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Abstract
Objective The aim is to evaluate whether smart worklist prioritization by artificial intelligence (AI) can optimize the radiology
workflow and reduce report turnaround times (RTATs) for critical findings in chest radiographs (CXRs). Furthermore, we
investigate a method to counteract the effect of false negative predictions by AI—resulting in an extremely and dangerously
long RTAT, as CXRs are sorted to the end of the worklist.
Methods We developed a simulation framework that models the current workflow at a university hospital by incorporating
hospital-specific CXR generation rates and reporting rates and pathology distribution. Using this, we simulated the standard
worklist processing “first-in, first-out” (FIFO) and compared it with a worklist prioritization based on urgency. Examination
prioritization was performed by the AI, classifying eight different pathological findings ranked in descending order of urgency:
pneumothorax, pleural effusion, infiltrate, congestion, atelectasis, cardiomegaly, mass, and foreign object. Furthermore, we
introduced an upper limit for the maximum waiting time, after which the highest urgency is assigned to the examination.
Results The average RTAT for all critical findings was significantly reduced in all prioritization simulations compared to the
FIFO simulation (e.g., pneumothorax: 35.6min vs. 80.1min; p < 0.0001), while the maximumRTAT for most findings increased
at the same time (e.g., pneumothorax: 1293 min vs 890 min; p < 0.0001). Our “upper limit” substantially reduced the maximum
RTAT in all classes (e.g., pneumothorax: 979 min vs. 1293 min/1178 min; p < 0.0001).
Conclusion Our simulations demonstrate that smart worklist prioritization by AI can reduce the average RTAT for critical
findings in CXRs while maintaining a small maximum RTAT as FIFO.
Key Points
• Development of a realistic clinical workflow simulator based on empirical data from a hospital allowed precise assessment of
smart worklist prioritization using artificial intelligence.

• Employing a smart worklist prioritization without a threshold for maximum waiting time runs the risk of false negative
predictions of the artificial intelligence greatly increasing the report turnaround time.

•Use of a state-of-the-art convolution neural network can reduce the average report turnaround time almost to the upper limit of
a perfect classification algorithm (e.g., pneumothorax: 35.6 min vs. 30.4 min).
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Abbreviations
AI Artificial intelligence
CNN Convolution neural network
CXR Chest X-ray
FIFO First-in, first-out
FNR False negative rate
FPR False positive rate
RTAT Report turnaround time

Introduction

Growing radiologic workload, shortage of medical experts,
and declining revenues often lead to potentially dangerous
backlogs of unreported examinations, especially in publicly
funded healthcare systems. With the increasing demand for
radiological imaging, the continuous acceleration of image
acquisition, and the expansion of teleradiological care, radiol-
ogists are nowadays working under increasing time pressure,
which cannot be compensated by improving RIS-PACS inte-
gration or use of speech recognition software [1].

Delayed communication of critical findings to the referring
physician bears the risk of delayed clinical intervention and
impairs the outcome of medical treatment [2–4], especially in
cases requiring immediate action, e.g., tension pneumothorax
or misplaced catheters. For this reason, the Joint Commission
defined the timely reporting of critical diagnostic results as an
important goal for patient safety [5].

Many institutions still process their examination worklists
following the first-in, first-out (FIFO) principle. The ordering
physician’s urgency information is often incomplete or pre-
sented as ambiguous and ill-defined priority level, such as
“critical,” “ASAP,” or “STAT” [6, 7].

Artificial intelligence (AI) methods such as convolutional
neural networks (CNNs) offer promising options to streamline
the clinical workflow. Automated disease classification can
enable real-time prioritization of worklists and reduce the re-
port turnaround time (RTAT) for critical findings [8]. For
chest X-rays (CXRs), a potential benefit of real-time triaging
by CNNs has been reported by Annarumma et al [9], but they
focused mostly on the development of an AI system without a
real clinical simulation and do not present the maximum
RTAT.

The benefits of smart worklist prioritization need to be
discussed on the basis of not only the average RTAT but
also the maximum RTAT. One problem with using AI
methods for smart worklist prioritization is that it can and
does happen that a critical finding is “overlooked” by the
AI—i.e., the false negative rate (FNR) is not zero. The
higher the FNR, the more likely it is that individual exam-
inations with critical findings will be sorted to the end of the
worklist, risking delayed treatment.

