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Abstract. This paper develops a kernelized slow feature analysis (SFA)
algorithm. SFA is an unsupervised learning method to extract features
which encode latent variables from time series. Generative relationships
are usually complex, and current algorithms are either not powerful
enough or tend to over-fit. We make use of the kernel trick in combi-
nation with sparsification to provide a powerful function class for large
data sets. Sparsity is achieved by a novel matching pursuit approach
that can be applied to other tasks as well. For small but complex data
sets, however, the kernel SFA approach leads to over-fitting and numeri-
cal instabilities. To enforce a stable solution, we introduce regularization
to the SFA objective. Versatility and performance of our method are
demonstrated on audio and video data sets.

1 Introduction

Slow feature analysis (SFA [23]) is an unsupervised method to extract features
which encode latent variables of time series. SFA aims for temporally coherent
features out of high dimensional and/or delayed sensor measurements. Given
enough training samples, the learned features will become sensitive to slowly
changing latent variables [9, 22]. Although there have been numerous studies
highlighting its resemblance to biological sensor processing [3, 9, 23], the method
has not yet found its way in the engineering community that focuses on the same
problems. One of the reasons is undoubtedly the lack of an easily operated non-
linear extension.

This paper provides such an extension in the form of a kernel SFA algorithm.
Such an approach has previously been made by Bray and Martinez [4] and is
reported to work well with a large image data set. Small and complex sets,
however, lead to numerical instabilities in any kernel SFA algorithm. Our goal
is to provide an algorithm that can be applied to both of the above cases.

Although formulated as a linear algorithm, SFA was originally intended to
be applied on the space of polynomials (e.g. quadratic [23] or cubic [3]). The
polynomial expansion of potentially high dimensional data, however, spans an



impractically large space of coefficients. Hierarchical application of quadratic
SFA has been proposed to solve this problem [23]. Although proven to work in
complex tasks [9], this approach involves a multitude of hyper-parameters and no
easy way to counteract inevitable over-fitting. It appears biologically plausible
but is definitely not easy to operate.

A powerful alternative to polynomial expansions are kernel methods. Here
the considered feature maps y : X — IR are elements of a reproducing kernel
Hilbert space H. The representer theorem [21] ensures the optimal solution for
a given training set exists within the span of kernel functions, parametrized by
training samples. Depending on the kernel, the considered Hilbert space can be
equivalent to the space of continuous functions [17] and a mapping y € H is thus
very powerful.

There are, however, fundamental drawbacks in a kernel approach to SFA.
First, choosing feature mappings from a powerful Hilbert space is naturally prone
to over-fitting. More to the point, kernel SFA shows numerical instabilities due
to it’s unit variance constraint (see Sections 2 and 4). This tendency has been
analytically shown for the related kernel canonical correlation analysis [10]. We
introduce a regularization term to the SFA objective to enforce a stable solution.
Secondly, kernel SFA is based on a kernel matriz of size O(n?), where n is the
number of training samples. This is not feasible for large training sets. Our
approach approximates the optimal solution by projecting into a sparse subset
of the data. The choice of this subset is a crucial decision.

The question how many samples should be selected can only be answered
empirically. We compare two state-of-the-art sparse subset selection algorithms
that approach this problem very differently: (1) A fast online algorithm [5] that
must recompute the whole solution to change the subset’s size. (2) A costly
matching pursuit approach to sparse kernel PCA [18] that incrementally aug-
ments the selected subset. To obtain a method that is both fast and incremental
we derive a novel matching pursuit approach to the first algorithm.

Bray and Martinez [4] have previously introduced a kernel SFA algorithm
that incorporates a simplistic sparsity scheme. Instead of the well-established
framework of Wiskott and Sejnowski [23], they utilize the cost function of Stone
[19] based on long and short term variances without explicit constraints. Due to
a high level of sparsity, their approach does not require function regularization.
We will show that the same holds for our algorithm if the sparse subset is only
a small fraction of the training data. However, for larger fractions additional
regularization becomes inevitable.

