
glm-ie: The Generalised Linear Models

Inference & Estimation Toolbox

Hannes Nickisch, MPI for Biological Cybernetics, Tübingen, Germany

April 6, 2011

Abstract

The glm-ie toolbox contains scalable estimation routines for GLMs (generalised linear models) and
SLMs (sparse linear models) as well as an implementation of a scalable convex variational Bayesian
inference relaxation. We designed the glm-ie package to be simple, generic and easily expansible.
Most of the code is written in Matlab including some MEX files. The code is fully compatible to both
Matlab 7.x1 and GNU Octave 3.3.x2.

Probabilistic classification, sparse linear modelling and logistic regression are covered in a common
algorithmical framework.

Contents

1 Introduction and modelling framework 2
1.1 MAP estimation . 2
1.2 Variational Bayesian inference . 2

1.2.1 Double loop algorithm . 3
1.2.2 Nonlinear or group potentials . 3

1.3 Expectation propagation inference . 4
1.3.1 Parameter update details . 5
1.3.2 Double loop algorithm . 5

1.4 Package organisation . 5

2 Code 6
2.1 Matrix operators in mat/ . 6

2.1.1 The matrix class mat . 6
2.1.2 Implementations . 7

2.2 Penalised least squares solvers in pls/ . 8
2.2.1 Interface . 8
2.2.2 Implementations . 9
2.2.3 Auxiliary routines . 9

2.3 Penalty functions ρ(s) in pen/ . 10
2.3.1 Interface . 10
2.3.2 Implementations . 10

2.4 Potential functions T (s) in pot/ . 12
2.4.1 Variational bounding . 12
2.4.2 Expectation propagation . 12
2.4.3 Interface . 12
2.4.4 Implementations . 13

2.5 Double loop inference dli.m engine in inf/ . 13
2.5.1 Auxiliary routines for the outer loop . 15

3 Installation and compilation of MEX code 16

1The MathWorks, http://www.mathworks.om/
2The Free Software Foundation, http://www.gnu.org/software/otave/

1

http://www.mathworks.com/
http://www.gnu.org/software/octave/

1 Introduction and modelling framework

The glm-ie toolbox performs estimation and inference in linear models with unknown parameters u ∈
Rn, Gaussian observations

y = Xu+ ε ∈ Rm, ε ∼ N (0, σ2I)

and non-Gaussian potentials Tj(sj) on linear projections

s = Bu ∈ Rq

leading to a posterior of the form

P(u|D) ∝ N (y|Xu, σ2I)
q

∏
j=1

Tj(sj). (1)

Note that (sparse) regression aswell as classificationmodels fall into the scope of the framework. The
algorithm is introduced in the context ofMRI sequence optimisation [Seeger, Nickisch, Pohmann, and Schölkopf,
2009, 2010], convexity was proven only later [Nickisch and Seeger, 2009]. For a review of the framework
for the general case see Seeger and Nickisch [2008] and the more recent version Seeger and Nickisch
[2010].

1.1 MAP estimation

AMAP estimator is the parameter value with highest posterior density

ûMAP = argmax
u

P(u|y).

Finding the MAP estimator ûMAP requires the solution of a penalised least squares (PLS) problem

argmin
u
‖Xu− y‖2 + 2λ · ρ(s), s = Bu, λ ∈ R+ (2)

with penaliser ρMAP(s) = −∑
q
j=1 ln Tj(sj) and weight λ = σ2.

1.2 Variational Bayesian inference

The inference algorithm uses the (exact) variational representation

T (s) = max
γ≥0

exp

(

βs− s2

2γ
− h(γ)

2

)

, h(γ) = max
x≥0
− x

γ
− 2g(

√
x), g(s) = ln T (s)− βs (3)

of the potential T (s) by exploiting its symmetry, positivity and super-Gaussianity, see section 2.4. These

bounds can be plugged into the expression for the partition function Z =
´ N (y|Xu, σ2I) ∏

q
j=1 Tj(sj)du

to obtain a lower bound thereof

Z ≥ e−
1
2 h(γ)

ˆ

N (y|Xu, σ2I)eβ⊤s− 1
2 sΓ
−1sdu, h(γ) =

q

∑
i=1

hi(γi), (4)

where s = Bu and Γ = diag(γ). Evaluating the Gaussian integral yields

Z ≥ Ce−
1
2 minγ φVB(γ) = ZVB, C = (2π)

n−m
2 σ−m

where

φVB(γ) = ln |A|+ h(γ) +min
u

R(u,γ), R =
1

σ2
‖Xu− y‖2 + s⊤Γ

−1s− 2β⊤s (5)

and A = X⊤(σ2I)−1X+ B⊤Γ
−1B.

