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ABSTRACT

The determination of hemodynamic significance of coronary artery lesions from cardiac computed tomography
angiography (CCTA) based on blood flow simulations has the potential to improve CCTA’s specificity, thus re-
sulting in improved clinical decision making. Accurate coronary lumen segmentation required for flow simulation
is challenging due to several factors. Specifically, the partial-volume effect (PVE) in small-diameter lumina may
result in overestimation of the lumen diameter that can lead to an erroneous hemodynamic significance assess-
ment. In this work, we present a coronary artery segmentation algorithm tailored specifically for flow simulations
by accounting for the PVE. Our algorithm detects lumen regions that may be subject to the PVE by analyzing
the intensity values along the coronary centerline and integrates this information into a machine-learning based
graph min-cut segmentation framework to obtain accurate coronary lumen segmentations. We demonstrate the
improvement in hemodynamic significance assessment achieved by accounting for the PVE in the automatic seg-
mentation of 91 coronary artery lesions from 85 patients. We compare hemodynamic significance assessments by
means of fractional flow reserve (FFR) resulting from simulations on 3D models generated by our segmentation
algorithm with and without accounting for the PVE. By accounting for the PVE we improved the area under
the ROC curve for detecting hemodynamically significant CAD by 29% (N=91, 0.85 vs. 0.66, p<0.05, Delong’s
test) with invasive FFR threshold of 0.8 as the reference standard. Our algorithm has the potential to facilitate
non-invasive hemodynamic significance assessment of coronary lesions.

Keywords: Coronary CT Angiography, Coronary Artery Disease, Segmentation, Fractional Flow Reserve Sim-
ulation, Partial Volume effect

1. INTRODUCTION

Coronary artery disease (CAD) is the single largest cause of death worldwide, causing 7,249,000 deaths in 2008,
12.7% of total global mortality.1 Cardiac Computed Tomography Angiography (CCTA) is a rapidly evolving
technique for the non-invasive evaluation of coronary artery disease (CAD). The high negative predictive value in
CAD detection positions CCTA as a preferred non-invasive technique to rule out CAD in symptomatic patients
with low to intermediate pre-test probability of disease.2 However, CCTA is limited in assessing hemodynamic
significance of coronary lesions.3 Recent studies suggest that coronary lesions’ hemodynamic significance assess-
ment from CCTA by means of Fractional Flow Reserve (FFR, i.e. the ratio between the pressure after a lesion
and the normal pressure) based on flow simulation, can improve the specificity of CCTA.4–8

Assessing hemodynamic significance from CCTA requires accurate segmentation of the coronaries to generate
the three-dimensional model for flow simulations. For example, Coenen et al report that the time required for
semi-automatic coronary segmentation for flow simulation varies depending on the extent of atherosclerotic
disease, with a range of 30-120 minutes per patient.5 This time-consuming semi-automatic segmentation step
may therefore impede the routine clinical utilization of flow simulation as part of the CCTA exam.

Vessel segmentation in general,9 and coronary segmentation from CCTA in particular,10 has been a major
topic of interest in the past few years. Lugauer et al11,12 obtained the best reported results on the MICCAI
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Figure 1. Illustration of the partial volume effect. (a)The reference image, including ideal vessel profiles with varying
stenosis percentage due to the presence of soft-plaque. (b) The reconstructed image, with the reference segmentation in
green and full-width half maximum (FWHM) segmentation in red). Note the over-estimation of the lumen diameter due
to the partial volume effect. (c) The vessel intensity profile. (d) the vessels cross-sectional intensity profile. The HU
reduction in the centerline intensity profile can be used to determine locations that affected by partial volume effect.

2012 challenge database10 by using a learning-based boundary detection model, combined with a graph min-
cut based optimal surface generation. However, the evaluation was focused on anatomical agreement between
the automatic and manual segmentations rather than on the evaluation of their impact on coronary lesion
hemodynamic significance assessment.