In the following section, we first introduce the general SFA optimization
problem and derive a reqularized sparse kernel SFA algorithm. In Section 3 the
sparse subset selection is introduced and a novel matching pursuit algorithm
derived. Section 4 evaluates the algorithms on multiple real-world data sets,
followed by a discussion of the results in Section 5.



2 Slow Feature Analysis

Let {z:}7; C X be a sequence of n observations. The goal of slow feature
analysis (SFA) is to find a set of mappings y; : X — R, ¢ € {1,...,p}, such that
the values y;(x;) change slowly over time [23]. A mapping y,’s change over time
is measured by the discrete temporal derivative §;(xt) := y; (@) — yi(xt—1). The
SFA objective (called slowness, Equation 1) is to minimize the squared mean of
this derivative, where E;[-] is the sample mean* over all available indices ¢:

min  s(y;) := E¢[y7 (z¢)] (Slowness) (1)

To avoid trivial solutions as well as to deal with mixed sensor observations in
different scales, the mappings are forced to change uniformly, i.e. to exhibit unit
variance (Equations 2 and 3). Decorrelation ensures every mapping to extract
unique information (Equation 4). The last degree of freedom is eliminated by
demanding order (Equation 5), leading to the following constraints:

Eqlyi(z:)] = 0 (Zero Mean) (2)

B[y (x:)] =1 (Unit Variance) (3)
E.lyi(x:)y,(2)] = 0,V # 4 (Decorrelation) (4)
Vj>i:s(y;) <s(y;)  (Order) (5)

The principle of slowness, although not the above definition, has been used
very early in the context of neural networks [2, 8]. Recent variations of SFA
differ either in the objective [4] or the constraints [7, 24]. For some simplified
cases, given an infinite time series and unrestricted function class, it can be
analytically shown that SFA solutions converge to trigonometric polynomials
w.r.t. the underlying latent variables [9, 22]. In reality those conditions are never
met and one requires a function class that can be adjusted to the data set at
hand.

2.1 Kernel SFA

Let the considered mappings y; : X — IR be elements of a reproducing kernel
Hilbert space (RKHS) H, with corresponding positive semi-definite kernel « :
X x X — RR. The reproducing property of those kernels allows Yy € H : y(x) =
(y, k(-, @) )2, in particular (k(-, &), (-, "))y = k(x, x’). The representer theorem
ensures the solution to be in the span of support functions, parametrized by the
training data [21], i.e. y = >, ak(-, ). Together those two relationships set
the basis for the kernel trick (for an introduction see e.g. Shawe-Taylor and
Cristianini [17]).

The zero mean constraint can be achieved by centring all involved support
functions {k(-,2+)}7_; in H (for details see Section 2.2). Afterwards, the com-
bined kernel SFA (K-SFA) optimization problem for all p mappings y(-) € H?

4 The samples are not i.i.d and must be drawn by an ergodic Markov chain in order
for the empirical mean to converge in the limit [15].
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p
min 3B, [i7(@)] , st B [y(@)y(e) | = 1. (6)
i=1
Through application of the kernel trick, the problem can be reformulated as
min %11:1‘ (ATKDDTKTA)
AcRnxp " (7)
st. LATKKTA =1,

where K;; = r(x;,x;) is the kernel matriz and D € R™ "™ ! the temporal
derivation matriz with all zero entries except Vt € {1,...,n —1} : Dy, = —1
and Dt+1,t =1.

Sparse Kernel SFA. If one assumes the feature mappings within the span of
another set of data {z;}7, C X (e.g. a sparse subset of the training data, of-
ten called support vectors), the sparse kernel matriz K € R™*" is defined as
K;; = k(z;,x;) instead. The resulting algorithm will be called sparse kernel
SFA. Note that the representer theorem no longer applies and therefore the so-
lution merely approximates the optimal mappings in H. Both optimization prob-
lems have identical solutions if V¢ € {1,...,n} : (-, x:) € span({x(-, z;)}™,),
eg {zitin, = {=iny.

