
Int J Comput Vis (2012) 100:261–274
DOI 10.1007/s11263-012-0537-4

User-Centric Learning and Evaluation of Interactive
Segmentation Systems

Pushmeet Kohli · Hannes Nickisch · Carsten Rother ·
Christoph Rhemann

Received: 23 May 2011 / Accepted: 11 May 2012 / Published online: 30 May 2012
© Springer Science+Business Media, LLC 2012

Abstract Many successful applications of computer vision
to image or video manipulation are interactive by nature.
However, parameters of such systems are often trained ne-
glecting the user. Traditionally, interactive systems have
been treated in the same manner as their fully automatic
counterparts. Their performance is evaluated by computing
the accuracy of their solutions under some fixed set of user
interactions. In this paper, we study the problem of evalu-
ating and learning interactive segmentation systems which
are extensively used in the real world. The key questions
in this context are how to measure (1) the effort associated
with a user interaction, and (2) the quality of the segmenta-
tion result as perceived by the user. We conduct a user study
to analyze user behavior and answer these questions. Using
the insights obtained from these experiments, we propose
a framework to evaluate and learn interactive segmentation
systems which brings the user in the loop. The framework is
based on the use of an active robot user—a simulated model
of a human user. We show how this approach can be used
to evaluate and learn parameters of state-of-the-art inter-
active segmentation systems. We also show how simulated
user models can be integrated into the popular max-margin

P. Kohli (�) · C. Rother
Microsoft Research Cambridge, Cambridge, UK
e-mail: pkohli@microsoft.com

C. Rother
e-mail: carrot@microsoft.com

H. Nickisch
MPI for Intelligent Systems, Tübingen, Germany
e-mail: hannnes@nickisch.org

C. Rhemann
Vienna University of Technology, Vienna, Austria
e-mail: rhemann@ims.tuwien.ac.at

method for parameter learning and propose an algorithm to
solve the resulting optimisation problem.

Keywords Interactive systems · Image segmentation ·
Learning

1 Introduction

Problems in computer vision are known to be hard, and very
few fully automatic vision systems exist which have been
shown to be accurate and robust under all sorts of chal-
lenging inputs. In the past, these conditions had made sure
that most vision algorithms were confined to the labora-
tory environment. The last decade, however, has seen com-
puter vision finally come out of the research lab and into
the real world consumer market. This great sea change has
occurred primarily on the back of the development of a num-
ber of interactive systems which have allowed users to help
the vision algorithm to achieve the correct solution by giv-
ing hints. Interactive systems for generating collages and
panoramas of images (Rother et al. 2006) and object cut-
and-paste (image segmentation) (Rother et al. 2004) have
become particularly among users. Understandably, interest
in interactive vision systems has grown in the last few years,
which has led to a number of workshops and special sessions
in vision, graphics, and user-interface conferences.1

The performance of an interactive system depends on a
number of factors, one of the most crucial being the user.
This user dependence makes interactive systems quite differ-
ent from their fully automatic counterparts, especially when
it comes to learning and evaluation. Surprisingly, there has

1E.g. ICCV 2007, NIPS 2009 and CVPR 2010.

mailto:pkohli@microsoft.com
mailto:carrot@microsoft.com
mailto:hannnes@nickisch.org
mailto:rhemann@ims.tuwien.ac.at

262 Int J Comput Vis (2012) 100:261–274

been little work in computer vision or machine learning de-
voted to user-centric learning of interactive systems. This
paper tries to bridge this gap.

We choose to study the learning and evaluation problems
in the context of interactive segmentation systems which are
extensively used in the real world. Interactive segmentation
aims to separate an object of interest from the rest of an im-
age. It is a classification problem where each pixel is as-
signed one of two labels: foreground (fg) or background
(bg). The interaction comes in the form of sets of pixels
marked by the user by help of brushes to belong either to
fg or bg.2 Most work on learning and evaluating interactive
segmentation systems assume a fixed input, without consid-
ering how real world users interact with the system in prac-
tice.

The paper addresses the problem of: (1) How to evalu-
ate any given interactive segmentation system? and (2) How
to learn the best interactive segmentation system? Observe
that the answer to the first question gives us an answer to the
second by picking the segmentation system with the best
evaluation. We conduct a user study to analyze user behav-
ior and answer the key questions of how to measure (a) the
effort associated with a user interaction, and (b) the quality
of the segmentation result as perceived by the user. Using
the insights obtained from these experiments, we propose
a framework to evaluate and learn interactive segmentation
systems which brings the user in the loop. Although we ap-
ply our framework to only interactive segmentation systems,
it can be applied to general machine intelligence and com-
puter vision problems.

We demonstrate the efficacy of our evaluation methods
by learning the parameters of the state-of-the-art system for
interactive image segmentation. We then extend parameter
learning in structured models by including the user effort in
the max-margin method. The contributions of this paper are:
(1) The study of the problems of evaluating and learning in-
teractive systems. (2) The analysis of the behavior of users
of interactive segmentation systems. (3) The use of a user
model for evaluating and learning interactive systems. (4) A
comparison of state-of-the-art segmentation algorithms un-
der an explicit user model. (5) A new algorithm for max-
margin learning with user in the loop. Two recent articles
(Gulshan et al. 2010; Blake et al. 2011) already employ our
robot user to learn and compare various different segmen-
tation algorithms, which demonstrates the usefulness of our
approach.

A preliminary version of this paper appeared as (Nick-
isch et al. 2010). This extended version describes a new user
study which provides us with insights on how users measure
accuracy of solutions and interaction effort in the context of
interactive segmentation systems.

2We will refer to each user interaction in this scenario as a brush stroke.

Organization of the Paper In Sect. 2, we discuss the prob-
lem of interactive system evaluation. In Sect. 3, we give de-
tails of our problem setting, and explain the different seg-
mentation systems and datasets considered in our study. In
Sect. 4, we describe the artificial user model used in our
study. In Sect. 5, we describe the results of our user study
which provides us with insights on how users perceive seg-
mentation quality and interaction effort. Section 6 explains
the naïve line-search method for learning segmentation sys-
tem parameters. In Sect. 7, we show how the max-margin
framework for structured prediction can be extended to han-
dle interactions, and show some basic results. We conclude
by listing some ideas for future work in Sect. 8.

2 Evaluating Interactive Systems

Performance evaluation is one of the most important prob-
lems in the development of real world systems. There are
two choices to be made: (1) The data sets on which the sys-
tem will be tested, and (2) the quality measure. Traditional
computer vision and machine learning systems are evaluated
on preselected training and test data sets. For instance, in
automatic object recognition, one minimizes the number of
misclassified pixels on datasets such as PASCAL VOC (Ev-
eringham et al. 2009).

In an interactive system, these choices are much harder to
make due to the user in the loop. Users behave differently,
prefer different interactions, may have different error toler-
ances, and may also learn over time. The true objective func-
tion of an interactive system—although intuitive—is hard to
express analytically: The user wants to achieve a satisfying
result easily and quickly. We will now discuss a number of
possible solutions, some of which, are well known in the
literature (see Table 1 for an overview). We rely on the stan-
dard assumption that there exists a consistent set of optimal
parameters for a set of images.

