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Abstract 10 

Purpose: Implanting stents to re-open stenotic lesions during percutaneous coronary interventions is considered a 11 
standard treatment for the acute or chronic coronary syndrome. Intravascular ultrasound (IVUS) can be used to guide 12 
and assess the technical success of these interventions. Automatically segmenting stent struts in IVUS sequences 13 
improves workflow efficiency but is non-trivial due to a challenging image appearance entailing manifold ambiguities 14 
with other structures. Manual, ungated IVUS pullbacks constitute a challenge in this context. We propose a fully data-15 
driven strategy to first longitudinally detect and subsequently segment stent struts in IVUS frames. 16 

Approach: A cascaded deep learning approach is presented. It first trains an encoder model to classify frames as 17 
“stent”, “no stent”, or “no use”. A segmentation model then delineates stent struts on a pixel level only in frames with 18 
stent label. The first stage of the cascade acts as a gateway to reduce the risk for false positives in the second stage, 19 
the segmentation, trained on a smaller and difficult-to-annotate dataset. Training of the classification and segmentation 20 
model was based on 49,888 and 1,826 frames of 74 sequences from 35 patients, respectively. 21 

Results: The longitudinal classification yielded Dice scores of 92.96%, 82,35%, and 94,03% for the classes “stent”, 22 
“no stent” and “no use”. The segmentation achieved a Dice score of 65.1% on the stent ground truth (intra-observer 23 
performance: 75,5%) and 43.5% on all frames (including frames without stent, with guidewires, calcium or without 24 
clinical use). The latter improved to 49.5% when gating the frames by the classification decision and further increased 25 
to 57.4% with a heuristic on the plausible stent strut area. 26 

Conclusions: A data-driven strategy for segmenting stents in ungated, manual pullbacks was presented – the most 27 
common and practical scenario in the time-critical clinical workflow. We demonstrated a mitigated risk for 28 
ambiguities and false positive predictions. 29 
 30 
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1 Introduction 35 

Coronary artery disease remains one of the leading causes of death worldwide, accounting for 36 

more than 9 million deaths alone in 2016 according to the World Health Organization (WHO) [1]. 37 

The disease is caused by atherosclerosis – an accumulation of plaques in the intima of the arterial 38 

wall which decrease the effective vessel diameter and thus form a stenosis. Stenotic vessels impede 39 

the flow of oxygenated blood into the cardiac muscle causing chest pain (angina pectoris) and 40 

ultimately provoking myocardial infarction. 41 

Percutaneous coronary interventions (PCIs) with balloon dilatation and implantation of coronary 42 

stents constitute the preferred strategy in most patients with acute myocardial infarction but may 43 

also be performed in patients suffering from chronic coronary syndromes to improve symptoms 44 

and outcome. Here, intravascular imaging can support several parts of the clinical workflow: 45 

Recent studies suggest that treatment planning for complex lesions can significantly benefit from 46 

stenting criteria based on intravascular ultrasound [2] and that IVUS-guided procedures improve 47 

long-term clinical outcome in patients with acute myocardial infarction [3]. During the PCI, the 48 

assessment of stent malapposition, stent underexpansion, stent strut fractures, post-dilation 49 

decisions, its placement with respect to other anatomical structures such as bifurcations or the 50 

guidance for complex stenting procedures at bifurcation lesions may be improved by intravascular 51 

imaging [4]. In particular, the former two are seen as risk factors for in-stent restenosis or 52 

thrombosis [5, 6]. In addition, complex PCIs treating bifurcation lesions require elaborated 53 

procedures such as the culotte or other techniques. Here, typically two guidewires are inserted into 54 

both branches, one is jailed during stent deployment in the first branch and later used as a guide 55 

for re-wiring the second branch through the wire cells of the first stent (e.g., by proximal or distal 56 
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cell technique) [7]. Only after successful rewiring, the second branch can also be stented, which is 57 

greatly facilitated by intra-vascular imaging and knowing the location of the first stent and its cells. 58 

ACC/AHA and ESC/EACTS guidelines mention intravascular ultrasound (IVUS) as a 59 

complement to intravascular optical coherence tomography (IVOCT). Both imaging modalities 60 

can potentially mitigate the limitations of X-ray angiography in interventional guidance, but also 61 

have different strengths and shortcomings. While IVOCT exhibits a higher cross-sectional 62 

resolution and typically better image contrast, it also has a limited radial field-of-view (FoV) which 63 

– even though it captures the vascular lumen border – often reaches not far beyond, in particular 64 

for larger vessels. Adequate IVOCT imaging also requires saline flushing of the lumen, which is 65 

not the case for IVUS. Depending on the transducer frequency, the latter can achieve several 66 

different, but compared to IVOCT inferior, cross-sectional resolutions. Despite the characteristic 67 

speckle noise patterns, IVUS is well suited to also evaluate plaques and vessel wall compositions 68 

as it acquires larger FoVs. 69 

Advanced image interpretation often requires expertise and training [8, 9]. This establishes the 70 

clinical need for making IVUS imaging more accessible and easier to use while minimizing, for 71 

instance, procedure prolongation [4]. Both imaging techniques provide sequences of 2D 72 

tomographic cross-sectional images when manually or automatically pulled along the artery. The 73 

tube-like metal mesh of a stent therefore appears as a collection of spots typically located at the 74 

inner circular border or sometimes within the intima. The number and shape of the visible spots 75 

depends, for instance, on the inclination of the imaging plane. In IVUS, stent struts often even 76 
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appear merged into bright circular ring segments due to dense fibrous or micro-calcified tissue 77 

close to the stent [26]. 78 

Motivated by the clinical needs above, research groups successfully detected stent struts in IVOCT 79 

images [20, 21, 22]. Here algorithms such as the Tsantis et al. [22] can usually rely on the excellent 80 

image quality, the higher image resolution as well as contrast inside the vascular lumen up to the 81 

lumen boundary in IVOCT images. In their work they make use of characteristic intensity 82 

distributions and wavelet-based matching, which would be rather challenging on IVUS images 83 

with an inhomogeneous texture, speckle noise and many spot-like ambiguities. 84 

Less groups targeted the more challenging task of extracting stents from IVUS images. Contour-85 

based predictions as proposed by Dijkstra [23] or Kitahara [24] and colleagues worked well, but 86 

either contain semi-automatic steps, require well visible stent struts or neglect challenging frames 87 

with acoustic shadowing, bifurcations or generally more than 90° signal attenuation in order to 88 

work robustly. In clinical practice, frames of an IVUS pullback often contain artifacts caused, for 89 

instance, by heart beat related pulsation of the surrounding anatomy, longitudinal swinging of the 90 

transducer or simply rapid pulls, transducer-wall or transducer-device interactions during manual 91 

pullbacks. Apart from ambiguities due to similar appearance, these artifacts and the low resolution 92 

paired with speckle noise entail a high risk of false positives for fully automatic algorithms. This 93 

has also been recognized by the research group around Balocco and Ciompi et al. who provided a 94 

comprehensive approach to the problem of stent detection in automatic IVUS pullback data sets 95 