Regularized Sparse Kernel SFA. The Hilbert spaces corresponding to some of the
most popular kernels are equivalent to the infinite dimensional space of continu-
ous functions [17]. One example is the Gaussian kernel r(x, z') = exp(— 5 || —
z'||3). Depending on hyper-parameter o and data distribution, this can obviously
lead to over-fitting. Less obvious, however, is the tendency of kernel SFA to be-
come numerically unstable for large o, i.e. to violate the unit variance constraint.
Fukumizu et al. [10] have shown this analytically for the related kernel canoni-
cal correlation analysis. Note that both problems do not affect sufficiently sparse
solutions, as sparsity reduces the function complexity and sparse kernel matrices
KK are more robust w.r.t. eigenvalue decompositions.

One countermeasure is to introduce a regularization term to stabilize the
sparse kernel SFA algorithm, which thereafter will be called regularized sparse
kernel SFA (RSK-SFA). Our approach penalizes the squared Hilbert-norm of the
selected functions ||y;||3, by a regularization parameter X. Analogous to K-SFA
the kernel trick can be utilized to obtain the new objective:

min —L-tr (ATKDD'KTA) + Atr(ATKA)
AERW'LXP n 1

st. LATKKTA =1, ®)

where K;; = (z;, z;) is the kernel matrix of the support vectors.

2.2 The RSK-SFA Algorithm

The RSK-SFA algorithm (Algorithm 1) is closely related to the linear SFA al-
gorithm of Wiskott and Sejnowski [23]. It consists of three phases: (1) fulfilling
zero mean by centring, (2) fulfilling unit variance and decorrelation by sphering
and (3) minimizing the objective by rotation.



Zero Mean. To fulfil the zero mean constraint, one centres the support functions
{9:}™, C H w.r.t. the data distribution, i.e. g;(-) := (-, z;) — E¢[r(2, 2:)] Ln (),
where V& € X : 1(x) = (14, £(-,x))3 =1 is the constant function in Hilbert
space H. Although Vy € span({g;}7,) : Eiy(x;)] = 0 already holds, it is of
advantage to centre the support functions as well w.r.t. each other [16], i.e. §; :=
g; — E;[g;]. The resulting transformation of support functions on the training
data can be applied directly onto the kernel matrices K and K:

Ki=(I-11,1,)K(I-11,1]) 9)
Ki=(-L11,10)K@I-11,1]), (10)
where 1,, and 1,, are one-vectors of dimensionality m and n, respectively.

Unit Variance and Decorrelation. Analogue to linear SFA, we first project into
the normalized eigenspace of %KKT =: UAU". The procedure is called spher-
ing or whitening and fulfils the constraint in Equation 8, invariant to further
rotations R € R™*? :R"R =L

A=UA:R = LATRKTA=R'R=1I (11)

Note that an inversion of the diagonal matrix A requires the removal of zero
eigenvalues and corresponding eigenvectors first.

Minimization of the Objective. Application of Equation 11 allows us to solve
Equation 8 with a second eigenvalue decomposition:

: T _leT _1
min tr (R {A }UTBUA 2}R) (12)
st.RTR=1 with B:= -KDD'K' +)K.

Note that R is composed of the eigenvectors to the p smallest eigenvalues of the
above expression.

Solution. After the above calculations the i'th RSK-SFA solution is
yi(z) = Zl Aji(Gs, 5( ) m (13)
j=

Grouping the kernel functions of all support vectors together in a column vector,
ie. k(x) = [k(21,2),...,K(2zm, )], the combined solution y(-) € HP can be
expressed more compactly:

y(x) = ATk(z) - & (14)
with A == (I— 11,,1])Aand é:= LATK1, .
The computational complexity is O(m?n). For illustrative purposes, Algorithm

1 exhibits a memory complexity of O(mn). An online calculation of KK and
KDD K" reduces this to O(m?2).