2.1 Static Interactions

A fixed set of user-made interactions (brush strokes) asso-
ciated with each image of the dataset is most commonly
used in interactive image segmentation (Blake et al. 2004;
Singaraju et al. 2009; Duchenne et al. 2008). These strokes
are chosen by the researchers themselves and are encoded
using image trimaps. These are pixel assignments with fore-
ground, background, and unknown labels (see Fig. 2b). The
system to be evaluated is given these trimaps as input and
their accuracy is measured by computing the Hamming dis-
tance between the obtained result and the ground truth.
This scheme of evaluation does not consider how users may
change their interaction by observing the current segmenta-
tion results. Evaluation and learning methods which work

Int J Comput Vis (2012) 100:261–274 263

Table 1 Comparison of
methods Method user in

loop
user can
learn

inter-
action

effort
model

parameter
learning

time price

User model yes yes yes yes this paper fast low

Crowdsourcing yes yes yes yes conceivable slow a bit

User study yes yes yes yes infeasible slow very
high

Static learning no no no no used so far fast very
low

with a fixed set of interactions will be referred to as static in
the rest of the paper.

Although the static evaluation method is easy to use, it
suffers from a number of problems: (1) The fixed interac-
tions might be very different from the ones made by ac-
tual users of the system. (2) Different systems prefer dif-
ferent types of user hints (interaction strokes) and thus
a fixed set of hints might not be a good way of com-
paring two competing segmentation systems. For instance,
geodesic distance based approaches (Bai and Sapiro 2007;
Grady 2006; Singaraju et al. 2009) prefer brush strokes
equidistant from the segmentation boundary as opposed
to graph cuts based approaches (Boykov and Jolly 2001;
Rother et al. 2004). (3) The evaluation does not take into
account how the accuracy of the results improves with more
user strokes. For instance, one system might only need a
single user interaction to reach the ground truth result, while
the other might need many interactions to get the same re-
sult. Still, both systems will have equal performance under
this scheme. These problems of static evaluation make it a
poor tool for judging the performance of newly proposed
segmentation systems.

2.2 User Studies

A user study involves the system being given to a group
of participants who are required to use it to solve a set of
tasks. The system which is easiest to use and yields the cor-
rect segmentation in the least amount of time is considered
the best. Examples are (Mortensen and Barrett 1998) and
(Li et al. 2004) where a full user study has been conducted,
or (Bai and Sapiro 2007) where an advanced user has done
with each system the optimal job for a few images. However,
user studies are very impractical to arrange if thousands of
parameters are to be tested.

While overcoming most of the problems of a static eval-
uation, we have introduced new ones: (1) User studies are
expensive and need a large number of participants to be sta-
tistically significant. (2) Participants need time to familiarize
themselves with the system. For instance, an average driver
steering a formula (1) car for the first time, might be no
faster than with a normal car. However, after gaining expe-
rience with the car, one would expect the driver to be much

faster. (3) Each system has to be evaluated independently by
participants, which makes it infeasible to use this scheme in
a learning scenario where we are trying to find the optimal
parameters of the segmentation system among thousands or
millions of possible ones.

2.3 Evaluation Using Crowdsourcing

Crowdsourcing has attracted a lot of interest in the machine
learning and computer vision communities. This is primar-
ily due to the success of a number of incentive schemes for
collecting training data from users on the web. These are ei-
ther based on money (Sorokin and Forsyth 2008), reputation
(von Ahn and Dabbish 2004), or community efforts (Russell
et al. 2008). Crowdsourcing has the potential to be an excel-
lent platform for evaluating interactive vision systems such
as those for image segmentation. One could ask Mechanical
Turk (amazon.com 2010) users to cut out different objects in
images with different systems. The one who needs the least
number of interactions on average might be considered the
best. However, this approach too, suffers from a number of
problems such as fraud prevention. Furthermore, as in user-
studies, it cannot be used for learning in light of thousands
or even millions of systems.

2.4 Evaluation with an Active User Model

In this paper we propose a new evaluation methodology
which overcomes most of the problems described above.
Instead of using a fixed set of interactions, or an army of
human participants, our method only needs a model of user
interactions. This model is a simple algorithm which—given
the current segmentation, and the ground truth—outputs the
next user interaction. This user model can use simple rules,
such as “place a brush stroke in the middle of the largest
wrongly labelled region”, or alternatively, can be learnt from
the interaction logs. We will see that a simple user model
exhibits similar behavior as a novice human user. There
are many similarities between the problem of learning a
user model and the learning of an agent policy in rein-
forcement learning. Thus, one may exploit reinforcement
learning methods for this task. Pros and cons of evaluation
schemes are summarized in Table 1.

264 Int J Comput Vis (2012) 100:261–274

Concurrent with our work, McGuinness and O’Connor
(2010, 2011) have also proposed the use of user models to
evaluate the performance of interactive image segmentation
systems. They have introduced a number of deterministic
and stochastic strategies to choose brush strokes. They also
reason about more sophisticated models for brush stroke
generation. However, unlike our work which looks at both
learning and evaluation of interactive systems, the main fo-
cus of their paper is on evaluation of these systems. One
of their high-level insights, which is similar to our work,
is that simple strategies such as choosing the center of the
erroneous region for placing the brush stroke performs rea-
sonably well in obtaining accurate segmentations compared
to random or more energy aware strategies.

Our framework is also vaguely related to the recent
and interesting work of Vijayanarasimhan and Grauman
(2011b, 2011a) on active learning for object recognition
which contains a user based annotation system within it. In a
separate paper (Vijayanarasimhan and Grauman 2009), Vi-
jayanarasimhan and Grauman had looked at the problem of
predicting the time taken by a user to annotate any given
image, which can be seen as the learning of a implicit user
model.

3 Interactive Segmentation Systems: Problem Setting

We now describe in detail the segmentation systems and
datasets used in our studies on evaluation and learning in-
teractive systems.

3.1 The Segmentation Systems

We use 4 different interactive segmentation systems in
the paper: “GrabCut(GC)”, “GC Simple(GCS)”, “GC Ad-
vanced(GCA)”, and “GeodesicDistance (GEO)”.

GEO is a very simple system. We first learn Gaussian
Mixture Model (GMM) based color models for fg/bg from
user made brush strokes. The shortest path in the likelihood
ratio yields a segmentation (Bai and Sapiro 2007).

The systems (GC, GCS, GCA) minimize the energy

E(y) =
∑

p∈V
Ep(yp) +

∑

(p,q)∈E
Epq(yp, yq) (1)

by graph cuts. Here (V , E) is an undirected graph whose
nodes are pixels p with color xp and segmentation label
yp ∈ {0,1}, where 0/1 correspond to bg/fg, respectively. We
define (V , E) to be an 8-connected graph.

The unary terms are computed from a probabilistic model
for the colors of background (yp = 0) and foreground (yp =
1) pixels using two different GMMs Pr(x|0) and Pr(x|1).
Ep(yp) is then computed as:

− log(Pr(xp|yp)) where xp contains the three color chan-
nels of pixel p. Importantly, GrabCut (Rother et al. 2004)
updates the color models based on the whole segmentation.
In practice we use a few iterations only.