[26]. 96 

They present a pipeline of three steps validated on automatic pullbacks which first performs an 97 

image-based gating on the sequence [27], then detects stent struts and stent shape in cross-sectional 98 
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images and finally longitudinally localizes the positioned stent in pullback direction. They note 99 

that the stent strut detection as proposed by Ciompi et al. [28, 29] is an essential part of the pipeline. 100 

First, a 2-stage multi-class AdaBoost classifier generates pixel-wise label maps from handcrafted 101 

appearance features. Based on heuristics including knowledge about the luminal area, the most 102 

plausible elliptical stent shape is fitted to the strut class before a stent prototype filter confirms an 103 

output set of likely struts locations. 104 

In their most recent work, Balocco et al. define a likelihood function on the strut label mask, which 105 

they successfully convert into a stent indicator variable along the vessel using the SAX algorithm 106 

for solving the more challenging problem of stent localization [30]. As part of their conclusion, 107 

they acknowledge that the approach could benefit from fully data-driven deep learning techniques. 108 

 
Figure 1: Illustration of the cascaded concept. Frames of the manual pullback are first analyzed by an 

encoder network, which decides for one of three classes per frame: stent, no stent or no use. Only stent 

frames are then passed on to the encoder-decoder to segment the stent struts. Apart from the favorable 

training setup, this is also targeting a reduction of false positive predictions on frames that do not show a 

stent anyway. 
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They note that a thorough learning strategy is needed to deal with the otherwise substantial 109 

requirement of carefully annotated data to solve this complex task with its high risk for false 110 

positive predictions. 111 

In this work, we present such a strategy. We propose a cascaded deep learning approach as 112 

illustrated in Figure 1. The cascade reverses the pipeline from Balocco et al. [26] in that it first 113 

solves the task of longitudinal detection with an encoder network, before an encoder-decoder 114 

network segments the stent struts only in the detected stent ranges. This way, the encoder can be 115 

trained on a huge amount of efficiently, frame-wise annotated data to solve a simpler task, while 116 

the segmenter can be trained on a smaller amount of pixel-level annotated data to solve a more 117 

challenging task. The latter type of data is often tedious to annotate, prone to label noise and hard 118 

to get in larger quantities. 119 

In contrast to previous work, the proposed concept has the ambition to work on single frames from 120 

manual, ungated pullbacks as this is closest to time-critical clinical practice. We further recognize 121 

that these practical scenarios impose a problem where – in contrast to other typical segmentation 122 

tasks on clinical data – many images do not contain the actual target structure or instead contain 123 

objects of similar appearance such as guidewires or calcium deposits. Due to the rather frequent 124 

and sometimes rapid back and forth transducer motion, manual pullbacks also exhibit a particular 125 

risk for artifacts and clinically irrelevant frames. Overall, these conditions require special attention 126 

dedicated to false positive predictions during algorithm design. Therefore, the encoder will also be 127 
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trained against a “no use” class to serve as a better gateway for frames sent to the segmenter and 128 

to reduce the risk for false positives. 129 

Finally, our contributions can complement algorithmic features from earlier work and can be used 130 

– together with existing solutions for lumen and vessel wall segmentation [31, 32, 33] – to assess 131 

stent malapposition [26] or facilitate the rewiring during the treatment of bifurcation lesions. For 132 

the two use cases, malapposition and rewiring – two different aspects of stent detection and 133 

segmentation – are emphasized and will be addressed by dedicated metrics in this work: While the 134 

first use case requires precise knowledge about the radial position of the stent mesh, the second 135 

one rather asks for the angular occupation to identify mesh cells enabling guidewire passage. 136 

  137 
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2 Material and Methods 138 

2.1 Data and Annotations 139 

The IVUS data were acquired at the University Heart and Vascular Center (UHC) Hamburg 140 

Eppendorf using the Core or Core Mobile precision guided therapy system (Philips Healthcare, 141 

San Diego, USA). The pullbacks were conducted manually within the coronary vessels without 142 

ECG gating. The acquisitions from pre- or post-interventional stenting procedures used a 20 MHz 143 

phased array Eagle Eye Platinum probe (Philips Healthcare, San Diego, USA). Frames were given 144 

in Cartesian coordinates of size 500 × 500 pixels (isotropic resolution of 0.02mm, i.e. a field-of-145 

view (FoV) of 10mm). They were downsampled to 224 × 224 pixels for the predictive task with a 146 

preserved FoV. All annotations were obtained in form of a consensus between two clinical experts 147 

routinely experienced with IVUS during stenting procedures. The study was approved by the 148 

corresponding ethics committee and institutional review board (IRB). 149 

The clinical experts partially annotated 74 sequences from 35 patients using two types of 150 

annotations: (1) Intervals indicating the presence of a certain label in frames along the pullback 151 

yielding binary, frame-wise annotations per label, and (2) pixel-wise annotations done with a brush 152 

tool covering relevant areas in a 2D frame where a label is located. 153 

In the first category, 20,020 frames (83 intervals) of stent, 17,532 frames (76 intervals) without 154 

stent and 12,336 frames (91 intervals) of no clinical use were annotated. The latter contained, for 155 
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instance, frames with artifacts due to rapid pulling, frames where the transducer was covered by 156 

the catheter or ostial frames where the intima moved out of the FoV. 157 

In the second category, label masks for 827 frames containing stent struts, for 619 calcium frames 158 

and for 390 guidewire frames where annotated. In addition, 120 stent frames from another 19 159 

pullbacks were annotated twice for assessing the intra-observer variability in the ground truth for 160 

the main predictive task. 161 

The intra-observer variability for the task of stent segmentation is quantified by a Dice coefficient 162 

of 75.47%. This coefficient measures the agreement (in terms of true/false positive/negative pixels) 163 

between the first and second annotation of the expert. Only frames with a first annotation (which 164 

definitely contain a stent) were presented to the expert in the second round. 165 

The data was split into five cross-validation (CV) folds for later evaluation. The partitioning was 166 

carried out on patient level, i.e. all pullbacks and therefore all frames that came from the same 167 

patients were always assigned to the same fold, such that a model tested on a particular fold would 168 

be unbiased and would not have seen data from the test patients during training. 169 

Furthermore, the data was partitioned into five folds such that the number of frames per fold were 170 

roughly the same and labels per class were as balanced as possibly under these restrictions. 171 