In this work, we simulate multiple smart worklist prioriti-
zation methods for CXR in a realistic clinical setting, using
empirical data from the University Medical Center Hamburg-
Eppendorf (UKE). We develop a realistic simulation frame-
work and evaluate whether AI can reduce RTAT for critical
findings by using smart worklist prioritization instead of the
standard FIFO sorting. Furthermore, we propose a
thresholding method for the maximum waiting time to reduce
the effect of false negative predictions by AI.

Materials and methods

Convolutional neural network architecture and
training

Based on previous works [10, 11], we employed a tailored
ResNet-50 architecture with a larger input size of 448 × 448.
Furthermore, we preprocessed each CXR using two methods
before training (i.e., lung field cropping and bone suppres-
sion); as shown in earlier experiments, the highest average
AUC value is achieved by combining both methods in an
ensemble [11]. We pre-trained our model on the publicly
available ChestX-ray14 dataset [12] and, after replacing the
last dense layer of the converged model, we fine-tuned it on
the opensource Open-i dataset [13]. Two expert radiologists
(i.e., 5 and 19 years of CXR reporting) annotated a revised
Open-i dataset (containing 3125 CXRs) regarding eight find-
ings [11]: pneumothorax, congestion, pleural effusion, infil-
trate, atelectasis, cardiomegaly, mass, foreign object.

Due to the importance of pneumothorax detection and the
low number of cases with “pneumothorax” (n = 11) in Open-i,
we used the specifically trained and adapted ResNet-50 model
of Gooßen et al [14] for this finding. Both datasets include
different degrees of clinical manifestation for each finding.

Our final model therefore includes two separate CNNs and
both process the frontal CXR. The two CNNs obtained the
highest average AUC value (Fig. 1) in previous experiments
compared to different network architectures.

The average inference time per image is about 21 ms with a
GPU (Nvidia GTX 1080) and 351 ms with a CPU (Intel Xeon
E5-2620 v4; 8 cores). Both options add a negligible overhead
to the reporting process.

Pathology triage

For triage, a ranking of the pathologies was defined by two
experienced radiologists (Table 1), reflecting the urgency for
clinical action. As our annotations did not include different
degrees of pathology manifestation, only the presence of a
pathology was considered for the prioritization. Furthermore,
the impact of different pathology combinations was not
considered.
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Workflow simulation

To evaluate the clinical effect of a CXR worklist rearrange-
ment by AI under realistic conditions, we analyzed the current
workflow in the radiology department of the University
Medical Center Hamburg-Eppendorf and transferred this data
into a computer simulation (Fig. 2). We designed a model
consisting of four main parts: firstly, a discrete distribution
of how often CXRs are generated; secondly, the department-
specific disease prevalence for the eight findings to assign
labels to the CXRs; thirdly, the performance for all eight find-
ings of a state-of-the-art CNN to classify each CXR; fourthly,
a second discrete distribution of how fast a radiologist final-
izes a CXR report.

By monitoring the CXR acquisition and reporting process
of 1408 examinations in total, we were able to extract a dis-
crete distribution of the acquisition and reporting times of
subsequent CXRs to calculate the RTAT [15]. The
department-specific distribution of pathologies was analyzed
by manually annotating all eight findings in 600 CXRs.

To simulate the clinical workload throughout the day, a
model of a CXR machine was developed, constantly

generating new examinations which fill up a worklist. The
generation process was modeled using the discrete distribu-
tion of our acquisition time analysis (Fig. 3) including all
effects, such as different patient frequency during day and
night.

Thereafter, each generated image is assigned zero or up to
eight pathologies, based on the a-priority probabilities derived
from the disease prevalence in the hospital.

Finally, a model of a radiologist was set up, simultaneously
working through the worklist by reporting CXRs and with a
speedmatching our CXR reporting time analysis.We sampled
the reporting speed from our discrete distribution (Fig. 4) that
included not only the raw reporting speed for a CXR but also
other factors including pauses or interruptions due to phone
calls.