The pairwise term has an Ising and a contrast-dependent
component

Epq(yp, yq) = |yq − yp|
dist(p, q)

(
wi + wc exp

[−β‖xp − xq‖2])

where wi and wc are weights for the Ising and contrast-
dependent pairwise terms respectively, and β is a parameter
with β = 0.5 · wβ/〈‖xp − xq‖2〉 where 〈·〉 denotes expecta-
tion over an image sample (Rother et al. 2004). We can scale
β with the parameter wβ .

To summarize, the models have two linear free param-
eters: wi,wc and a single non-linear one: wβ . GC mini-
mizes the energy defined above, and is effectively the origi-
nal GrabCut system (Rother et al. 2004). GCS is a simplified
version, where color models (and unary terms) are fixed up
front; they are learnt from the initial user brush strokes (see
Sect. 3.1) only. GCS will be used in max-margin learning
and to check the active user model, but it is not considered
as a practical system.

Finally, GCA is an advanced GrabCut system perform-
ing considerably better than GC. Inspired by recent work
(Liu et al. 2009), foreground regions are 4-connected to a
user made brush stroke to avoid deserted foreground islands.
Unfortunately, such a notion of connectivity leads to an NP-
hard problem and various solutions have been suggested (Vi-
cente et al. 2008; Nowozin and Lampert 2009). However,
all these are either very slow and operate on super-pixels
(Nowozin and Lampert 2009) or have a very different inter-
action mechanism (Vicente et al. 2008). We remove small
disconnected foreground regions in a postprocessing step.

3.2 Datasets for Evaluation

We use the publicly available GrabCut database of 50 im-
ages with known ground truth segmentations.3 In order to
perform large scale testing and comparison, we down-scaled
all images to have a maximum size of 241 × 161, while
keeping the original aspect ratio.4 For each image, we cre-
ated two different static user inputs: (1) A “static trimap”
computed by dilating and eroding the ground truth segmen-
tation by 7 pixels.5 (2) A “static brush” consisting of a few
user made brush strokes roughly indicating foreground and

3http://research.microsoft.com/en-us/um/cambridge/
projects/visionimagevideoediting/segmentation/grabcut.htm.
4The quality of the segmentation results is not affected by this down-
scaling.
5This input is used for both comparison and parameter learning e.g.
(Blake et al. 2004; Singaraju et al. 2009).

http://research.microsoft.com/en-us/um/cambridge/

Int J Comput Vis (2012) 100:261–274 265

Fig. 1 We took the 50 GrabCut images (a) with given ground truth
segmentations (coded as black/white) and considered two kinds of
user inputs (coded as red/blue): User defined strokes (b) and tight
trimaps generated by eroding the groundtruth segmentation (c). The
user strokes where drawn by looking at the ground truth segmentation
yk and ignoring the image xk

background. We used on average about 4 strokes per image.
(The magenta and cyan strokes in Fig. 2(c) give an exam-
ple.) All this data is visualized in Fig. 1. Note, in Sect. 4
we describe a third “dynamic trimap” called the robot user
simulating the user.

3.3 The Error Measure

For a static trimap input there are different ways for obtain-
ing an error rate, see (Blake et al. 2004; Kohli et al. 2008). In
the static input setting, most papers use the number of mis-
classified pixels (Hamming distance) between the ground
truth segmentation and the current result. We call this mea-
sure “erb”, i.e. Hamming error for brush b. One can also use
variations of the Hamming distance measure, e.g. (Kohli et
al. 2008) weight distances to the boundary differently. Fig-
ure 2(d) shows how erb behaves with each interaction.

For learning and evaluation we need an error metric giv-
ing us a single score for the whole interaction. One choice is
the “weighted” Hamming error averaged over a fixed num-
ber of brush strokes B. In particular we choose the error
“Er” as: Er = [∑b f (erb)]/B . Note, to ensure a fair com-
parison between systems, B must be the same number for
all systems. A simple choice for the weighting function is

f (e) = e. However, throughout the paper (if not stated dif-
ferently) we use a quality metric which may match more
closely with what the user wants. For this, we use a sigmoid
function f : R+ → [0, c], c = 5 of the form

f (e) = 0, e ≤ 1.5 and

f (e) = c − c

(e − 0.5)2
, e > 1.5.

(2)

Observe that f encodes two facts: all errors below 1.5
are considered negligible and large errors never weigh more
than c. The first reasons of this settings is that visual in-
spection showed that for most images, an error below 1.5 %
corresponds to a visually pleasing result. Of course this is
highly subjective, e.g. a missing limb from the segmentation
of a cow might be an error of 0.5 % but is visually unpleas-
ing, or an incorrectly segmented low-contrast area has an
error of 2 % but is visually not disturbing. A second reason
for having a lower limit on the errors considered significant
is that for most segmentation problem instances, it is hard
to define a single precise ground truth segmentation. This
is due to a number of factors including mixed pixels, shad-
ows etc. In their user study for evaluating the performance
of the Intelligent Scissors’s algorithm for image segmenta-
tion, Mortensen and Barrett (1998) compared the results of
their algorithm to those of a suite of users (including varia-
tion within them) rather than to a fixed “ground truth” that
was itself determined by a single user. The reason for having
a maximum weight of c is that users do not discriminate be-
tween two systems giving large errors. Thus errors of 50 %
and 55 % are equally penalized. Note that ideally we would
learn f (e) by performing a user study.

Due to runtime limitations for parameter learning, we do
want to run the robot user for not too many brushes (e.g.
maximum of 20 brushes). Thus we start by giving an initial
set of brush strokes (cyan/magenta in e.g. Fig. 2(c)) which
are used to learn the (initial) colour models. At the same
time, we want that most images reach a Hamming error level
of about 1.5 %. A run of the robot user for the GCA system
showed that this is possible (i.e. for 68 % of images the error
is less than 1.5 % and for 98 % less than 2.5 %). We also
confirmed that the initial static brush trimap does not affect
the learning (see Sect. 6) considerably.6

4 Evaluation Using a Robot User

We start the robot user from an initial fixed set of brush
strokes (the “static brush trimap”) such as the one shown

6We started the learning from no initial brushes and let it run for 60
brush strokes. The learned parameters were similar as with starting
from 20 brushes.

266 Int J Comput Vis (2012) 100:261–274

Fig. 2 An image from the database (a), tight trimap (b), robot user (red/blue) started from user scribbles (magenta/cyan) with segmentation
(black) after B = 20 strokes with 1.4 % error (c) and performance comparison of different robot users (d)

in Fig. 1(b). The robot user puts brushes in the form of
dots with a maximum fixed size (here 4 pixel radius). At
the boundary, the fixed brush size is scaled down, in order
to avoid that the brush straddles the boundary. Figure 2(c)
shows an example robot user interaction, where red/blue
dots are the robot user interactions and cyan/meganta are
fixed brushes.