2.2 Approach and Implementation 172 

The cascade makes use of two independently trained networks. During deployment, they 173 

subsequently act upon the incoming pullback frames where the decision of the first part, the stent 174 

detection, is passed forward to support the pixel-wise prediction of the second part, the stent 175 

segmentation. This aims at achieving a twofold goal: (1) reducing the false positive rates on pixel 176 
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level on frames that potentially do not contain a stent, and (2) allow for faster processing as the 177 

segmentation network would only act on positive stent predictions preselected by the detector. To 178 

implement this cascade concept, architectures belonging to the encoder-decoder family [12] as 179 

well as the architecturally different and popular DeepLabV3 as an alternative option for the more 180 

difficult segmentation task were used. The latter makes use of atrous spatial pyramid pooling 181 

(ASPP) with dilated convolutions on top of a ResNet backbone [10]. 182 

The encoder-decoder family comprises several possibilities of variations, which differ by distinct 183 

architectural features and give rise to well-known variants such as U-Net, DeconvNet or SegNet 184 

for a segmentation task [11, 12, 13]. We therefore used the training set of the first cross-validation 185 

fold to grid-search the benefit of such typical design features. These included: choice of the 186 

activation function, normalization layer, different pooling/un-pooling variants (including max-187 

pooling, average pooling or strided (de)convolutions), usage of skip connections, Monte-Carlo 188 

drop-out layers, padded/unpadded convolutions, or residual and squeeze&excite blocks in the 189 

 
 

Figure 2: Network architectures for stent detection (top, encoder network) and stent segmentation 

(bottom, encoder-decoder network with skip connections between both parts). 
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convolutional segments. We further optimized typical parameters such as the number of feature 190 

maps per segment or the kernel size of the convolutional filters. The search was carried out for the 191 

segmentation as well as detection task, whereas the latter only used the encoder. 192 

The DeepLabV3 was used with a ResNet-50 backbone and explored in two versions: (1) pre-193 

trained weights on ImageNet, or (2) random weight initialization. 194 

The subsequent paragraphs will describe our final choices from these two architecture families. 195 

Decisions were made for the best performing design choice and in case of equal performance for 196 

the simpler variants following the concept of Occam’s razor by not multiplying choices beyond 197 

necessity. 198 

2.2.1 Detector 199 

 The detector as illustrated at the top of Figure 2 is a five-block encoder network, where each block 200 

consists of a convolution, batch normalization, leaky ReLU and Monte-Carlo dropout layer. The 201 

one-hot network output in terms of four mutually exclusive classes is realized by a fully connected 202 

(fc) layer. The detector was trained for 80 epochs with a learning rate of 0.01 and by augmenting 203 

the available number of frames with frame-level annotations by the same number of augmented 204 

frames. Data augmentation used random rotation, scaling and axis flips as well as deformations 205 

based on trigonometric displacement fields. Classes were equally weighted in a cross-entropy loss 206 

term. 207 

2.2.2 Segmenter 208 

The segmentation network candidate from the encoder-decoder family consisted of 2×5 blocks for 209 

the encoder and decoder respectively, which are connected via skip connections. The blocks are 210 
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equivalent to the detector network but did not make use of any weight sharing. The network outputs 211 

probability maps for four mutually exclusive classes (stent, guidewire, calcium, none). 212 

The encoder-decoder segmenter was trained for 120 epochs with a learning rate of 0.005 and by 213 

augmenting the available number of frames with pixel-level annotations by twice the amount of 214 

augmented frames. Reaching beyond point estimates for the respective predictions, Monte-Carlo 215 

dropout was used (50 samples during deployment) to minimize the effect of individual trainings 216 

on the performance and to increase repeatability over trainings [17]. Besides providing a measure 217 

of predictive uncertainty, the dropout was also found to improve the segmentation quality when 218 

using its mean predictions. 219 

The DeepLabV3 candidate was explored in its original form, pre-trained on ImageNet and refined 220 

on the IVUS data for 60 epochs as well as with randomly initialized weights and trained from 221 

scratch for 120 epochs. The initial learning rate was taken from the original article. 222 

All networks were trained using Adam [15], used a weight decay regularization (λ = 0.0001) and 223 

batch normalization pooled across all pixels in a frame, and were initialized with the He method if 224 

not stated otherwise [16]. The learning rate followed a schedule of hyperbolic decay such that half 225 

the learning rate is reached after half the number of specified epochs. Training was done using the 226 

generalized Dice loss (GDL) [14] where the weight of the stent class was doubled compared to the 227 

other, auxiliary classes. Encoder-decoder implementations were done in CNTK [18] while the 228 

DeepLabV3 variant also made use of PyTorch [19]. 229 

2.3 Evaluation 230 
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Typical evaluation metrics such as receiver-operator characteristics, Dice score, recall, precision, 231 

false positive rates (FPR) and area-under-the curve (AUC) were used to compare performances of 232 

the detector and segmenter. 233 

As it was not feasible to single out individual stent struts in the majority IVUS frames (see 234 

discussion of stent appearances in the introduction), the segmentation ground truth was given in 235 

the form of general masks on pixel level. Although this could not give rise to a stent strut detection 236 

rate as in [31], we defined two dedicated metrics which are tailored to the two major motivations: 237 

(1) malapposition, and (2) rewiring. 238 

2.3.1 Angular Dice Score (DCA) 239 

Successful rewiring requires knowledge of angular occupation to identify cell passages through 240 

the stent mesh. To quantify angular overlap, we do not compute the Dice score between the 241 

predicted voxels p and the human annotation. Instead, we project both annotation and prediction 242 

onto a ring of constant radius around the IVUS catheter tip and compute the Dice score between 243 

the projections PR(p) and PR(a). The resulting metric is – like the plain Dice score -- symmetric, 244 

between 0 and 1 but focuses on angular overlap while ignoring discrepancies along the radius. 245 

2.3.2 Symmetric Median Skeleton Distance (SMSD) 246 

Confirmation of stent apposition predominantly requires radial accuracy of the stent segmentation 247 

to set it into relation to the intima contour of the vessel wall. To achieve this, we construct a metric 248 

that is not a relative measure of performance but quantifies accuracy in pixels, i.e. multiples of the 249 

image resolution (0.0446mm) and therefore de facto a metric length scale . We skeletonize the 250 

prediction and the annotation masks and compute the 50% Hausdorff distance between the two 251 
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resulting skeletons. Formally, we compute the median Euclidean distance between all prediction 252 

skeleton points and their respective closest point on the annotation skeleton. To guarantee 253 

symmetry, the final SMSD is then the average between this median and the median from 254 

annotation to skeleton 255 

The two proposed metrics DCA and SMSD measure complementary aspects of the overlap 256 

between prediction and annotation and hence provide a more detailed picture of the performance 257 

of our pipeline than the Dice score alone. 258 

  259 
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3 Results  260 

3.1 Stent Detection 261 

The detector part of the cascade was trained on frame-level annotations to predict intervals which 262 

contain a certain class. These classes were modeled to be mutually exclusive. 263 