This simulation models the current FIFO reporting and is
therefore similar to the current clinical workflow. For the
smart worklist prioritization, we included our AI model direct-
ly after the CXR generation. The AI model predicts for each
CXRwhether a finding is present or not before it is sorted into
the worklist.

By automatically predicting the presence of all eight path-
ological findings, an urgency level can be assigned according
to Table 1. Depending on the estimated level, the image is
inserted into the existing worklist, taking prior images with a
similar or higher level into account. The rearranged worklist is
processed by the same radiologist model as in the FIFO
simulation.

To counteract the result of false negative predictions (i.e.,
sorting positive examinations to the end of the worklist), we
propose a thresholding of the maximumwaiting time. After an
examination is longer than this maximum waiting time in the
worklist, it is assigned with the highest priority and moved to
the front of the worklist. While this should help to reduce the
problem caused by false negative predictions (i.e., dangerous-
ly long maximum RTATs), it will also counteract our original
goal of reducing the average RTAT for critical findings.

All methods were tested using a Monte Carlo simulation
over 11,000 days with 24 h of clinical routine, covering the
generation of about 1,000,000 CXRs. Furthermore, the

Table 1 Finding prevalence in chest X-rays at the university hospital
(approximation by 600 samples from August 2016 to February 2019).
The table is ordered by finding urgency as defined by two expert
radiologists

Finding Total count Prevalence (%)

Pneumothorax 23 3:8 23
600

� �

Congestion 124 20:7 124
600

� �

Pleural effusion 236 39:3 236
600

� �

Infiltrate 100 16:7 100
600

� �

Atelectasis 124 20:7 124
600

� �

Cardiomegaly 117 19:5 117
600

� �

Mass 38 6:3 38
600

� �

Foreign object 298 49:7 298
600

� �

Normal 186 31:0 186
600

� �

Fig. 1 Receiver operating
characteristics of the artificial
intelligence algorithm for all eight
different findings. We show the
receiver operation curve and
calculated the area under the
receiver operation curve (AUC)
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worklist was completely processed to zero once every 24 h in
all simulations. In our evaluation, we compared the average
and the maximum RTAT of the simulations.

Results

Pathology distribution

The analysis of pathology distribution at the UKE was
extracted by manually annotating 600 CXR reports from
August 2016 to February 2019 by an expert radiologist
(i.e., 5 years of CXR reporting). These CXRs include all
kinds of study types and different degrees of disease man-
ifestation. Due to a mainly stationary patient collective
from a large care hospital (i.e., larger institution with

more than 1000 beds), the portion of CXR without path-
ological findings was only 31%. The prevalence of the
most critical finding “pneumothorax” was around 3.8%.
Results are demonstrated in Table 1.

CXR generation and reporting time analysis

We used the metadata of 1408 examinations (i.e., including all
kinds of CXR studies) from the UKE to determine a discrete
distribution of CXR generation and a radiologist’s reporting
speed. The examinations were from two different and non-
consecutive weeks from Monday 00:00 AM until Sunday
00:00 PM. For CXR generation speed, we used the creation
timestamp of two consecutive CXRs to calculate the delta be-
tween their creations. The delta represents the acquisition rate
of CXRs at the institution. We employed the same method for

Fig. 2 Workflow simulation. A
chest X-ray (CXR) machine is
constantly generating CXRs. To
each CXR, zero or up to eight
findings are assigned. CXRs are
either sorted into the worklist
chronologically (first-in, first-out;
FIFO) or according to the urgency
based on the prediction by
artificial intelligence (PRIO).
Finally, worklists are processed
by a virtual radiologist

Fig. 3 Discrete distribution of
chest X-ray (CXR) generation
speed. The X-axis shows the day
time in 24-h format and the Y-
axis shows the calculated time
deltas. The histogram in X- and
Y-direction is shown in green
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the reporting speed. Here, we used the report finalization
timestamp to determine the delta between two CXRs.
Afterwards, we removed all deltas greater than 2 h 30 min, to
ensure outliers are only found in one of the two distributions.