Given the ground truth segmentation yk and the current
segmentation solution y, the robot user model is a policy
s : (xk,yk,uk,t ,y) �→ uk,t+1 which specifies which brush
stroke to place next. Here, uk,t denotes the user interaction
history of image xk up to time t . We have investigated vari-
ous options for this policy: (1) Brush strokes at random im-
age positions. (2) Brush strokes in the middle of the largest,
wrongly labelled region (center). For the second strategy, we
find the largest connected region of the binary mask, which
is given by the absolute difference between the current seg-
mentation and ground truth. We then mark a brush stroke at
the pixel which is inside this region and furthest away from
the boundary. This is motivated by the observation that users
find it hard to mark pixels at the boundary of an object be-
cause they have to be very precise.

We also tested user models which took the segmenta-
tion algorithm explicitly into account. This is analogous
to users who have learnt how the segmentation algorithm
works and thus interact with it accordingly. We consider the
user model which marks a circular brush stroke at the pixel
(1) with the lowest min marginal (SENSIT), inspired by Ba-
tra et al. (2010). (2) which results in the largest change in
labeling or which maximizes the size of the region of influ-
ence (ROI). (3) which decreases the Hamming error by the
biggest amount (Hamming). We consider each pixel as the
circle center and choose the one where the Hamming error
decreases most. This is very expensive, but in some respects
is the best solution.7 “Hamming” acts as a very “perfect
user”, who knows exactly which interactions (brush strokes)
will reduce the error by the largest amount. It is questionable
that a user is actually able to find that optimal position.

7Note, one could do even better by looking at two or more brushes after
each other and then selecting the optimal one. However, the solution
grows exponentially with the number look-ahead steps.

Figure 2(d) shows the performance of 5 different user
models (robot users) over a range of 20 brushes. The Ham-
ming error is used to measure the error (see Sect. 3.3), which
is averaged over all 50 images of our database. Here we used
the GCS system, since it is computationally infeasible to ap-
ply the (SENSIT; ROI; Hamming) user models on other in-
teraction systems. GCS allows for efficient computation of
solutions by dynamic graph cuts (Kohli and Torr 2005). In
the other systems, this is not possible, since unaries change
with every brush stroke, and hence we have to treat the sys-
tem as a black box.

As expected, the random user performs badly. Interest-
ingly the robot users which are guided by the energy (ROI,
SENSIT) also perform badly. This is in sharp contrast to
(Batra et al. 2010) where they use the system uncertainty
to guide the user scribbles. We conjecture that this phe-
nomenon is due to two primary factors. First, a scribble at
a position where the labelling is certain but wrong may pro-
vide more information to the algorithm than a scribble at a
position which is uncertain but wrong. Second, a number of
computer vision studies have shown that MRF models used
for image segmentation are misspecified i.e. the most prob-
able solutions under these models are not the ground truth
solutions (Szeliski et al. 2006).8 In such cases, providing in-
formation that reduces uncertainty of the model might not
move it towards the ground truth solution.

Both “Hamming” and “center” strategies for the robot
user are considerably better than the rest. It is interesting
to note that “center” is actually only marginally worse than
“Hamming”. It has to be said that for other systems, e.g.
GEO this conclusion might not hold, since e.g. GEO is sen-
sitive to the location of the brush stroke than a system based
on graph cut, as (Singaraju et al. 2009) has shown.

To summarize, “center” is a user strategy which is mo-
tivated from the point of view of a “system-unaware user”
(or “novice user”) and is computationally feasible. Indeed,
in Sect. 5 we will validate that this strategy correlates quite
well with real novice users. We conjecture that the reason

8This behaviour is also observed in our experiments. Note that after
each user interaction we obtain the global optimum of our current en-
ergy. Also, note that the energy changes with each user interaction.

Int J Comput Vis (2012) 100:261–274 267

is that humans tend to place their strokes in the center of
wrongly labeled regions. Also, “center” performed for GCS
nearly the same as the optimal strategy “Hamming”. Hence,
for the rest of the paper we always stick to the user “center”
which we call from here onwards our robot user. Note, that
the recent work of (Gulshan et al. 2010) has utilized a very
similar type of robot user. We would like to refer the inter-
ested reader to their webpage9 where code and an extend
dataset is available online.

5 Validating the Robot User

We conducted a user study to check our assumption that the
robot user is indeed related to a human “novice user” (de-
tails of user study are in Nickisch et al. 2009). We designed
an interface which exactly corresponds to the robot user in-
terface, i.e. where the only choice for the human user is to
select the position of the circular brush.

Our user study had 12 participants out of which 6 partic-
ipants were familiar with computer vision but had no back-
ground knowledge about the tested image segmentation al-
gorithms. The other 6 participants were computer literate but
did not have any expertise in computer vision. We asked
the participants to segment 10 randomly selected images
from our database, with each of our 3 systems (GCA, GC,
GCS) with reasonable parameters settings (see Nickisch et
al. 2009). For every new image, a system was randomly cho-
sen. We also confirmed that users did not train up for a par-
ticular system in the course of the study by asking for mul-
tiple segmentations of the same image.

Every user was shown the input image with some ini-
tial scribbles (see user interface in Fig. 3) and an initial ob-
ject outline computed with these scribbles shown as a line
of marching ants. Right next to the image we displayed the
same image after cutting out the foreground object using the
ground truth segmentation. The user was asked to refine the
initial segmentation result such that it matches this object
outline. To make sure that our analysis was not affected by
the choice of initial brush strokes, we created two different
set of initial brush strokes for the Grabcut images. The first
6 participants started with a solution obtained by applying
the brush stroke set 1, while the next 6 participants started
with solutions obtained from the brush stroke set 2.

For refining the object outline, the user could place circu-
lar brushes on the image (the radius of the circle was deter-
mined as in the robot user). Additionally, we automatically
switched between fg and bg (red and blue brush) by us-
ing the underlying ground truth segmentation information.
Hence, switching between the two brushes was not penal-
ized. The user could place a maximum of 20 brushes per

9http://www.robots.ox.ac.uk/~vgg/research/iseg/.

Fig. 3 The user interface for the user study

image. If he/she was satisfied with the result before, he/she
could press the “Next” button to go to the next image (see
Fig. 3).

For each image the segmentation outline was computed
with one of the three different segmentation algorithms
(GCA, GC or GCS) chosen randomly for each image (to
avoid any bias of the user towards an algorithm). We pre-
sented every image three times such that every algorithm
was applied once per image. Parameter settings for the three
algorithms were wi = 0, wβ = 1, and wc = 0.03 (GCS),
wc = 0.24 (GC), wc = 0.07 (GCA). These are reasonable
settings and for wc the same as the learned values in Ta-
ble 2(a) and 2(b).

Figure 4 depicts the segmentation error f (erb) with re-
spect to number of interactions. The results suggest a strong
similarity between the robot and the human users in that
the relative ordering of the performances of the segmenta-
tions systems is preserved. Notice that results from both user
groups (using brush strokes sets 1 and 2) are similar. We also
see that till about 7 brush strokes, the robot user and humans
perform quite similarly in terms of absolute error rate. How-
ever, after that the robot outperforms the human user and can
reach an error rate close to zero. One key difference, which
causes this effect, is that humans do stop early when they are
satisfied with the results. Hence, the pixel error in segmen-
tations obtained by human subjects flattens out with larger
amount of brush strokes and never reaches an error rate of
zero.