Algorithm 1 Regularized Sparse Kernel Slow Feature Analysis (RSK-SFA)
KeR™" KecR™™, peN,

Input: \' Rt p e prent
R = (1- L1,1)K(I - 21,1]) (Eq. 9)
K=(I-211,1,)KI-211,1)) (Eq. 10)

UAU" =eig(1KK")
(U,, A,) = remove_zero_eigenvalues(U, A)

B=_LKDD'K' +)K (Eq. 12)
RER" = eig (A;1/2U,TBUTA;1/2) (Eq. 12)
(Rp, Xp) = keep_lowest_p_eigenvalues(R, X, p)

A=(1-11,17)UA 'R, (Eq. 11 + 14)
é=1ATK1, (Eq. 14)
Output: A, é

3 Sparse Subset Selection

The representer theorem guarantees the optimal feature maps y € H for training
set {x:}}_; can be found within span({x(-, x+)}}_, ). For sparse K-SFA, however,
no such guarantee exists. The quality of such a sparse approximation depends
exclusively on the set of support vectors {z;}7,.

Without restriction on y*, it is straight forward to select a subset of the
training data, indicated by an index vector® ¢ € N™ with {z; iy = L,
that minimizes the approximation error

m 2
Rloe) = 3o agk( @)
j=1 H

= Ky — Ku(Kii) ' K;

€; '= min
acR™

for all training samples x;, where K;; = m(:r:t,:vj) is the full kernel matrix.
Finding an optimal subset is a NP hard combinatorial problem, but there exist
several greedy approximations to it.

Online Mazimization of the Affine Hull. A widely used algorithm [5], which we
will call online mazimization of the affine hull (online MAH) in the absence of
a generally accepted name, iterates through the data in an online fashion. At
time ¢, sample x; is added to the selected subset if ¢! is larger than some given
threshold 7. Exploitation of the matriz inversion lemma (MIL) allows an on-
line algorithm with computational complexity O(m?n) and memory complexity
O(m?). The downside of this approach is the unpredictable dependence of the
final subset size m on hyper-parameter 7. Downsizing of the subset therefore
requires a complete re-computation with larger 7. The resulting subset size is
not predictable, although monotonically dependent on 7.

5 Let “:” denote the index vector of all available indices.



Algorithm 2 Matching Pursuit Maximization of the Affine Hull (MP MAH)

Input: {z:};-; CX, k: XXX >R, meN
K=0; K;'=0;

Ve {1,...,n}: et = k(me, 1) (Eq. 16)
i1 = argmax{e; }1oq (Eq. 15)
t

for je{l,...,m—1} do

o = [KoK; ' -1]" (MIL)

K:'o alal’
-1
Kj+l = [ Olr 0:| ej (MIL)

%
fort e {1,...,n} do
K,j) = k@, @)

; i i\ 2
E%Jrl =¢€ — 6% (K(t,,>a]) (Eq. 16)
end for J’
ij41 = argmax{e T}, (Eq. 15)
t
end for

Output: {é1,...,%m}

Maitching Pursuit for Sparse Kernel PCA. This handicap is addressed by match-
ing pursuit methods [14]. Applied on kernels, some criterion selects the best
fitting sample, followed by an orthogonalization of all remaining candidate sup-
port functions in Hilbert space H. A resulting sequence of m selected samples
therefore contains all sequences up to length m as well. The batch algorithm of
Smola and Schélkopf [18] chooses the sample x; that minimizes® E, [¢; v |. It was
shown later that this algorithm performs sparse PCA in H [12]. The algorithm,
which we will call in the following matching pursuit for sparse kernel PCA (MP
KPCA), has a computational complexity of O(n?m) and a memory complexity
of O(n?). In practice it is therefore not applicable to large data sets.