Hospital’s report turnaround time analysis

The average RTAT for a CXR, measured over two different
and non-consecutive weeks (1408 examinations), was 80 min
with a range between 1 and 1041 min. Assuming that a CXR
report by an experienced radiologist will only take several
minutes, this range in reporting time can be explained by
different external influences, such as night shifts, change of
shifts, working breaks, or backlogs.

Selecting CNN operation point

Before running our workflow experiments, we evaluated in an
initial experiment the optimal operation point for our CNN to
reduce the average RTAT.

When employing CNN multi-label classification, a thresh-
old for every pathology must be defined in order to derive a
binary classification (i.e., finding present or not) from the
continuous response of the model. This corresponds to the
selection of an operation point on the ROC curve. While an
exhaustive evaluation of different thresholds for all patholo-
gies is computationally prohibitive, we focused on pneumo-
thorax only (the most critical finding in our setting). Here, we
estimated the average RTAT for different operating points by
sampling the ROC curve at different false positive rates
(FPRs).

As shown in Fig. 5, higher FPR reduces the effect of smart
worklist prioritization to almost zero—i.e., almost all exami-
nations are rated urgent—while the other extreme (i.e., low)
FPR can have no effect either, if almost all images are rated
non-urgent.

Figure 5 also shows that the optimal operation point to
reduce the average RTAT is at a FPR of 0.05. For this oper-
ation point, we show in Table 2 the corresponding true posi-
tive, false negative, and true negative rates.

As shown in Table 2, the optimal operation point to reduce
the average RTAT still has a moderate false negative rate
(FNR) of around 0.20 for most findings. The higher the
FNR, the more likely it is that individual examinations with
critical findings will be sorted to the end of the worklist.
Hence, we selected a second operation point with a low
FNR of 0.05 to evaluate if this can help to reduce the maxi-
mum RTAT. Table 2 shows the corresponding false positive,
true negative, and true positive rates.

Workflow simulations

Figure 6 summarizes the effect of all four simulations (i.e.,
FIFO, Prio-lowFNR, Prio-lowFPR, Prio-MAXwaiting) on
the RTAT. For the simulation Prio-lowFPR and Prio-
MAXwaiting, we used the optimal operation point to reduce
the average RTAT as shown in Table 2.

The average RTAT for critical findings was significantly
reduced in the Prio-lowFPR simulation compared to that in
the FIFO simulation—e.g., pneumothorax: 35.6 min vs.
80.1 min, congestion: 45.3 min vs. 80.5 min, pleural effusion:
54.6 min vs. 80.5 min. As expected, an increase of the average
RTAT was only reported for normal examinations with a sig-
nificant increase of the average RTAT from 80.2 to 113.9 min.
At the same time, however, the maximum RTAT in the Prio-
lowFPR simulation increased compared to that in the FIFO
simulation for all eight findings (e.g., pneumothorax:
1178 min vs. 890 min), as some examinations were predicted
as false negative and sorted to the end of the worklist. The low
FNR of 0.05 in Prio-lowFNR did not help to reduce the max-
imum RTAT (e.g., pneumothorax: 1293 min vs. 1178 min).

Fig. 4 Discrete distribution of
chest X-ray (CXR) reporting
times by radiologists. The X-axis
shows the day time in 24-h format
and the Y-axis shows the
calculated time deltas between
two CXR reports. The histogram
in X- and Y-direction is shown in
green
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In the Prio-MAXwaiting simulation, we countered the false
negative prediction problem by using a maximum waiting
time and reduced the maximum RTAT for most findings
(e.g., pneumothorax from 1178 to 979 min). While, the aver-
age RTAT was only slightly higher than in the Prio-lowFPR
simulation (e.g., pneumothorax: 38.5 min vs. 35.6 min).

Finally, we also simulated the upper limit for a smart
worklist prioritization by virtually employing a perfect classi-
fication algorithm (Perfect) with a true positive and true neg-
ative rate of 1. Table 3 shows the comparison with the other
four simulations. For pneumothorax, the Prio-MAXwaiting
average RTAT is only 8.3 min slower compared to the
Perfect simulation while FIFO is 49.8 min slower.

