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Compressed Sensing uses low-level statistical properties of MR-images to
reconstruct images from undersampled k-space data (1). It takes advantage of the

of the image or its wavelet or finite difference domain, a property that
distinguishes (MR-)images from noise and can be assumed to apply to any MR
image. While much has been done to optimize the reconstruction algorithms, the
question of how to optimally sample k-space for sparse reconstruction has not
been addressed before. Here, Bayesian inference is used for a directed search for
the optimal k-space trajectories. Using a new convex optimization algorithm for
approximate inference, this approach is scaled up to full-size MR images.
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MAP reconstructions for Cartesian undersampled data for 64 of 256 acquired lines. Four different k-space
schemes, each consisting of the central 32 lines plus 32 lines positioned by different scenarios are compared to
the fully sampled image (center). The given error is the squared difference between the fully sampled and the
undersampled images. The optimized k-space scheme shows significantly better recovery of detail than images
reconstructed from other undersampled data.
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Demonstration of the optimization process on spiral trajectories:
(k): Full image reconstructed from 16 spirals.
(i): Difference image reconstructed from 5 spirals. The algorithm calculates score values for 256 spirals (bottom
graph).
(c-h): Difference images for 6 possibilities for the sixth spiral, with L -errors. The selected trajectory (highest score

value) is d, which also leads to the image with the smallest error.
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The optimization algorithm is based on Bayes’ theorem:
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Prior:
Enforces sparsity

Posterior:
Combines data and
prior knowledge

Likelihood:
Optimized in
linear reconstuction

While standard linear reconstruction maximizes the likelihood, sparse
reconstruction optimizes the posterior, thus including the constraint of sparsity.
Our algorithm focuses on the measurement design for sparse reconstruction by
changing the measurement and thus the data : Starting from an initial
measurement matrix X, the expected information gain is computed for adding an
additional k-space line. Different possible k-space trajectories are scored
according to their reduction in uncertainty in the posterior:
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Algorithm:
Calculate posterior distribution

Compute score values for all possible new k-space lines

Take the one that minimizes posterior uncertainty and
add it to the measurement matrix
Acquire the new encode step
Calculate new posterior
Start again for next phase encode step

The super-gaussian (Laplace) distribution is fitted by a Gaussian with optimized width
as lower bound (s. right).

The score value estimates the expected information gain by minimizing the entropy of
the posterior distribution.
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Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging

Sparse reconstruction of MR-images can be substantially improved by optimizing
the k-space coverage of the acquisition. Our procedure has shown to be stable,
flexibly applicable to different experiments and scalable to the sizes of high-
resolution MR images. In addition, optimization results are also valid for different
(but similar) images, like other slices, subjects, echo times or slice orientations.

TSE-images of the heads of five different subjects were acquired with a matrix size

of 256 256 voxels for 16 slices with two different slice orientations and two echo
times each. The MAP-estimation (1) was used for sparse reconstruction of images
from a subset of these data for four different scenarios (center of k-space,
equidistant k-space lines, random distribution and optimized), as well as from the
full dataset for reference. Our Bayesian algorithm was used for the optimized
setting.
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Results:Compressed Sensing in MRI:

Conclusion:

From four-fold undersampled images, the MAP-reconstruction was able to form
images with good detail as compared to the fully sampled images. The image
fidelity, quantified by the L -difference between undersampled and fully sampled

image, is significantly reduced in the optimized version. The k-space scheme
optimized for one image also gave best results when applied to different slice
positions, volunteers, slice orientations or echo times, thus proving the robustness
of the approach.
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Image errors using the four different k-space schemes.
For different numbers of k-space columns. Errors are integrated over all volunteers, slices, orientations and echo

times and show a clear advantage with the optimized k-space coverage.
Plotted separately for four subjects, each with two slice orientations and echo times. The optimized scheme

minimizes the errors for all images, thus proving the robustness of the approach.

Left:

Right:

L ≥ N

←γ→