Most coronary segmentation algorithms in the literature address the challenge of accurately separating be-
tween the coronary lumen and the accumulated plaque inside the vessel. However, the partial-volume effect
(PVE) due to the finite resolution of imaging scanners and blurring involved in the reconstruction which are
integrated into the overall system Point Spread Function (PSF) may lead to an overestimation of lumen area in
vessels with small lumen diameter,13,14 and as a result may cause underestimation of the lesion’s hemodynamic
significance. Fig. 1 illustrates this effect on 2D vessel profiles with varying stenosis percentage due to the presence
of non-calcified plaque.

In this work we present a coronary segmentation algorithm that accounts for the PVE in the coronary arteries.
Our approach first analyzes the intensity values along the coronary centerline to detect regions with small
diameter lumen that may be overestimated due to the PVE. Then, the underlying lumen radius is recovered and
integrated into a machine-learning based graph-cut segmentation framework15 to obtain the final segmentation.
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Figure 2. Coronary lumen segmentation algorithm flowchart.

We evaluated the impact of accounting for the PVE on CCTA hemodynamic significance assessment in 91
lesions from 85 patients. We compared the area under the ROC curve for detecting hemodynamic significant CAD
by means of fractional flow reserve (FFR) simulated using 3D models generated by our automatic segmentation
algorithm with and without accounting for the PVE.

2. METHOD

The input to our coronary lumen segmentation algorithm includes the CCTA volume, the coronary-artery cen-
terlines and the segmentation of the aortic root. The coronary artery centerlines and the aorta segmentation can
be computed automatically using existing methods16–20 and may be adjusted manually to account for algorithm
errors.

The coronary lumen segmentation algorithm consists of the following steps. 1) Analysis of the intensity
profile along the coronary centerline to detect regions with small diameter lumen that may be overestimated due
to the PVE, 2) Estimating underlying lumen radius, and 3) machine-learning based graph-cut segmentation15

to obtain final segmentation. Fig. 2 presents the flowchart of the proposed algorithm. We describe each step in
detail next.

2.1 Small-diameter lumen detection and estimation

Given a cardiac CT angiography volume (I) with a coronary centerline (C), our goal is to determine locations
along the coronary centerline that might be subject to the PVE. Our approach relies upon a two-phase robust
intensity profile model fitting with outlier detection. First, we model the expected intensity profile along the
coronary centerline as a quadratic polynomial function Ip(C). We fit the model Ip(C) to the intensity profile
along the centerline I(C) using a least-squares fitting.

Îp(C) = argmin
Ip(C)

∑

c∈C

(

I(c)− Ip(c)

)2

(1)

We identify potential outliers in the measured intensity profile by applying the Student’s t-test to determine points
along the centerline that are statistically significantly different (i.e. p<0.05) from the estimated model. We obtain
a robust centerline intensity profile model by excluding these outliers from the centerline, i.e. Cclean = C\Coutliers

and repeating the fitting process with Cclean instead of C. Finally, we identify regions with reduced vessel
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Figure 3. Experimental measurement of the percentage HU reduction as a function of the coronary diameter along with
the fitted model (Eq. 3) where HU is the measured HU at the vessel centerline and HU0 is the expected HU at the location
without the PVE.

diameter that may be affected by the PVE by determining points along the centerline with intensity values that
are more that 2 standard deviations below the intensity expected by the model and without the presence of
calcified plaque:

1pv(c) =

{

1, I(c) > (Ip(c)− 2σIc)
0, I(c) ≤ (Ip(c)− 2σIc)

(2)

where σIC is the standard deviation over the differences between the intensity profile along the centerline I(C)
and the fitted intensity model Ip(C). Inspired by Sato et al,14 we model the radius of the coronary lumen at
centerline location c as a function of the percentage of the lumen intensity decrease:

r(c) = 0.5

(

α

(

1−
I(c)

Ip(c)

)

+ β

)

(3)

where r(c) is units of mm. We determine the model coefficients values α, β by simulating the impact of the
approximated system PSF on ideal vessel profiles with varying diameter and fitting the model to the observed
data. Based on our simulations we set the values of α and β to -2.0mm and 1.4mm respectively. Note that this
function is valid for diameter estimation where the observed intensity (I(c)) is smaller than the expected intensity
(Ip(c)) only. Fig. 3 presents the experimental measurement of the percentage HU reduction as a function of the
coronary diameter along with the fitted model (Eq. 3) used in our method. Fig. 4 depicts a representative
example of a coronary straight multi-planar reconstructed (MPR) image with small lumen diameter along with
its centerline intensity profile and the detected small lumen diameter region.