Statistical analysis

The predictive performance of the CNN was assessed by
using the area under the receiver operating characteristic curve

(AUC). The shown AUC results are averaged over a tenfold
resampling.

We usedWelch’s t test for the significant assessment of our
smart worklist prioritization. First, we simulated a null distri-
bution for the RTAT where examinations are sorted by the
FIFO principle (i.e., random order). Secondly, we simulated
an alternative distribution with worklist prioritization. Both
distributions are then used to determine whether the average
RTAT for each finding has changed significantly by calculat-
ing the p value with the Welch t test. Each distribution is
simulated with a sample size of 1,000,000 examinations and
the significant level is set to 0.05.

For all findings except “foreign object,” we calculated a
p < 0.0001, hence proving a significant change in the average
RTAT.

Discussion

Our clinical workflow simulations demonstrated that a signif-
icant reduction of the average RTAT for critical findings in
CXRs can be achieved by a smart worklist prioritization using
artificial intelligence. Furthermore, we showed that the prob-
lem of false negative predictions of an artificial intelligence
system can be significantly reduced by introducing a maxi-
mum waiting time.

This was proven in a realistic clinical scenario, as all sim-
ulations were based on representative retrospective data from
the University Medical Center Hamburg-Eppendorf. By
extracting discrete distributions of CXR acquisition rate as
well as radiologist’s reporting time, the temporal sequence
of a working day could be recreated precisely.

As in other application areas, the question is what error
rates we can ethically and legally tolerate before artificial in-
telligence can be used in patient care. For smart worklist pri-
oritization, we have shown that we can easily reduce the av-
erage RTAT at the expense of individual cases that are clas-
sified as false negatives and therefore reported much later than
the current FIFO principle. While it was questionable whether

Fig. 5 Optimal operation point
simulation for the artificial
intelligence algorithm. To find the
optimal operation point for
reducing the average report
turnaround time (RTAT) for
critical findings, we run multiple
simulations with different false
positive rates between zero and
one

Table 2 Convolution neural network operation points. The first column
shows the operation point for best average report turnaround time
(RTAT) reduction with a false positive rate (FPR) of 0.05, while the
second column shows the operation point for a low false negative rate
(FNR) of 0.05 (i.e., reducing the likelihood of dangerously long RTATs
for critical findings). For each column, we show the other missing values
like true positive rate (TPR), true negative rate (TNR), and FPR or FNR

FPR = 0.05 FNR = 0.05

Finding TPR FNR TNR TPR FPR TNR

Pneumothorax 0.82 0.18 0.95 0.95 0.20 0.80

Congestion 0.71 0.29 0.95 0.95 0.24 0.76

Pleural effusion 0.86 0.14 0.95 0.95 0.21 0.79

Infiltrate 0.75 0.25 0.95 0.95 0.27 0.73

Atelectasis 0.61 0.39 0.95 0.95 0.39 0.61

Cardiomegaly 0.75 0.25 0.95 0.95 0.18 0.82

Mass 0.51 0.49 0.95 0.95 0.72 0.28

Foreign object 0.51 0.49 0.95 0.95 0.78 0.22
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this overall improvement outweighed the risk of delayed
reporting of individual cases, we have shown in our Prio-
MAXwaiting simulation that the definition of a maximum
waiting time, after which all examinations are assigned the
highest priority, solves this problem. For the most critical
finding (i.e., pneumothorax), the maximum RTAT was re-
duced to the current standard while preserving the significant
reduction of the average RTAT.

The comparison in Table 3 shows that state-of-the-art
CNNs can almost reach the upper limit of a smart worklist
prioritization for the average RTAT. On the other hand, for the
maximum RTAT, it reveals again the problem of false nega-
tive predictions. Ideally, a perfect classification algorithm

could reduce the maximum RTAT to 320 min for pneumo-
thorax, which is a substantial improvement over the standard
maximum with 890 min. It is important to note that we cannot
reach this reduction by our maximum waiting time method.
For example, lowering the threshold (i.e., the maximum
waiting time) too much would result in all CXRs being
assigned the highest priority.