The final error Er (mean ± std.) averaged over all im-
ages and 6 human users from group 1 is 0.442 ± 0.090
(GCA), 0.610±0.113 (GC), 0.896±0.079 (GCS). It shows
a clear correlation with the error of our robot user: 0.00
(GCA), 0.112 (GC), 0.476 (GCS). The corresponding num-
bers for the group 2 experiment for human participants were:

http://www.robots.ox.ac.uk/~vgg/research/iseg/

268 Int J Comput Vis (2012) 100:261–274

Table 2 Optimal parameter values ± stdev. for different systems after line-search for each parameter individually

(a) System GCA.

Trimap wc wi wβ Test (Er)

dynamic brush 0.03± 0.03 4.31± 0.17 2.21± 3.62 1.00

static trimap 0.07± 0.09 4.39± 4.40 9.73± 7.92 1.04

static brush 0.22± 0.52 0.47± 8.19 3.31± 2.13 1.19

(b) System GC.

Trimap wc wi wβ Test (Er)

dynamic brush 0.24± 0.03 4.72± 1.16 1.70± 1.11 1.38

static trimap 0.07± 0.09 4.39± 4.40 4.85± 6.29 1.52

static brush 0.57± 0.90 5.00± 0.17 1.10± 0.96 1.46

Fig. 4 Comparison of the error rate f (erb) in segmentation results ob-
tained by the robot user and by 12 human subjects. The subjects were
divided into two groups of 6 each which started with segmentations
obtained using two different set of initial brush strokes. Results with
brush stroke set 1 are shown in the top row and with brush stroke set
2 are shown in the bottom row. The key point to note is that the rela-
tive rankings of the three different segmentation systems is exactly the
same under interactions by humans and those made by the robot user.
This result supports the case for the use of the robot user to evaluate
the performance of the segmentation systems. Also note that the results
under the two different sets of initial brush strokes are very similar

0.422 ± 0.237 (GCA), 0.871 ± 0.132 (GC), 1.055 ± 0.163
(GCS), and for the robot user were: 0.00 (GCA), 0.069
(GC), 0.296 (GCS).

We also analyzed where users place brush strokes in the
image and how this compares with the ‘center’ policy robot
user. For this analysis, we looked at all the brush strokes
made by the second group of 6 users to segment all images
using all segmentation algorithms. In total, there were 1404
brush strokes. Figure 5 shows the distance ds of each brush
stroke s from the boundary of the erroneous region and the
maximum distance possible dmax i.e. the distance of the cen-
ter of the erroneous region from its boundary. Here the erro-
neous region refers to the erroneous region in the segmen-
tation result before the brush stroke was made. That means
if all points are on the diagonal then the user would always
place it exactly in the center of the erroneous region. To get

Fig. 5 The figure compares the brush stroke locations of humans with
those of the ‘center-region’ robot. For every brush stroke made by 6
human subjects, we show its minimum distance ds from the boundary
of the erroneous region and its maximum possible value dmax

s which
is the minimum distance of the center of the erroneous region from its
boundary. Here the erroneous region refers to the erroneous region in
the segmentation result before the brush stroke was made

an overall sense of the trend, we looked at the average of the
ratio of ds

dmax
(0 means at the boundary and 1 in the center of

some erroneous region). The average ratios for the different
algorithms were: GCS:0.89, GC:0.83, and GCA:0.85.

5.1 Perceptual Accuracy Satisfaction Threshold

One of the most interesting issues in the development of an
intelligent interactive segmentation system is the level of
segmentation accuracy that satisfies users. To answer this
question, and to test the validity of our hypothesis that seg-
mentation errors below a particular threshold do not matter
(see Sect. 3.3) we looked at the level of accuracy at which
users pressed the “Next” button on the user interface. The
results are shown in Fig. 6. The results clearly show that
the “next presses” are peaked between 1–1.5 % pixel error,
which is consistent with the error metric chosen by us in
Sect. 3.3 for our automated scheme for the evaluation of the
different interactive systems under different users models.

Int J Comput Vis (2012) 100:261–274 269

Fig. 6 User satisfaction distribution over different segmentation error
rates. (a) The histogram shows the number of times a user was sat-
isfied with segmentation of particular pixel error. (b) The cumulative
distribution of the user satisfaction over solution accuracy

5.2 Measuring Interaction Effort

There has been little work on analyzing the time taken for
segmenting objects in images, or making particular brush
strokes. A notable exception is the study conducted by Vi-
jayanarasimhan and Grauman (2009) who tried to predict
the time taken by users to label complete images.

Our quantitative evaluation of the performance of differ-
ent interactive systems assumes that all interactions require
equal amount of effort. This is not necessarily the case for
segmentation systems which uses brush strokes to mark pix-
els as foreground or background. Brush strokes made near
the segmentation boundary require a lot more effort com-
pared to strokes which are made away from the boundary.
This is because the user had to make sure that the stroke
does not pass through the boundary. To test this hypothe-
sis, we analyzed the time taken by the user to generate any
brush stroke. The results of this study can be seen in Fig. 7. It

Fig. 7 The figure shows the time taken by the user to generate different
brush strokes which are at different distances from the true boundary
of the object in the image

can be seen that strokes made near the segmentation bound-
ary require significant more time labelling pixels on average
compared to strokes which were made farther away.

6 Learning by Line-Search

We will now address the problem of learning or estimating
the optimal parameters for different interactive segmenta-
tion systems. Systems with few parameters can be trained
by simple line-search. Our systems, GC, GCS, and GCA,
have 3 free parameters: wc,wi,wβ . Line-search is done by
fixing all but one free parameter wφ and simulating the user
interaction process for 30 different discrete values wφ,i of
the free parameter wφ over a predefined range. The optimal
value w∗

φ from the discrete set is chosen to minimize the

leave-one-out (LOO) estimate of the test error.10 Not only
do we prevent overfitting but we can also efficiently compute
the Jackknife estimator of the variance (Wasserman 2004,
ch. 8.5.1)—a measure of how certain the optimal parameter
is. We run this procedure for all three parameters individu-
ally starting from wc = 0.1, wi = 0, wβ = 1. These initial
settings are not very different to the finally learned values,
hence we conjecture that initialization is not crucial.11 One
important thing to notice is that our dataset was big enough
(and our parameter set small enough) as to not suffer from
over-fitting. We see this by observing that training and test
error rates are virtually the same for all experiments. In ad-
dition to the optimal value we obtain the variance for setting

10This is number-of-data-point-fold cross validation.
11However, compared to an exhaustive search over all possible joint
settings of the parameters, we are not guaranteed to find the global
optimum of the objective function.