The resulting scores pooled from all test sets of the 5-fold cross-validation are shown in Figure 3. 264 

All scores were computed based on the mean probabilities of the Monte-Carlo output distributions. 265 

The normalized confusion matrix in Figure 3 shows a true positive rate above 90% for all classes 266 

on the diagonal (probability threshold 0.5). Highest accuracies are achieved on the “no use” task, 267 

i.e., when detecting frames with artifacts or frames of no clinical use. Lowest accuracy was 268 

obtained for the detection of areas without stent. The same effect can also be observed from the 269 

receiver-operator-characteristic (ROC) curves in Figure 4 (left) as well as from the Dice curves in 270 

Figure 4 (right). Both curves were generated by computing the scores based on a sweep across 271 

 
Figure 3: Confusion matrix for the stent detection network after pooling the results on all five test folds. 
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different output thresholds for the probability maps (t ∈ [0, 1.0]). The ROC curves yield high areas-272 

under-the-curve (AUCs). 273 

Figure 5 shows the mean and standard deviation predictions along an example pullback sequence 274 

for each of the first three classes longitudinally plotted. 275 

 
Figure 4: Left: ROC curve for varying thresholds on the output probability maps. ROC-AUC values are 

listed for a threshold of t = 0.5. Right: Dice curves showing the dependence of the Dice score on the chosen 

threshold. A good compromise is achieved when thresholding all classes at 0.5. 
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From a cross-sectional perspective, Figure 6 presents example frames along with the 276 

corresponding detector decision. The number of true positives, false positives and false negatives 277 

displayed does not reflect their corresponding proportions in the overall predictions. 278 

 
Figure 5: Example pullback along with encoder results. First two rows show orthogonal cuts through the 

pullback in longitudinal direction and the lower three graphs the ground truth (dash-dotted red) and 

predictions (solid blue line Monte-Carlo mean and blue shading Monte-Carlo estimate of the standard 

estimation) Regions where none of the three classes has a red ground truth value at 1 have not been 

annotated by the expert. Here, predictions cannot be compared with a target label. During the last frames 

the transducer was covered by the catheter, which is correctly recognized as “no use”. 
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In the first two rows very typical stent examples can be seen on the left, where bright speckle spots 279 

– indicating metal struts – are visible along the outer lumen contour. Further to the right, frames 280 

are getting more challenging: stent struts can only be seen partially along the lumen border 281 

(sometimes only two or three of them), calcium deposits are also present in the frame or smaller 282 

calcifications are even attached to the stent making it more difficult to distinguish single struts and 283 

merging them into arc-shaped structures. 284 

Visual inspection of some of the false positive examples (first and third example in that row) 285 

suggests that although ground truth was not labeling them as stent frames, they still seem to clearly 286 

 
Figure 6: Example frames labeled with their corresponding predictions from the stent output of the 

detector network: true positive decisions (top two rows, typical to challenging examples from left to right), 

false negative decisions (detector missed ground truth annotations, third row), and false positive detections 

(bottom row, wrong predictions without ground truth label). 
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show stent struts. In that sense they are only tagged as false positives because they are evaluated 287 

against remaining inconsistencies in the ground truth. The other false positives again fall into the 288 

ambiguous borderline category described above, where a retrospective decision even for an expert 289 

is challenging. 290 

3.2 Stent Segmentation 291 

The second stage of the cascade, the segmentation network, was implemented using an encoder-292 

decoder and a DeepLabV3 architecture trained on pixel-level annotations. The intra-observer 293 

variability for the task of stent segmentation yielded a Dice coefficient of 75.47% indicating the 294 

extent of agreement between the first and second annotation of the experts. For the second 295 

annotation only frames from the first annotation (which definitely contain a stent) were presented 296 

to the expert. The Dice metric does therefore not capture any errors the expert would make when 297 

re-identifying these frames as stent frames or when ignoring frames without a stent (but maybe 298 

calcifications or other ambiguities). 299 

 300 

Given this reference context we evaluated the automatic segmentation as follows: The network 301 

was exclusively trained on frames of the overall dataset, which are accompanied by pixel-level 302 

annotations of the involved classes (stent, calcium, guidewire). All other frames were ignored as 303 

previous scouting experiments did not provide any beneficial evidence for the involvement of other 304 
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additional labels (such as “no stent”). At each epoch a new balanced and shuffled set of frames 305 

from this pre-selection was used for training. 306 

In the following we tag this set of frames with the identifier “all” in contrast to the identifier “stent 307 

loc”, which refers to the set of frames on which for which a stent ground truth was available on 308 

pixel level. 309 

In a first step, we evaluated the performances of the encoder-decoder candidate as well as the 310 

DeepLabV3 architecture on both sets. The results in Table 1 show similar scores with either 311 

approach. While the encoder-decoder performed slightly better on the stent frames, DeepLabV3 312 

had partly better scores when evaluated on all frames. Note, that the encoder-decoder variant was 313 

insensitive to varying thresholds on its probability outputs and therefore used a simple argmax, 314 

while the probability threshold on the stent class was optimized for DeepLabV3. 315 

Table 1:Comparison of metrics scoring the quality of stent segmentation on two different data supports: (1) all 

frames with available ground truth, (2) only frames containing stent pixel-level ground truth. Scores are Dice 

coefficient, false positive rate (FPR), angular Dice coefficient (DCA) and symmetric median skeleton distance 

(SMSD) in pixels, i.e. multiples of the image resolution 0.0446mm. Best scores are highlighted in bold. 