3.1 Matching Pursuit for Online MAH

The ability to shrink the size of the selected subset without re-computation is a
powerful property of MP KPCA. Run-time and memory consumption, however,
make this algorithm infeasible for most applications. To extend the desired prop-
erty to the fast online algorithm, we derive a novel matching pursuit for online
MAH algorithm (MP MAH). Online MAH selects samples with approximation
errors that exceed the threshold n and therefore forces the supremum norm L,
of all samples below 7. This is analogous to a successive selection of the worst
approximated sample, until the approximation error of all samples drops below
7. The matching pursuit approach therefore minimizes the supremum norm L,

6 ¢! is non-negative and MP KPCA therefore minimizes the L1 norm of approximation
€rTor.



of the approximation error’. At iteration j, given the current subset ¢ € IR7,

ij41 = argmin || [}V .. €6V A~ argmax el (15)
¢ t
Straight forward re-computation of the approximation error in every iteration
is expensive. Using the matrix inversion lemma (MIL), this computation can be
performed iteratively:

iU i 1 -~ 2
Gtuj = Gt — ;(Ktj — Ktz(K“) 1Kij) . (16)

J

Algorithm 2 iterates between sample selection (Equation 15) and error update
(Equation 16). The complexity is O(m?n) in time and O(mn) in memory (to

avoid re-computations of K ;)).

4 Empirical Validation

Slow feature analysis is not restricted to any specific type of time series data.
To give a proper evaluation of our kernel SFA algorithm, we therefore chose
benchmark data from very different domains. The common element, however, is
the existence of a low dimensional underlying cause.

We evaluated all algorithms on two data sets: Audio recordings from a vowel
classification task and a video depicting a random sequence of two hand-signs.
The second task covers high dimensional image data (40 x 30 pixels), which
is a very common setting for SFA. In contrast, mono audio data is one di-
mensional. Multiple time steps have to be grouped into a sample to create
a high dimensional space in which the state space is embedded as a mani-
fold (see Takens Theorem [11, 20]). All experiments employ a Gaussian kernel
bz, a') = oxp (~ gk 2 - ' [3).

The true latent variables of the examined data are not known. To ensure
that any meaningful information is extracted, we measure the test slowness, i.e.
the slowness of the learned feature mappings applied on a previously unseen test
sequence drawn from the same distribution. The variance of a slow feature on
unseen data is not strictly specified. This changes the feature’s slowness and for
comparison we normalized all test outputs to unit variance before measuring the
test slowness.

4.1 Benchmark Data Sets

Audio Data. The “north Texas vowel database”® contains uncompressed audio
files with English words of the form H...D, spoken multiple times by multiple

" An exact minimization of the Lo, norm is as expensive as the MP KPCA algorithm.
However, since e;”? = 0, selecting the worst approximated sample x; effectively
minimizes the supremum norm L.

8 http://www.utdallas.edu/~assmann/KIDVOW1/North Texas_vowel database.html



persons [1]. The natural task is to predict the central vowels of unseen instances.
We selected two data sets: (1) A small set with four training and four test
instances for each of the words “heed” and “head”, spoken by the same person.
(2) A large training set of four speakers with eight instances per person and
each of the words “heed” and “head”. The corresponding test set consists of
eight instances of each word spoken by a fifth person.

The spoken words are provided as mono audio streams of varying length at
48kHz, i.e. as a series of amplitude readings {a1, az, .. .}. To obtain an embedding
of the latent variables, one groups a number of amplitude readings into a sample
Tt = [ast, Asttes Aot42¢r - - - ,a5t+(l,1)5]—r. We evaluated the parameters J, € and [
empirically and chose § = 50, ¢ = 5 and [ = 500. This provided us with 3719
samples z; € [—1,1]°% for the small and 25448 samples for the large training set.
Although the choice of embedding parameters change the resulting slowness in a
nontrivial fashion, we want to point out that this change appears to be smooth
and the presented shapes similar over a wide range of embedding parameters.
The output of two RSK-SFA features is plotted in Figure 2c.