270 Int J Comput Vis (2012) 100:261–274

Fig. 8 Line-search. We compare 3 different training procedures for in-
teractive segmentation: Static learning from a fixed set of user brushes,
static learning from a tight trimap and dynamic learning with a robot
user starting from a fixed set of user brushes. Error Er(± stdev.) for

two segmentation systems (GC/GCA) as a function of line-search pa-
rameters, here wc and wβ . The optimal parameter is shown along with
its Jackknife variance estimate (black horizontal bar)

this parameter. In rough words, this variance tells us, how
important it is to have this particular value. For instance, a
high variance means that parameters different from the se-
lected one, would also perform well. Note, since our error
function (Eq. (2)) is defined for static and dynamic trimaps,
the above procedure can be performed for all three differ-
ent types of trimaps: “static trimap” (e.g. Fig. 1(c)), “static
brush” (e.g. Fig. 1(b)), “dynamic brush”.

In the following we only report results for the two best
performing systems, GC and GCA. Table 2 summarizes all
the results, and Fig. 8 illustrates some results during train-
ing and test (more plots are in Nickisch et al. 2009). One can
observe that the three different trimaps suggest different op-
timal parameters for each system, and are differently certain
about them.

More importantly, we see that the test error is lower when
trained dynamically in contrast to static training. This val-
idates our conjecture that an interactive system has to be
trained in an interactive way.

Let us look closer at some learnt settings. For system
GCA and parameter wc (see Table 2(a) (first row), and
Fig. 8(a)) we observe that the optimal value in a dynamic
setting is lower (0.03) than in any of the static settings.
This is surprising, since one would have guessed that the
true value of wc lies somewhere in between the parame-
ters learned with a loose and very tight trimap. This shows
that the procedure in (Singaraju et al. 2009) is not neces-
sarily correct, where parameter are learnt by averaging the
performance from two static trimaps. Furthermore, neither
the static brush nor the static trimap can be used to guess the
settings of all parameters for a dynamic model. For instance,
the static “tight trimap” is a quite useful guidance for setting
wc, wi , but less useful for wβ .12 To summarize, conclusions
about the optimal parameter setting of an interactive system
should be drawn by a large set of interaction and cannot be
made by looking solely at a few (here two) static trimaps.

12Note, the fact that the uncertainty of the “tight trimap” learning is
high, gives an indication that this value can not be trusted very much.

Fig. 9 System comparison: Segmentation performance of 4 different
systems: GCA, GC, GCS and GEO using the robot user. Error erb av-
eraged over all images

For the sake of completeness, we have the same num-
bers for the GC system in Table 2(b). We see the same
conclusions as above. One interesting thing to notice here
is that the pairwise terms (esp. wc) are chosen higher than
in GCA. This is expected, since without post-processing a
lot of isolated islands may be present which are far away
from the true boundary. So post-processing automatically
removes these islands. The effect is that in GCA the pairwise
terms can now concentrate on modeling the smoothness on
the boundary correctly. However, in GC the pairwise terms
have to additionally make sure that the isolated regions are
removed (by choosing a higher value for the pairwise terms)
in order to compensate for the missing post-processing step.

It is interesting to note that for the error metric f (erb) =
erb , we get slightly different values (full results in Nickisch
et al. 2009). For instance, we see that wc = 0.07 ± 0.07 for
GCA with our active user. This is not too surprising, since
it says that larger errors are more important (this is what
f (erb) = erb does). Hence, it is better to choose a larger
value of wc.

System Comparison Figure 9 shows the comparison of 4
systems using our robot user. The systems GC, and GCA
where trained dynamically. The order of the performances
is as expected; GCA is best, followed by GC, then GCS,
and GEO. GEO performs badly, since it does no regulariza-
tion (i.e. smoothing) at the boundary, compared to the other

Int J Comput Vis (2012) 100:261–274 271

systems. This corresponds with the findings in (Gulshan et
al. 2010) on a different dataset.

7 Max-Margin Learning

The line-search method used in Sect. 6 can be used for
learning models with few parameters only. Max-margin
methods (Tsochantaridis et al. 2004; Taskar et al. 2004;
Szummer et al. 2008) deal which models containing large
numbers of parameters and have been used extensively in
computer vision. However, they work with static training
data and cannot be used with an active user model. In this
Section, we show how the traditional max-margin parameter
learning algorithm can be extended to incorporate an active
user.

The structure of this section is as follows. After review-
ing the static case of max-margin learning (Sect. 7.1), we
describe the dynamic case (Sect. 7.2) where the user is in
the loop. The optimization of the dynamic case is very chal-
lenging and we suggest two different heuristic techniques in
Sect. 7.3. The latter one, optimization with strategies, is a
simple and practical solution which is used in the experi-
mental part in Sect. 7.4.

7.1 Static SVMstruct

Our exposition builds heavily on (Szummer et al. 2008) and
the references therein. The SVMstruct framework (Tsochan-
taridis et al. 2004) allows to adjust linear parameters w of the
segmentation energy Ew(y,x) (Eq. (1)) from a given train-
ing set {xk,yk}k=1..K of K images xk ∈ R

n and ground truth
segmentations13 y ∈ Y := {0,1}n by balancing between em-
pirical risk

∑
k �(yk, f (xk)) and regularisation by means of

a trade-off parameter C. A (symmetric) loss function14 � :
Y × Y → R+ measures the degree of fit between two seg-
mentations y and y∗. The current segmentation is given by
y∗ = arg miny Ew(y,x). We can write the energy function as
an inner product between feature functions ψi(y,x) and the
parameter vector w: Ew(y,x) = w
ψ(y,x). With the two
shortcuts δψk

y = ψ(xk,y) − ψ(xk,yk) and �k
y = �(y,yk),

the margin rescaled objective (Taskar et al. 2004) reads

min
ξ≥0,w

o(w) := 1

2
‖w‖2 + C

K
1
ξ

sb.t. min
y∈Y \yk

{
w
δψk

y − �k
y
} ≥ −ξk ∀k.

(3)

13We write images of size (nx ×ny ×nc) as vectors ∈ R
n, n = nxnynz

for simplicity. All involved operations respect the 2d grid structure ab-
sent in general n-vectors.
14We use the Hamming loss �H (y∗,yk) = 1
|yk − y∗|.

In fact, the constrained convex function o(w) can be
rewritten as a unconstrained function

ô(w) = 1

2
‖w‖2 + max

(
0, max

y∈Y \yk

{
�k

y − w
δψk
y
})

,

which is a sum of a quadratic regulariser and a maximum
over an exponentially sized set of linear functions each
corresponding to a particular segmentation y. Which en-
ergy functions fit under the umbrella of SVMstruct? The
cutting-planes approach (Tsochantaridis et al. 2004) to solve
Eq. (3), only requires efficient and exact computation of
arg miny Ew(y) and arg miny=yk Ew(y) − �(y,yk). For the
scale of images i.e. n > 105, submodular energies of the
form Ew(y) = y
Fy + b
y, Fij ≥ 0, bi ∈ R allow for ef-
ficient minimisation by graph cuts. As soon as we include
connectivity constraints as in Eq. (1), we can only approxi-
mately train the SVMstruct. However some theoretical prop-
erties carry over empirically (Finley and Joachims 2008).