All Dice [%] FPR [%] DCA [%] SMSD [px] 

Encoder-
Decoder 

43.47 0.38 50.29 5.17 

DeepLabV3, 
120ep, no 
pretrain 

46.65 0.71 54.54 5.12 

DeepLabV3, 
60ep, pretrain 

45.42 0.9 53.83 5.06 

Stent Loc     

Encoder-
Decoder 

65.05 0.51 75.20 2.77 

DeepLabV3, 
120ep, no 
pretrain 

62.50 1.09 72.95 3.47 

DeepLabV3, 
60ep, pretrain 

61.96 1.37 73.69 3.23 
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Overall, we consider differences in segmentation quality only as minor and hence proceed with 316 

the encoder-decoder variant for further evaluations. With this decision we follow Occam’s razor 317 

by selecting the simpler of two equally performing approaches. Furthermore, we consider the 318 

slightly better performance of the encoder-decoder network on the stent frames as more relevant 319 

because the stent detector part of the later cascade will prevent the segmentation network from 320 

being applied to all frames. Finally, even on all frames it showed the lowest FPR establishing 321 

excellent conditions for the cascade. 322 

 323 

In a second step, evaluation and testing of stent segmentation performance then had different foci 324 

of interest: 325 

1. Stent segmentation was evaluated on all frames carrying a stent pixel-level label 326 

(equivalent to the intra-observer scenario, and similar to evaluations in other studies on 327 

segmentation tasks). 328 

2. Stent segmentation was evaluated on all frames of the above-mentioned pre-selection 329 

(including all frames which did not contain a stent, but only one of the other labels). 330 

3. Stent segmentation was evaluated based on all frames that passed a gating criterion (either 331 

a simple heuristic, or a positive stent detector decision, or both). 332 

The three scenarios above can be interpreted as follows. The first scenario would be the ideal case 333 

where it was possible to perfectly identify which frames contain a stent and therefore avoiding any 334 

false positives on frames which do not show a stent anyway. This constitutes an upper bound for 335 

scores which can be achieved with the other two scenarios. The second scenario is the naive 336 

solution: The segmentation network needs to identify frames without a stent on its own and avoid 337 

highlighting any pixels in them as stent. Finally, the last scenario is the proposed one, where a 338 
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mechanism is used to sort out frames at which the segmentation network does not need to look, 339 

because they contain no stent. This has the advantage of not only minimizing the risk for 340 

unnecessary false positives, but it also reduces computation cost as the segmentation network is 341 

only deployed if really required. 342 

3.2.1 Simple Gating Heuristic 343 

A simple heuristic can be constructed under two hypotheses. First, the majority of false positive 344 

predictions on frames that do not show a stent are of rather small size and it is rare that the network 345 

would claim large areas as stent although they are not. Second, frames which do show a stent 346 

typically cover a certain minimal area as there should be a minimal number of struts visible in the 347 

image, e.g. at least more than three [40]. 348 

Under these circumstances a threshold on size of the segmented area can be applied (in mm² or as 349 

the image size is always the same in number of pixels). If the number of pixels segmented as stent 350 

in a frame falls below the threshold, then the frame will be cleared from them.  351 

A histogram on areas covered by the strut ground truth masks reveals that areas below 500 pixels 352 

are very unlikely. In frames with 224×224 pixels, 125 pixels (0.249 mm²) roughly correspond to 353 

the area of one stent strut. We therefore explore thresholds of either 400 or 500 pixels only. 354 

3.2.2 Stent Detector Gating.  355 

In line with the initial proposal for the cascaded approach, we investigate the benefit of using the 356 

detector network from Section 3.1 for gating the segmentation task. The segmentation network 357 

will only act upon frames which have a positive decision for stent from the detector network.  358 
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The detector network was only applied on unseen frames: As the trainings for detector and 359 

segmentation networks used the same cross-validation split on patient level, we always applied the 360 

corresponding unbiased detector network to the segmentation test fold at hand. 361 

Scores can be computed (1) either on the complete set of frames after the gating correction of the 362 

detector took place, or (2) scores can be computed only on all frames with a positive detector 363 

decision. 364 

 
Figure 8: Sorted rank plots for recall and Dice scores computed per-frame. Dashed lines indicate average 

metric on the intra-observer variance set. Left: Recall ranking for all frames with annotated ground truth. 

Right: Dice score ranking for all frames with annotated ground truth. 

 
Figure 7: Sorted rank plots for the precision score computed per-frame. Dashed lines indicate average metric 

on the intra-observer variance set. Left: Precision ranking for all samples with annotated ground truth. Right: 

Precision ranking for all frames containing automatic segmentations. 
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Both scores are expected to be similar, but not equal as the detector network still has a low risk for 365 

false negatives outside the set of frames with positive detector decision. 366 

3.2.3 Overall Scores 367 

The first three graphs in Figure 8 and Figure 7 show the scores only computed on all frames that 368 

have a pixel-level stent ground truth. Scores (recall, Dice, and precision) have been computed per 369 

frame and ranked from the highest to the lowest value. Dashed horizontal lines indicate the average 370 

scores on test sets from all folds joined as well as the average scores on the held-out intra-observer 371 

set (both first as well as second annotation run of the expert). 372 

Generally, the average scores for all sets are very similar and low scores are only found on a small 373 

set of frames (steep fall on the right margin of the Dice and precision plots). The fourth plot shows 374 

the precision evaluated on all frames. A precision can be computed on all frames on which the 375 

number of predicted stent pixels is different from zero. It can be observed that there is a larger 376 

 
Figure 9: Score matrices for the segmentation network. Scores are presented for different frame supports and 

post processing (pp) steps: no post-processing (no-pp), segmentation rejection based on a “< N pixel” threshold 

(Npx) and based on detector decisions (detect). Left: Dice scores for three different post-processing scenarios 

(vertical) on different frame supports (horizontal). The effect of the detector is evaluated on all frames 

(segmentations are corrected based on detector decision) and on frames with positive detector decision for 

stent only. Right: False positive rates (fpr) (listed as average number of pixels in a 224×224 frame) for four 

different post-processing scenarios (vertical) on different frame supports (horizontal). A false positive rate of 

0.25% or 125 pixels (0.249 mm²) roughly corresponds to the area of one stent strut as pictured by the imaging 

modality. 
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number of frames with zero precision, i.e. frames which did not have a ground truth annotation but 377 

were still assigned stent pixels by the segmentation network. Further investigations were carried 378 

out to evaluate the characteristics of these predictions (e.g. whether they contain large or small 379 

areas of false positives). 380 

3.2.4 Dice Scores and False Positive Rates 381 

Figure 9 (left) presents Dice scores in a matrix for different frame supports (sets of frames on 382 

which the score was computed) and different post-processing procedures. In the very right column, 383 

the upper bound Dice score is shown. This bound is achieved when only evaluating on frames with 384 

stent ground truth. After applying the thresholding heuristic at 500 px or 400 px a small decrease 385 

can be observed. While the threshold can correct a moderate number of probable false positive 386 

segmentations, it also bears the risk to erroneously reject actual true positives in rare cases. 387 

On the very left column, we list the Dice scores when computing them on all frames. Scores are 388 

generally smaller than for the previous case due to frames of zero precision (cf. Figure 7 right). 389 

After applying the heuristic, more than 10% improvement in Dice can be observed. This indicates 390 

that indeed most frames with zero precision are caused by only small false positively assigned 391 

areas in the frame. 392 

When using the detector-based gating, an increase in Dice score can be observed, too and when 393 

applying both at the same time, an additional benefit of the detector given the already applied 394 

heuristic can be seen. This is true for both scores, those computed on detector frames with positive 395 

decision for stent as well as on all frames after detector gating has been applied. The latter is 396 

slightly lower, which reflects the small number of false negatives from the detector network. 397 