Besides the possible improvement in diagnostic
workflow by artificial intelligence, it should be stated that
only a timely and reliable communication of the discov-
ered findings from the radiologist to the referring clinician
ensures that patients receive the clinical treatment they
need.

Fig. 6 Report turnaround times
(RTATs) for all eight pathological
findings as well as for normal
examinations on the basis of four
different simulations: FIFO (first-
in, first-out; green), Prio-lowFNR
(false negative rate; yellow), Prio-
lowFPR (false positive rate;
purple), and Prio-MAXwaiting
(maximum; red) with a maximum
waiting time (light purple). The
green triangles mark the average
RTAT, while the vertical lines
mark the median RTAT. On the
right side, the maximum RTAT
for each simulation and finding is
shown

Table 3 Comparison of all four simulations: FIFO (first-in, first-out),
Prio-lowFNR (false negative rate), Prio-lowFPR (false positive rate),
Prio-MAXwaiting (maximum) with a perfect classification algorithm

simulation (i.e., Perfect). We show the average (avg) report turnaround
time (RTAT) and the maximum (max) RTAT for each finding

Finding FIFO (avg/max) Prio-lowFNR (avg/max) Prio-lowFPR (avg/max) Prio-MAXwaiting (avg/max) Perfect (avg/max)

Pneumothorax 80.1/890 36.7/1293 35.6/1178 38.5/979 30.3/320

Congestion 80.5/916 50.3/1877 45.3/2018 47.8/1357 35.2/510

Pleural effusion 80.5/932 63.5/2120 54.6/2144 53.2/1357 45.4/1016

Infiltrate 80.3/916 67.9/2120 59.1/2144 58.0/1279 49.8/1110

Atelectasis 80.4/906 70.1/1751 61.7/1958 61.1/1357 51.4/1361

Cardiomegaly 80.5/932 70.4/1745 62.5/1698 60.8/1357 52.2/1332

Mass 81.0/902 71.3/1729 64.3/1556 63.4/1320 52.8/1301

Foreign object 80.4/930 80.5/2094 80.6/2093 80.3/1357 80.7/2053

Normal 80.2/940 101.8/2094 113.9/2093 114.4/1412 131.5/2087
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Unlike previous publications [7], we included in- as well as
outpatients, as in the daily reporting routine at the UKE, all
CXRs are sorted into one worklist. Furthermore, we observed
substantially shorter backlogs of unreported examinations
compared to published data from the UK.

In healthcare systems where patients and referring physi-
cians are waiting for reports up to days or weeks, or have
limited access to expert radiologists, the benefit of a smart
worklist prioritization could obviously be greater than in
countries with a well-developed health system. The longer
the reporting backlogs, the more likely it is that referring phy-
sicians will try to rule out critical findings in CXRs them-
selves. This poses the risk that subtle findings with potentially
large clinical impact (e.g., pneumothorax) are overlooked and
that the discovery by a radiologist is postponed for a negli-
gently long time period.

One limitation of our study is that the Open-i dataset,
which our CNN was trained on, mainly included outpa-
tients in contrast to the predominantly stationary patient
collective of the hospital. Therefore, the performance of
our algorithm, which was already strong compared to oth-
er publications [10], cannot be directly transferred to our
hospital-specific patient collective and will most likely
decrease. However, we note that the priority-based sched-
uling algorithm developed in this work is generic and can
use any CNN that classifies chest X-ray pathologies. If
the CNN classifier is improved, the scheduling algorithm
will be directly benefited.

In the future, we want to include more pathologies and
different degrees of manifestation to further improve the
gain of a smart worklist prioritization. While we only
focused on the eight most common findings in a CXR at
the UKE and ranked them accordingly, a large atelectasis,
for example, can put patients’ health more at risk than a
small pleural effusion. Furthermore, we want to investi-
gate other clinical workflows where pre-prioritization is
done according to inpatient, outpatient, and accident and
emergency.

Overall, the application of smart worklist prioritization by
artificial intelligence shows great potential to optimize clinical
workflows and can significantly improve patient safety in the
future. Our clinical workflow simulations suggest that triaging
tools should be customized on the basis of local clinical cir-
cumstances and needs.
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