7.2 Dynamic SVMstruct with “Cheating”

The SVMstruct does not contain the user interaction part a
priori. Therefore, we add a third term to the objective that
measures the amount of user interaction ι where uk ∈ {0,1}n
is a binary image indicating whether the user provided the
label of the corresponding pixel or not. One can think of uk

as a partial solution fed into the system by the user brush
strokes. In a sense, uk implements a mechanism for the
SVMstruct to cheat, because only the unlabeled pixels have
to be segmented by our arg miny Ew(y) procedure, whereas
the labeled pixels stay clamped. In the optimisation prob-
lem, we also have to modify the constraints such that only
segmentations y compatible with the interaction uk are taken
into account. Our modified objective is given by:

min
ξ≥0,w,uk

o(w,U) := 1

2
‖w‖2 + C

K
1
ξ+ι

sb.t. min
y∈Y |uk \yk

{
w
δψk

y − �k
y
} ≥ −ξk, ι ≥ a
uk ∀k.

(4)

For simplicity, we choose the amount of user interac-
tion or cheating ι to be the maximal a-reweighted number
of labeled pixels ι = maxk

∑
i ai |uk

i |, with uniform weights
a = a · 1. In practice we should use different weights for
different interactions (as explained in Sect. 5.2).

Other formulations based on the average rather than on
the maximal amount of interaction proved feasible but less
convenient. We denote the set of all user interactions for all
K images xk by U = [u1, ..,uK]. The compatible label set
Y |uk = {0,1}n is then given by {ŷ ∈ Y |uk

i = 1 ⇒ ŷi = yk
i }

where yk is the ground truth labeling. Note that o(w,U) is
convex in the weights w for all values of U ∈ {0,1}n×K ,

272 Int J Comput Vis (2012) 100:261–274

hence the global minimiser w∗
U = arg minw o(w,U) can effi-

ciently be computed by the cutting-planes algorithm. How-
ever the dependence on uk is horribly difficult—we have to
find the smallest set of brush strokes leading to a correct
segmentation. Geometrically, setting one uk

i = 1 halves the
number of possible labellings and therefore removes half
of the label constraints. The problem (Eq. (4)) can be re-
interpreted in different ways:
A modified energy Ẽw,v(y) = Ew(y) + ∑

i∈V uk
i φi(yi, y

k
i)

with cheating potentials φi(yi, y
k
i) := ζ |yi − yk

i | where the
constant ζ is sufficiently large 0 � ζ < ∞ allows to treat
the SVMstruct with cheating as an ordinary SVMstruct with
a modified energy function Ẽw,v(y) and an extended weight
vector w̃ = [w;u1; ..;uK].
A second (but closely related) interpretation starts from the
fact that the true label yk can be regarded as a feature vec-
tor15 of the image xk . Therefore, it is feature selection in a
very particular feature space. There is a direct link to multi-
ple kernel learning—a special kind of feature selection.

7.3 Optimisation—Two Strategies

We explored two approaches to minimise o(w,U): (i) coor-
dinate descent and (ii) relaxation by strategies. Note, that we
evaluate experimental (Sect. 7.4) only the latter approach.

The idea of (block) coordinate descent is very simple:
minimise one variable (block) at a time; upon convergence,
a local minimum is reached. In our case, we interleave
running cutting planes w ← w∗

U and label descent16 U ←
U+∂o/∂U using the discrete gradient of the pseudo boolean
map U �→ o(w,U). Even though the gradient ∂o/∂U can
be evaluated efficiently,17 we empirically observed that the
coupling between the pixels in U is extremely strong allow-
ing small steps only.18

Imitating the user, who incrementally builds up the op-
timal “cheating” U by drawing foreground and background
brush strokes, we grow U over time t such that |Ut | < |Ut+1|
that is, we disallow removal of already known labels. At ev-
ery stage of interaction, a user acts according to a strategy
s : (uk,t ,xk,yk,y,w) �→ uk,t+1. The notion of strategy (or
policy) is also at the core the robot user idea. Assuming a

15It is in fact the most informative feature with corresponding predictor
given by the identity.
16To our knowledge, there is no simple graph cut like algorithm to do
the minimisation in U all at once.
17The cost is K runs of dynamic graphcuts of size n, though.
18In the end, we can only safely flip a single pixel uk

i at a time to
guarantee descent.

fixed strategy s, Eq. (4) becomes

min
ξ≥0,w

o(w, T) := 1

2
‖w‖2 + C

K
1
ξ+ι

sb.t. min
y∈Y |uk,T \yk

{
w
δψk

y − �k
y
} ≥ −ξk ∀k

ι ≥ a
uk,T , uk,T = sT
(
xk,yk,w

) ∀k,

(5)

where we denote repeated application of the strategy s by
sT (xk,yk,w) = ©T −1

t=0 s(uk,t ,xk,yk,w) and by © the func-
tion concatenation operator. This is a relaxation in two ways:
On the one hand U grows monotonically and on the other
hand the globally optimal strategy is replaced by the proxy
s—our robot user. The optimisation of Eq. (5) works by
starting at t = 0 with uk,0 the initial brush strokes. In ev-
ery step t , we compute wt ← w∗

Ut using cutting planes and
update the cheating using the strategy uk,t+1 ← s(uk,t , ..) of
the robot user. As a result, we obtain a sequence of weights
wt with wT being the solution to Eq. (5). In summary, the
above procedure can be seen as iteratively applying static
SVMstruct, where after each iteration the robot user places
a new brush stroke, based on the current results.

The overall computational cost is T times the cost of an
individual cutting plane optimisation.

7.4 Experiments

We now report the results of our experiments with the dy-
namic SVMstruct algorithm i.e. the optimization of Eq. (5)
using strategies. We ran our algorithm on K = 200 artifi-
cial images of size 40 × 40 pixels generated by sampling
the fg/bg HSV components from independent Gaussian pro-
cesses with length scales � = 3.5 pixels. They were com-
bined by a smooth α-map and then squashed through a sig-
moid transfer function (see Fig. 10(c)). We use a restricted
GCS system with three parameters (wi,wc,wu), where wu

is the weight for the unary term.19 Given the ground truth
segmentation we fit a Gaussian mixture model for fore- and
background which is not updated during the segmentation
process. We used two pairwise potentials (Ising wi and con-
trast wc), a weight on unaries (wu) and the random robot
user with B = 50 strokes to train SVMstruct (C = 100, 4-
neighborhood) on 50 images, keeping 150 test images. Fig-
ure 10b shows, how the weights of the linear parameters
varies over time. Edge-blind smoothing (wi) is switched off,
whereas edge-aware smoothing becomes stronger (wc). Our
experiments indicate that the Hamming error on the test set
decreases more with dynamically learnt weights.

19We did not fix wu to 1, as before, to give the system the freedom to
set it to 0.

Int J Comput Vis (2012) 100:261–274 273

Fig. 10 Max-margin stat/dyn: (a) Segmentation performance using
GCS when parameters are either statically or dynamically learnt.
(b) Average evolution of weights w = (wu,wi,wc) (GMM unary,

Ising, contrast) during the optimisation. Static parameters refer to the
case where B = 0, and dynamically learned parameters are for B = 50.
(c) Sample of the data set used

8 Conclusion

This paper addressed the problem of evaluating and learn-
ing interactive intelligent systems. We performed a user
study for evaluating different interactive segmentation sys-
tems which provided us with new insights on how users
perceive segmentation accuracy and interaction effort. We
showed these insights can be used to build a robot user
which can be used to train and evaluate interactive systems.