The Dice scores also indicate that a more conservative threshold of 400 px is more suitable than 398 

the higher 500 px one. Overall, the segmentation achieves 86.2% of the human (intra-operator) 399 
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performance when only applied to frames with a stent ground truth (same scenario the human 400 

expert faced) and 75.1% of the human performance on all frames when used within the cascade. 401 

Figure 9 (right) provides more details on specific false positive rates. The matrix illustrates average 402 

false positive rates for different post-processing scenarios (no post-processing, the thresholding 403 

heuristic, detector gating or both) and frame supports (arranged according to the expert label they 404 

carry and irrespective of whether they have been part of the cross validation sets or not). Again, 405 

the combination of detector and heuristic post-processing yields best results. 406 

3.2.5 Angular Dice and Median Skeleton Distance 407 

Equivalent to Figure 9, Figure 10 reports the results for the angular Dice (DCA) and the symmetric 408 

median skeleton distance. The overall performance of the segmentation network in terms of these 409 

scores confirms the trend observations made on the Dice score earlier. The angular Dice exceeds 410 

the full Dice by approximately 8-10% indicating a good angular coverage of the stent ground truth.  411 

 
Figure 10: Angular Dice (DCA) and symmetric median skeleton distance (SMSD, in brackets) scores of the 

segmentation network. The former is reported in percent and the latter in pixel, i.e. multiples of the image 

resolution 0.0446mm. Equivalent to the Dice scores in Figure 9 results are shown without post-processing 

(no-pp) and after applying the 400px or 500px heuristic. Again, we evaluate on all frames, stent-only frames 

as well as on the two cascading scenarios 
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The median skeleton distance yielded values in the lower single digit regime which also confirms 412 

a segmentation which is well aligned with the ground truth in radial direction. Both scores are 413 

constructed to be insensitive with respect to inaccuracies in the thickness of the stent segmentation. 414 

3.2.6 Example Segmentations 415 

Example frames with their corresponding segmentations can be seen in Figure 11. Both images 416 

illustrate random examples drawn equally spaced from the score rankings discussed earlier (Dice 417 

score in the top and precision in the bottom image). Green areas indicate true positive 418 

segmentations (network was correct), red indicates false positive areas (network predicted stent on 419 

pixels where ground truth said the opposite), and yellow indicates false negatives (stent areas 420 

missed by the column-wise (from left-to-right and top-to-bottom). Scores for the examples 421 

decrease from left to right due to the way they are sampled from the ranking plots. Therefore, the 422 

first frames give an impression on very good segmentations, while frames on the right indicate 423 

some of the poorer frames where the stent is visible in terms of small bright struts along the outer 424 

lumen contour. 425 
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ome of the poorer results. The examples qualitatively confirm earlier findings: The segmentation   426 

 

 
Figure 11: Example frames drawn in steps of constant frame proportions from the score rankings. Therefore, 

the plots provide a representative selection of frames covering the full range of scores achieved per frame 

(scores decrease from left to right). Green: true positive pixels, Yellow: false negative pixels, Red: false positive 

pixels. Top: Frames drawn at equal spacings from the Dice rankings (Figure 8, right). Bottom: Frames drawn 

at equal spacings from the precision rankings (Figure 7, right). 
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4 Discussion 427 

4.1 Stent Detection 428 

With a true positive rate beyond 95% stent detection performance was found to be excellent and 429 

hardly justifies the usage of more complex and heavy-weight architectures. Increasing complexity 430 

by elevating the number of feature maps, has even been found to have a negative effect on the 431 

performance. 432 

Possible reasons for the slightly weaker results on the “no stent” class are twofold. On the one 433 

hand, it is the class with the least training examples available. This could introduce a bias with 434 

respect to the other two classes even though samples are balanced out prospectively by the 435 

minibatch sampling. However, the pool of input image variation from which the balanced set can 436 

be sampled in each epoch is still higher for the two larger classes. 437 

Moreover, frames without a stent were maybe the most difficult to annotate. While for artifact or 438 

stent regions the expert would always choose the indicative example intervals, it is more difficult 439 

to define the typical “no stent” interval. Such parts of the pullback can still contain a lot of variation 440 

such as guidewires, calcium, bifurcations etc. Furthermore, intervals between clear stent intervals, 441 

for instance, could still accidentally contain a (for the human eye) poorly visible stent at the 442 

pullback transition into the stent. 443 

The former also appears to be one of the main reasons for false negative stent predictions: Most of 444 

the examples in row three of Figure 6 exhibit thickened bright outlines at the lumen border which 445 

are easily confused between calcification, stent or calcified stent – even for a human expert. Only 446 

rarely a few single struts stand out clearly. Finally, the bottom row of the same Figure illustrates 447 

label noise originating from stent frames that were occasionally missed by the expert during the 448 
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time-consuming annotation process. While most of these frames only contain a few single struts, 449 

they still impact the performance measures of the detector in terms of false positive predictions. 450 

4.2 Stent Segmentation 451 

Despite the very promising segmentation quality as evaluated by visual inspection (see for instance 452 

Figure 11), the absolute Dice values may seem only moderate. This is a well-known phenomenon 453 

which is frequently observed with the segmentation of smaller structures as opposed to segmenting 454 

larger organs from images. One example is given by lymph node segmentations from CT images 455 

where Dice scores of around 50% are typically achieved [40]. Like stent struts, these structures 456 

only occupy smaller areas with a low number of pixels. The label noise is typically higher as they 457 

are more difficult to recognize or to precisely annotate by the clinical expert. Apart from 458 

overlooking some of them, the annotation brush as used in this work easily misses or erroneously 459 

annotates a few pixels. Furthermore, the transition between stent strut and surrounding areas is not 460 

always clear due to the speckle noise and point spread function of the image acquisition which 461 

operate on a similar scale. Finally, the amount of data and the extent of the annotation burden 462 

naturally contribute to this effect and the resulting human inconsistencies. The segmentation 463 

network will find a systematic way of labelling stent struts, but inaccuracies of a few pixels will 464 

significantly impact the Dice score. The Dice achieved in the intra-observer study confirms this 465 

effect without involvement of the network. 466 

Dice scores of the encoder-decoder candidate were found to be like those of the DeepLabV3 467 

candidate. As a possible reason we remark that due to the number of convolutional segments and 468 

larger kernel sizes the effective field size of the optimized encoder-decoder network covers almost 469 

the full field-of-view. We found this to be an important aspect as only the global view onto the 470 