Video Data. To obtain a video with a simple underlying cause, we recorded a
hand showing random sequences of the hand-signs “two-finger salute” and “open
palm” with an intermediate “fist” between each sign (Figure 2b). The hand was
well lit and had a good contrast to the mostly dark background. The frames were
scaled down to 40 x 30 gray-scale pixels, i.e x; € [0,1]'2°° ¢ R, Training
and test set consist of 3600 frames each, recorded at 24Hz and showing roughly
one sign per second.

4.2 Algorithm Performance

Figure 1 shows the test slowness of RSK-SFA features® on all three data sets for
multiple kernel parameter o and regularization parameter A\. The small audio
data set (Column a) and video data set (Column c¢) use the complete training
set as support vectors, whereas for the large audio data set (Column b) a full
kernel approach is not feasible. Instead we selected a subset of size 2500 (based
on kernel parameter o = 2) with the MP MAH algorithm before training.

In the absence of significant sparseness (Figure la and 1c), unregularized
kernel SFA (A = 0, equivalent to K-SFA, Equations 6 and 7) shows both over-
fitting and numerical instability. Over-fitting can be seen at small o, where the
features fulfil the unit variance constraint (lower right plot), but do not reach
the minimal test slowness (lower left plot). The bad performance for larger o,
on the other hand, must be blamed on numerical instability, as indicated by
a significantly violated unit variance constraint. Both can be counteracted by
proper regularization. Although optimal regularization parameters A\ are quite
small and can reach computational precision, there is a wide range of kernel

9 Comparison to linear SFA features is omitted due to scale, e.g. test slowness was
slightly above 0.5 for both audio data sets. RSK-SFA can therefore outperform linear
SFA up to a factor of 10, a magnitude we observed in other experiments as well.
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a) Small Audio Set (m=n=3719) b) Large Audio Set (m=2500,n=25448) c) Video Data Set (m=n=3600)
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Fig. 1. (Regularization) Mean test slowness of 200 RSK-SFA features over varying
kernel parameter o for different regularization parameters A: (a) Small audio data set
with all m = n = 3719 training samples as support vectors, (b) large audio data set
with m = 2500 support vectors selected out of n = 25448 training samples by MP MAH
and (c) video data set with all m = n = 3600 available support vectors. The lower left
plots magnify the left side of the above plot. Notice the difference in scale. The lower
right plots show the variance of the training output. Significant deviation from one
violates the unit variance constraint and thus demonstrates numerical instability. The
legend applies to all plots.

parameters o for which the same minimal test slowness is reachable. E.g. in
Figure 1la, a fitting A can be found between o = 0.5 and o = 20.

A more common case, depicted in Figure 1b, is a large training set from which
a small subset is selected by MP MAH. Here no regularization is necessary and
unregularized sparse kernel SFA (A = 0) learns mappings of minimal slowness
in the range from o = 1 to far beyond o = 100.

4.3 Sparsity

To evaluate the behaviour of RSK-SFA for sparse subsets of different size, Figure
2a plots the test slowness of audio data for all discussed sparse subset selection
algorithms. As a baseline, we plotted mean and standard deviation of a random
selection scheme. One can observe that all algorithms surpass the random se-
lection significantly but do not differ much w.r.t. each other. As expected, the
MP MAH and Online MAH algorithms perform virtually identical. The novel
MP MAH, however, allows unproblematic and fast fine tuning of the selected
subset’s size.
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Fig. 2. (Sparseness) (a) Mean test slowness of 200 RSK-SFA features of the small audio
data set (A = 1077, 0= 2) over sparse subset size, selected by different algorithms. For
random selection the mean of 10 trials is plotted with standard deviation error bars.
(b) Examples from the video data set depicting the performed hand-signs. (¢) Two
RSK-SFA features applied on the large audio test set (A = 0,0 = 20). Vertical lines
separate eight instances of “heed” and eight instances of “head”.

5 Discussion

To provide a powerful but easily operated algorithm that performs non-linear
slow feature analysis, we derived a kernelized SFA algorithm (RSK-SFA). The
novel algorithm is capable of handling small data sets by regularization and large
data sets through sparsity. To select a sparse subset for the latter, we developed
a matching pursuit approach to a widely used algorithm.