We showed how a simple line-search algorithm can
be used to find good parameters for different interactive
segmentation systems under a user interaction model. We
also compared the performance of the static and dynamic
user interaction models. With more parameters, line-search
becomes infeasible, leading naturally to the max margin
framework. To overcome this problem, we introduced an
extension to SVMstruct which incorporates user interaction
models, and showed how to solve the corresponding optimi-
sation. We obtained promising results on a small simulated
dataset. The main limitation of the max margin framework
is that crucial parts of state-of-the-art segmentation systems
(e.g. GCA) cannot be handled. These parts include (1) non-
linear parameters, (2) higher-order potentials (e.g. enforcing
connectivity) and (3) iterative updates of the unary poten-
tials.

The evaluation and learning of intelligent interactive sys-
tems has been relatively ignored by the machine learning
and computer vision communities. With this paper, our aim
is to inspire discussion and new research on this very impor-
tant problem.

Acknowledgement Christoph Rhemann was supported by the Vi-
enna Science and Technology Fund (WWTF) under project ICT08-
019.

References

amazon.com (2010). Amazon mechanical turk. https://www.mturk.
com

Bai, X., & Sapiro, G. (2007). A geodesic framework for fast interactive
image and video segmentation and matting. In ICCV.

Batra, D., Kowdle, A., Parikh, D., Luo, J., & Chen, T. (2010). iCoseg:
interactive co-segmentation with intelligent scribble guidance. In
CVPR.

Blake, A., Rother, C., Brown, M., Perez, P., & Tor, P. (2004). Inter-
active image segmentation using an adaptive GMMRF model. In
ECCV.

Blake, A., Kohli, P., & Rother, C. (2011). Markov random fields for
vision and image processing. Cambridge: MIT Press.

Boykov, Y., & Jolly, M. (2001). Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images. In
ICCV.

Duchenne, O., Audibert, J. Y., Keriven, R., Ponce, J., & Ségonne, F.
(2008). Segmentation by transduction. In CVPR.

Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J., & Zisser-
man, A. (2009). http://www.pascal-network.org/challenges/VOC

Finley, T., & Joachims, T. (2008). Training structural SVMs when ex-
act inference is intractable. In ICML.

Grady, L. (2006). Random walks for image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 28, 1–17.

Gulshan, V., Rother, C., Criminisi, A., Blake, A., & Zisserman, A.
(2010). Geodesic star convexity for interactive image segmenta-
tion. In CVPR.

Kohli, P., Ladicky, L., & Torr, P. (2008). Robust higher order potentials
for enforcing label consistency. In CVPR.

Kohli, P., & Torr, P. (2005). Efficiently solving dynamic MRFs using
graph cuts. In ICCV.

Li, Y., Sun, J., Tang, C. K., & Shum, H. Y. (2004). Lazy snapping. In
SIGGRAPH (Vol. 23).

Liu, J., Sun, J., & Shum, H. Y. (2009). Paint selection. In SIGGRAPH.
McGuinness, K., & O’Connor, N. E. (2010). A comparative evalua-

tion of interactive segmentation algorithms. Pattern Recognition,
43(2), 434–444.

McGuinness, K., & O’Connor, N. E. (2011). Toward automated evalu-
ation of interactive segmentation. In CVIU.

Mortensen, E. N., & Barrett, W. A. (1998). Interactive segmentation
with intelligent scissors. In Graphical models and image process-
ing.

Nickisch, H., Kohli, P., & Rother, C. (2009). Learning an interactive
segmentation system (Tech. rep.). http://arxiv.org/abs/0912.2492

Nickisch, H., Rother, C., Kohli, P., & Rhemann, C. (2010). Learning
and evaluating interactive segmentation systems. In ICVGIP.

Nowozin, S., & Lampert, C. H. (2009). Global connectivity potentials
for random field models. In CVPR.

Rother, C., Bordeaux, L., Hamadi, Y., & Blake, A. (2006). Autocol-
lage. ACM Transactions on Graphics, 25(3), 847–852.

Rother, C., Kolmogorov, V., & Blake, A. (2004). “GrabCut”—
interactive foreground extraction using iterated graph cuts. In
SIGGRAPH.

https://www.mturk.com
https://www.mturk.com
http://www.pascal-network.org/challenges/VOC
http://arxiv.org/abs/0912.2492

274 Int J Comput Vis (2012) 100:261–274

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008).
Labelme: a database and web-based tool for image annotation.
International Journal of Computer Vision, 77, 157–173.

Singaraju, D., Grady, L., & Vidal, R. (2009). P-brush: Continuous val-
ued MRFs with normed pairwise distributions for image segmen-
tation. In CVPR.

Sorokin, A., & Forsyth, D. (2008). Utility data annotation with amazon
mechanical turk. In Internet vision workshop at CVPR.

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V.,
Agarwala, A., Tappen, M., & Rother, C. (2006). A comparative
study of energy minimization methods for Markov random fields.
In ECCV.

Szummer, M., Kohli, P., & Hoiem, D. (2008). Learning CRFs using
graph cuts. In ECCV.

Taskar, B., Chatalbashev, V., & Koller, D. (2004). Learning associative
Markov networks. In ICML.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004).
Support vector learning for interdependent and structured output
spaces. In ICML.

Vicente, S., Kolmogorov, V., & Rother, C. (2008). Graph cut based
image segmentation with connectivity priors. In CVPR.

Vijayanarasimhan, S., & Grauman, K. (2009). What’s it going to cost
you?: Predicting effort vs. informativeness for multi-label image
annotations. In CVPR (pp. 2262–2269).

Vijayanarasimhan, S., & Grauman, K. (2011a). Cost-SENSITive ac-
tive visual category learning. International Journal of Computer
Vision, 91(1), 24–44.

Vijayanarasimhan, S., & Grauman, K. (2011b). Large-scale live active
learning: Training object detectors with crawled data and crowds.
In CVPR.

von Ahn, L., & Dabbish, L. (2004). Labeling images with a computer
game. In SIGCHI (pp. 319–326).

Wasserman, L. (2004). All of statistics. Berlin: Springer.

	User-Centric Learning and Evaluation of Interactive Segmentation Systems
	Abstract
	Introduction
	Organization of the Paper

	Evaluating Interactive Systems
	Static Interactions
	User Studies
	Evaluation Using Crowdsourcing
	Evaluation with an Active User Model

	Interactive Segmentation Systems: Problem Setting
	The Segmentation Systems
	Datasets for Evaluation
	The Error Measure

	Evaluation Using a Robot User
	Validating the Robot User
	Perceptual Accuracy Satisfaction Threshold
	Measuring Interaction Effort

	Learning by Line-Search
	System Comparison

	Max-Margin Learning
	Static SVMstruct
	Dynamic SVMstruct with "Cheating"
	Optimisation-Two Strategies
	Experiments

	Conclusion
	Acknowledgement
	References