image will provide information about systematic patterns in the composition of a typical IVUS 471 
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frame and the typical location of a stent within it. The very low number of false positives found 472 

further away from the lumen border supports this hypothesis. At the same time the large effective 473 

field size prevents the network from getting lost in the interpretations on finer scales comprising 474 

ambiguous speckles. Finally, the ASPP blocks with their dilated convolutions in DeepLabV3 may 475 

play a similar role for the other candidate. It however does not suffice for a unique advantage as 476 

the encoder-decoder candidate can compensate for this with its effective field size. This is also 477 

support by the scores achieved. Finally, the lower complexity encoder-decoder network also serves 478 

as a regularization against an over-interpretation of the image (see the lower FPR). This has 479 

particular importance for predictive tasks on IVUS data on which the risk of misinterpreting 480 

speckle as the target seems to be higher than missing a uniquely identifying feature in the 481 

appearance of stent struts. 482 

 483 

In relative comparisons, the Dice scores are highest when only considering frames that definitely 484 

show stent struts. Any segmentation decision on the other frames of the set can only degrade this 485 

score and depart from this upper bound or in the best case keep it unchanged. The latter can only 486 

be achieved if the segmentation network will not decide for stent in any pixel of these frames. To 487 

avoid this decision in first place, the cascade proposes to shift it to either the introduced heuristic, 488 

the detector network or both. Indeed, best performances are achieved when combining the 400px 489 

heuristic with the detector network. The positive impact of the former confirms that the decrease 490 

of the Dice in the larger frame sets mainly originates from a small number of falsely labelled pixels 491 

such as bright ambiguously looking speckles. 492 

Yet, the false positive rate is highest in frames containing a stent label. This can be expected as the 493 

typical speckle appearance of IVUS frames makes it difficult to decide where a strut starts and 494 



32 

where it ends. We have also seen in Figure 6 that for parts of the bright outer lumen contour it is 495 

sometimes difficult to judge whether it still is a (e.g. micro-calcified) stent. This also leads to the 496 

moderate Dice score between the two expert annotations. 497 

In general, the low average rates for the FPR again confirm that the zero precision frames in Figure 498 

7 are mainly caused by small erroneously segmented areas. The rates are naturally lowest on “no 499 

stent” frames, and higher on calcified frames, frames of no clinical use (e.g. with artifacts) or 500 

frames showing guidewires.  501 

Once calcifications enter the frame or start to mix with the stent struts, the task gets more difficult 502 

for both expert and network. In the bottom image of Figure 11, the very right columns present zero 503 

precision frames. Again, we observe only small areas – mainly single, sometimes stretched, bright 504 

spots which are mistaken as stent by the network. Some of them are again debatable from a ground 505 

truth perspective (such as first row, second from the left). 506 

 507 

Finally, the DCA and SMSD confirm the trends discussed above. Moreover, their motivation is 508 

twofold: First, they are tailored to the two main clinical use cases identified earlier: the detection 509 

of stent malapposition which requires accurately locating the stent contour in radial direction, and 510 

re-wiring branches in bifurcation lesions which require knowing which angular segments are 511 

occupied by the stent mesh and which parts could allow guidewire passage. The former is targeted 512 

by SMSD, which evaluates the median distance between the ground truth and segmentation 513 

skeletons of the stent masks. We compute the median as opposed to larger percentiles or the 514 

maximum (as done in Hausdorff distances) to focus on the radial errors as much as possible. We 515 

expect higher percentiles to be more influenced by relative angular shifts between ground truth 516 
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and segmentation. This is however already captured by the angular Dice (DCA), which is more 517 

dedicated to the re-wiring use case. 518 

As a second motivation, both scores aim at decreasing the impact originating from the “thickness” 519 

of the annotated or segmented stents. In addition to the influential factors discussed above, also 520 

the brush size favored by the clinical expert may have introduced a bias into the annotations, which 521 

should not enter the evaluation. The existence of this bias seems to be confirmed by an angular 522 

Dice which is up to 10% higher than the original Dice score while observing a small SMSD at the 523 

same time. 524 

4.3 Cascading Concept for a Data-Driven Approach to Stent Segmentation 525 

In the cascaded concept, the encoder successfully served as a gateway for triggering the 526 

segmentation network and can thus mitigate the high risk for false positives. This demonstrates 527 

the value and superiority of the cascade approach with respect to a conventional pure segmentation. 528 

The segmentation network faces the challenge of solving the harder task of pixel-wise stent strut 529 

localization while learning from a very limited set of difficult-to-annotate frames. A risk for false 530 

positive segmentations then naturally stems from manifold ambiguities in the IVUS image which 531 

are difficult to resolve without a more global view on the data – even for the human expert. The 532 

disproportionally higher number of frames without a stent compared to those that in fact contain a 533 

stent contributes to this. On frames with a stent ground truth the segmentation network achieved 534 

86.2% of the human expert performance. This constitutes the fairest comparison because the expert 535 

faced only frames during intra-observer variability analysis of which it was known that they show 536 
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stent struts. Yet, the detector-segmenter cascade applied to on all frames still reached 75.1% of 537 

this previous human performance.  538 

This aspect gains even higher relevance when considering that all predictions operate on a per-539 

frame basis as all pullbacks were ungated and conducted manually unlike the automatic pullbacks 540 

from previous work [26, 29]. These are carried out at constant directed speed and allow the 541 

algorithm to exploit longitudinal context. This was not the case here, i.e. the transducer could, for 542 

instance, remain at a certain location for some time, go back and forth, be pulled at varying speeds, 543 

or even get caught in calcified twists and be subject to rapid jumps. In addition, anatomical and 544 

device-related ambiguities with similarly bright contrast have also been identified earlier: Liu at 545 

al. [34], for instance, report the visibility of the pericardial border close to the vessel, guidewires 546 

or varying contrast due to non-orthogonal reflections of the acoustic wave as misleading factors 547 

for calcium assessment. These and others certainly also play a role in automatic stent detection as 548 

struts typically have a similar localization in the vessel, exhibit similar contrast and texture features 549 

and may finally be entangled with other structures such as spotty calcifications or dense fibers 550 

[26]. 551 

5 Conclusions and Future Directions 552 

In our work, we successfully demonstrated a data-driven deep learning strategy for segmenting 553 

stent struts in IVUS frames. We used a cascaded approach which reverses the order of in-frame 554 

strut segmentation and longitudinal stent detection as it was proposed in previous work on the 555 

same topic which still made use of a handcrafted processing chain [26, 40]. Using a cascade over 556 

a conventional frame-wise segmentation along the pullback yielded a successful strategy for 557 

opening up the clinical problem to modern data-driven learning. The results confirm our rationale: 558 