2.2 Machine-learning based graph min-cut coronary segmentation

We first transform each coronary artery in the original 3D CCTA volume into a cylindrical coordinate system11,12

where warped volume is expressed with the coordinate i representing the index of the cross-sectional plane, and
θ,r representing the angle and the radial distance determining a point in the cross-sectional plane. We then
employ the graph min-cut segmentation framework15 to find the optimal surface separating the lumen from the
background. Formally, we minimize the following energy:

E(X) =
∑

p∈P

Ψp(xp) + λ
∑

p,q∈E

Ψp,q(xp, xq) (4)
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Figure 4. A representative example of a coronary straight multi-planar reconstructed image with small diameter lumen
(top) along with its centerline intensity profile and the small diameter lumen region as detected by our method (bottom).
Segmentation results are depicted on the top image in red for automatic graph min-cut segmentation without accounting
for the PVE and in blue for the proposed algorithm.

where P is the set of sampled points, xp is a vertex in the graph representing the point (ixp , θxp , rxp) sampled from
the original CCTA volume, Ψp(xp) represents the likelihood of the vertex to belong to the lumen or background
classes, p, q are neighboring points according to the employed neighboring system E, and Ψp,q(xp, xq) is a
regularization term penalizing for neighboring vertices belonging to different classes.

We calculate the likelihood of each vertex xp to belong to the coronary lumen using a supervised machine-
learning approach as follows. Assuming that a training database consists of rays sampled from cardiac CTA
data along with matched binary rays representing the manual segmentation, we calculate the probability of xp

of belonging to the lumen using a kernel density estimation approach:

Prd(xp ∈ Lumen) =

∑K
k=1 w(I(i

xp , θxp , R), I ′(ik, θk, R)) · δ(xp, S(i
k, θk, R))

∑K
k=1 w(I(i, θ

xp , Rxp), I ′(ik, θk, R))
(5)

where R is a set of radial distances, I(ixp , θxp , R) is the sampled ray that include the point xp in the new volume,
I ′(ik, θk, R) is the ray from the training set, δ(xp, I

′(ik, θk, R)) is an indicator function that indicates whether
the point xp is labeled with 1 on the binary ray S(ik, θk, R) corresponding to the I ′(ik, θk, R) ray in the training
data, K is the number of closest rays to be used, and w(I(ixp , θxp , R), I ′(ik, θk, R)) is a weighting function that
is used to weight the contribution of each training ray according to its distance from the test ray:

w(I(ixp , θxp , R), I ′(ik, θk, R)) = exp

(

− λ
∥

∥I(ixp , θxp , R)− I ′(ik, θk, R)
∥

∥

2

2

)

(6)

Next, for rays that belong to planes that were identified with potential small lumen diameter, we adjust the
probability of points along the ray calculated at Eq. 5 to reflect the estimated radius, calculated as described in
Sec. 2.1.

Prpv(xp ∈ Lumen) =

{

0, rxp ≥ r′

1, rxp ≤ r′
(7)

where rxp is the radial distance of the point xp and r′ is the estimated radius at the cross section ixp calculated
as described in Sec. 2.1.



Next, we combined the two probabilities together:

Pr(xp ∈ Lumen) =

{

Prd(xp), 1pv(c(xp)) = 0
Prpv(xp), 1pv(c(xp)) = 1

(8)

where c(xp) is the centerline location that the sampling point xp belongs to. We also adjust the probability
of vertices that represent calcified plaque determined by HU above a fixed threshold to have high background
probability value.

