberghe, 2002). We minimise tφ+ 1>(lnθ) instead of
φ, increasing t > 0 every few outer loop iterations.

A variant algorithm 1 can be used to solve VB in a di�erent parametrisation (γ � 0
replaces u), which has the same convexity structure as joint MAP. Transforming equation
(10) similarly to equation (6), we obtain

φVB(θ) = min
γ�0

ln |C| − ln |Γ|+ β>ΓC−1Γβ − β>Γβ + h(γ) (13)

with C := Kθ + Γ, computed using the Cholesky factorisation C = LL>. They cost
O(M n3) to compute, which is more expensive than for joint MAP or MKL. Note that the
cost O(M n3) is not speci�c to our particular relaxation or algorithm e.g. the Laplace MLM
approximation (Williams and Barber, 1998), solved using gradients w.r.t. θ only, comes
with the same complexity.

4. Conclusion

We presented a unifying probabilistic viewpoint to multiple kernel learning that derives
regularised risk approaches as special cases of approximate Bayesian inference. We provided
an e�cient and provably convergent optimisation algorithm suitable for regression, robust
regression and classi�cation.

Our taxonomy of multiple kernel learning approaches connected many previously only
loosely related ideas and provided insights into the common structure of the respective
optimisation problems. Finally, we proposed an algorithm to solve the latter e�ciently.
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