35 

Training an encoder network for the simpler task of frame classification on a large set of easy-to-559 

annotate frames yields promising results which can be leveraged to facilitate strut segmentation of 560 

a subsequent encoder-decoder segmentation network. Being able to address the problem of stent 561 

segmentation by modern learning techniques in such a way will substantially facilitate future 562 

development cycles reacting, for instance, on covariate shift stemming from different IVUS 563 

transducer types, transducer frequencies, varying post-processing steps in the image acquisition 564 

chain or the application to different vasculature. Furthermore, our work sets the stage for easily 565 

integrating further predictions in terms of multi-task learning using the same strategy but pushing 566 

the exploitation of synergies between related tasks. 567 

We also demonstrated that additional regularization and post-processing can further increase 568 

consistency in the segmentation output. Here, we applied a simple heuristic based on the total area 569 

covered by the strut prediction in a frame. Although it was not our focus here, future work can 570 

make use of more elaborate heuristics such as number and size of connected components in the 571 

thresholded output probability mask, or the position of the segmented strut areas with respect to 572 

other identified anatomical structures such as the outer lumen contour (internal elastic lamina) or 573 

plaques in intima as done in other studies [26, 29]. 574 

In this context also other valuable findings from previous studies can complement our work. 575 

Inspired by recent successes of combining radiomics and data-driven approaches, the handcrafted 576 

features identified by Ciompi et al. [29] can be integrated and possibly further increase robustness 577 

of our approach. In addition, the SAX algorithm proposed by Balocco et al. [30] can be 578 

investigated as a replacement for the simple thresholding strategy which we used for the encoder 579 

part. As the encoder, however, also classifies frames of no use and without a stent in a mutually 580 

exclusive manner, the feasibility of a multivariate variant needs to be considered carefully. Our 581 
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more intuitive likelihood function compared to [30] at the encoder output (defined in [0, 1]) may 582 

already sufficiently solve the problem of mapping output probabilities to discrete class decisions. 583 

Our Dice curves confirm minimal dependence on the choice of the output threshold. 584 

Finally, future work aims at improving the robustness of our approach e.g. exploiting prior 585 

knowledge about the data domain [36] and common error sources [35] or synthetic data generation 586 

approaches [37]. Furthermore, while our approach already solves other problems such as the 587 

identification of clinically useful frames, e.g. for interventional or retrospective navigation, further 588 

predictive models can be combined with the cascade. A natural goal is an extension by existing 589 

lumen/vessel wall segmentation models [35] such that stent malapposition can be automatically 590 

assessed or a combination with bifurcation and side branch detection to facilitate rewiring by 591 

intelligent guidance in complex PCIs. 592 

  593 
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List of Captions 765 

 766 
Figure 1: Illustration of the cascaded concept. Frames of the manual pullback are first analyzed by an encoder 767 

network, which decides for one of three classes per frame: stent, no stent or no use. Only stent frames are 768 
then passed on to the encoder-decoder to segment the stent struts. Apart from the favorable training 769 
setup, this is also targeting a reduction of false positive predictions on frames that do not show a stent 770 
anyway. 771 

Figure 2: Network architectures for stent detection (top, encoder network) and stent segmentation (bottom, 772 
encoder-decoder network with skip connections between both parts). 773 

Figure 3: Confusion matrix for the stent detection network after pooling the results on all five test folds. 774 
Figure 4: Left: ROC curve for varying thresholds on the output probability maps. ROC-AUC values are listed for a 775 

threshold of t = 0.5. Right: Dice curves showing the dependence of the Dice score on the chosen threshold. 776 
A good compromise is achieved when thresholding all classes at 0.5. 777 

Figure 5: Example pullback along with encoder results. First two rows show orthogonal cuts through the 778 
pullback in longitudinal direction and the lower three graphs the ground truth (dash-dotted red) and 779 
predictions (solid blue line Monte-Carlo mean and blue shading Monte-Carlo estimate of the standard 780 
estimation) Regions where none of the three classes has a red ground truth value at 1 have not been 781 
annotated by the expert. Here, predictions cannot be compared with a target label. During the last frames 782 
the transducer was covered by the catheter, which is correctly recognized as “no use”. 783 

Figure 6: Example frames labeled with their corresponding predictions from the stent output of the detector 784 
network: true positive decisions (top two rows, typical to challenging examples from left to right), false 785 
negative decisions (detector missed ground truth annotations, third row), and false positive detections 786 
(bottom row, wrong predictions without ground truth label). 787 

Figure 7: Sorted rank plots for the precision score computed per-frame. Dashed lines indicate average metric on 788 
the intra-observer variance set. Left: Precision ranking for all samples with annotated ground truth. Right: 789 
Precision ranking for all frames containing automatic segmentations. 790 

Figure 8: Sorted rank plots for recall and Dice scores computed per-frame. Dashed lines indicate average metric 791 
on the intra-observer variance set. Left: Recall ranking for all frames with annotated ground truth. Right: 792 
Dice score ranking for all frames with annotated ground truth. 793 

Figure 9: Score matrices for the segmentation network. Scores are presented for different frame supports and 794 
post processing (pp) steps: no post-processing (no-pp), segmentation rejection based on a “< N pixel” 795 
threshold (Npx) and based on detector decisions (detect). Left: Dice scores for three different post-796 
processing scenarios (vertical) on different frame supports (horizontal). The effect of the detector is 797 
evaluated on all frames (segmentations are corrected based on detector decision) and on frames with 798 
positive detector decision for stent only. Right: False positive rates (fpr) (listed as average number of pixels 799 
in a 224×224 frame) for four different post-processing scenarios (vertical) on different frame supports 800 
(horizontal). A false positive rate of 0.25% or 125 pixels (0.249 mm²) roughly corresponds to the area of 801 
one stent strut as pictured by the imaging modality. 802 

Figure 10: Angular dice (DCA) and symmetric median skeleton distance (SMSD, in brackets) scores of the 803 
segmentation network. The former is reported in percent and the latter in pixel, i.e. multiples of the image 804 
resolution 0.0446mm. Equivalent to the dice scores in Figure 9 results are shown without post-processing 805 
(no-pp) and after applying the 400px or 500px heuristic. Again, we evaluate on all frames, stent-only 806 
frames as well as on the two cascading scenarios 807 

Figure 11: Example frames drawn in steps of constant frame proportions from the score rankings. Therefore, the 808 
plots provide a representative selection of frames covering the full range of scores achieved per frame 809 
(scores decrease from left to right). Green: true positive pixels, Yellow: false negative pixels, Red: false 810 
positive pixels. Top: Frames drawn at equal spacings from the Dice rankings (Figure 7, right). Bottom: 811 
Frames drawn at equal spacings from the precision rankings (Figure 8, right). 812 
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