Finally we assign:
Ψp(xp) = − log Pr(xp ∈ Lumen) (9)

To ensure surface smoothness we employ a standard L2 intensity difference regularization:21

Ψp,q(xp, xq) = exp

(

−
(I(xp)− I(xq))

2

σc(xp)

)

· exp(−d(xp, xq)
2) (10)

where d(xp, xq) is the spatial distance between the vertices and σc(xp) is the standard deviation of the intensity
in the cross section that xp located on. We finally find the globally optimal lumen surface by calculating the
minimal cut of the graph.

3. EXPERIMENTAL RESULTS

We implemented our main algorithm in MATLAB R©. We used the graph min-cut solver of Boykov et al,15 and an
accelerated approximated k nearest neighbor search.22 We experimentally set the value of the regularization term
λ in Eq. 4 to 1.75 and K in Eq. 5 to 100. The average running time to segment the entire coronary tree lumen
for each patient was ∼1.5 minute. As boundary conditions for flow simulation we employed an ostial pressure of

p̂ = 100 mmHg and outlet resistances Ri scaling with the outlet diameter di according to Ri ∝ d
−1/3
i

23 for both
left/right coronary trees independently.

We evaluated the improvement achieved by accounting for the PVE in the automatic segmentation on the
hemodynamic significance assessment of coronary lesions on a database of 85 subjects with 91 lesions. Each
subject data contains coronary centerlines annotated by an expert in cardiac imaging and invasive fractional
flow reserve (FFR, i.e. the pressure distal to the lesion divided by the normal pressure) measurements. We
generated 3D models of the coronary tree using our algorithm with and without accounting for the PVE in
a leave-one-out fashion, in which the segmented case is excluded from the training database. We estimated
the hemodynamic significance of each lesion by using the Netgen software library (http://sourceforge.net/
projects/netgen-mesher/) to generate 3D patient-specific finite elements model of the coronary, and the Open-
Foam software library(http://www.openfoam.org/) to determine the pressure along the coronary artery by
solving the corresponding Navier-Stokes equations. Fig. 5 shows an example of the assessment of hemodynamic
significance of a coronary lesion via a color-gradient representation using models generated with (a) and without
(b) accounting for partial volume effect in the automatic segmentation.

We assessed the performance of simulated FFR measurements based on automatically generated coronary 3D
models in detecting significant CAD with invasive FFR measurement threshold of 0.8 as the reference standard
using Receiver Operating characteristic (ROC) analysis. Fig. 5(c) presents the ROC curves of the detection
performance for the models generated with (red) and without (blue) accounting for the PVE. Accounting for the
PVE in the automatic segmentation significantly improved the detection performance by means of area under
the ROC curve (AUC) by 29% (N=91, 0.85 vs. 0.66, p<0.05, Delong’s test24), with invasive FFR threshold of
0.8 as a reference.

4. CONCLUSION

Computational fluid dynamics techniques were proposed to assess the hemodynamic significance of coronary
lesions with the overall goal of improving CCTA sensitivity to hemodynamic significant lesions in coronary
artery disease. However, accurate 3D lumen segmentation required for flow simulation is challenging due to the

http://sourceforge.net/projects/netgen-mesher/
http://sourceforge.net/projects/netgen-mesher/
http://www.openfoam.org/
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Figure 5. (a-b) A representative example of hemodynamic significance assessment obtained with our automatic segmenta-
tion results with (a), and without (b) accounting for the PVE. (c) ROC analysis of hemodynamic significance assessment
based on automatic segmentation with (red) and without (blue) accounting for the PVE, with invasive FFR threshold of
0.8 as the reference.

partial-volume effect which may result in overestimate of the lumina radius and therefore may result in erroneous
estimation of hemodynamic significance of coronary lesions. In this work we have presented an algorithm for
coronary segmentation that accounts for the partial volume effect. Our algorithm detects locations which might
be subject to partial volume effect by analyzing the intensity values along the coronary centerline. Then, our
algorithm incorporates this information into a machine-learning based graph min-cut segmentation framework
to obtain final 3D model of the coronary artery. We demonstrated a significant improvement in non-invasive
hemodynamic significance assessment of coronary lesions by using the proposed algorithm.
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