As suggested by previous works, our experiments show that for large data
sets no explicit regularization is needed. The implicit regularization introduced
by sparseness is sufficient to generate features that generalize well over a wide
range of Gaussian kernels. The performance of sparse kernel SFA depends on
the sparse subset, selected in a pre-processing step. In this setting, the subset
size m takes the place of regularization parameter A. It is therefore imperative
to control m with minimal computational overhead.

We compared two state-of-the-art algorithms that select sparse subsets in
polynomial time. Online MAH is well suited to process large data sets, but
selects unpredictably large subsets. A change of m therefore requires a full re-
computation without the ability to target a specific size. Matching pursuit for
sparse kernel PCA (MP KPCA), on the other hand, returns an ordered list of
selected samples. After selection of a sufficiently large subset, lowering m yields
no additional cost. The downside is a quadratic dependency on the training set’s
size, both in time and memory. Both algorithms showed similar performance and
significantly outperformed a random selection scheme.

The subsets selected by the novel matching pursuit to online MAH (MP
MAH) algorithm yielded virtually the same performance as those selected by
Online MAH. There is no difference in computation time, but the memory com-
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plexity of MP MAH is linearly dependent on the training set’s size. However,
reducing m works just as with MP KPCA, which makes this algorithm the better
choice if one can afford the memory. If not, Online MAH can be applied several
times with slowly decreasing hyper-parameter 7. Although a subset of suitable
size will eventually be found, this approach will take much more time than MP
MAH.

The major advancement of our approach over the kernel SFA algorithm of
Bray and Martinez [4] is the ability to obtain features that generalize well for
small data sets. If one is forced to use a large proportion of the training set as sup-
port vectors, e.g. for small training sets of complex data, the solution can violate
the unit variance constraint. Fukumizu et al. [10] have shown this analytically
for the related kernel canonical correlation analysis and demonstrated the use
of reqularization. In difference to their approach we penalize the Hilbert norm of
the selected function, rather than regularizing the unit variance constraint. This
leads to a faster learning procedure: First one fulfils the constraints as layed out
in Section 2.1, followed by repeated optimizations of the objective with slowly
increasing A (starting at 0), until the constraints are no longer violated. The
resulting features are numerically stable, but may still exhibit over-fitting. The
latter can be reduced by raising A even further or by additional sparsification.
Note that our empirical results in Section 4.2 suggest that for a fitting A the
RSK-SFA solution remains optimal over large regimes of kernel parameter o,
rendering an expensive parameter search unnecessary.

Our experimental results on audio data suggest that RSK-SFA is a promis-
ing pre-processing method for audio detection, description, clustering and many
other applications. Applied on large unlabelled natural language data bases,
e.g. telephone records or audio books, RSK-SFA in combination with MP MAH
or Online MAH will construct features that are sensitive to speech patterns of
the presented language. If the function class is powerful enough, i.e. provided
enough support vectors, those features will encode vowels, syllables or words,
depending on the embedding parameters. Based on those features, a small la-
belled data base might be sufficient to learn the intended task. The amount of
support vectors necessary for a practical task, however, is yet unknown and calls
for further investigation.

Although few practical video applications resemble our benchmark data, pre-
vious studies of SFA on sub-images show it’s usefulness in principle [3]. Land-
mark recognition in camera-based simultaneous localization and mapping (Visual
SLAM [6]) algorithms is one possible field of application. To evaluate the poten-
tial of RSK-SFA in this area, future works must include comparisons to state-
of-the-art feature extractions, e.g. the scale invariant feature transform (SIFT
[13)).

The presented results show RSK-SFA to be a powerful and reliable SFA al-
gorithm. Together with Online MAH or MP MAH, it combines the advantages
of regularization, fast feature extraction and large training sets with the perfor-
mance of kernel methods.
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