The Gaussian approximate posterior P(u|D) ≈ Q(u) = N (u|m,V) has covariance V = A−1 and

meanm = A−1d where d = 1
σ2X

⊤y+ B⊤β.

Using the concavity of γ−1 7→ ln |A|, we can upper bound and decouple the term [Wipf and Nagarajan,
2008] by Fenchel duality (between ω(γ) and ω∗(z))

ω(γ) = ln |A| = min
z

z⊤γ−1 −ω∗(z), z > 0, where z∗ = argmin
z

z⊤γ−1 −ω∗(z) = dg(BA−1B⊤) (6)

2

to obtain the (jointly convex in (u,γ) for log-concave potentials) variational criterion

φVB(γ,u, z) = z⊤γ−1 − ω∗(z) + h(γ) +
1

σ2
‖Xu− y‖2 + s⊤Γ

−1s− 2β⊤s (7)

=
1

σ2
‖Xu− y‖2 +

q

∑
i=1

hi(si, γi)− ω∗(z), hi(si, γi) =
zi + s2i

γi
+ hi(γi)− 2βisi

which decouples into scalar problems w.r.t. γ and is of PLS structure w.r.t. u. Note that φVB(γ) =
minu,z>0 φVB(γ,u, z). For log-concave potentials T (s), we can do univariate minimisations in γi in
closed form

h∗(s) =
1

2
min
γ≥0

h(s, γ) = min
γ≥0

1

2

[
z+ s2

γ
+ h(γ)

]

− βs = β · (ς− s)− ln T (ς), ς = sign(s) ·
√

s2 + z (8)

by matching the variational representation of T (s) from equation 3 −2g(√x) = minγ≥0 x/γ + h(γ) for

x = z+ s2 where we have dropped the indices i. We see that

1. for z = 0, we have h∗(s) = − ln T (s) and
2. for s → ±0, h∗(s) is continuous, due to the symmetry fβ(s) = fβ(−s) of fβ(s) = T (s)e−βs from

section 2.4 yields h∗(−s) = h∗(s) + 2βs.

Hence, the γ dependence can be dropped from the variational criterion by performing the minimisation
w.r.t. γ analytically

φVB(u, z) = min
γ

φVB(γ,u, z) =
1

σ2
‖Xu− y‖2 + 2 · h∗(Bu)−ω∗(z) (9)

where h∗(s) = β⊤(ς− s)− ln T (ς), ς = sign(s)⊙
√

s2 + z.

The (non-zero) sign function is understood as sign(t) = t/|t| with sign(0) = 1. The optimal value
γ∗ = argminγ φ(γ,u, z) obtained as

γ−1∗ = −2∂g(ς)

∂ς2
, ς = sign(s)⊙

√

s2 + z., g(s) = ln T (s)− β⊤s

=
β− [ln T]′(ς)

ς

for τ-scaled potentials Ti(τisi), we obtain the expression γ−1∗ = τ⊙β−[lnT]′(τ⊙ς)
ς .

1.2.1 Double loop algorithm

Our double loop algorithm (see section 2.5) minimises φVB(u, z) by iterating between minimisation in
one variable while keeping the other one fixed.

1. Outer loop: z∗ = argminz φVB(u, z) = dg(BA−1B⊤) = V[s|D]

2. Inner loop: u∗ = argminu φVB(u, z) = argminu
1

σ2 ‖Xu− y‖2 + 2 · h∗(Bu) = E[u|D]
The outer loop is a variance estimation problem and the inner loop is a penalised least squares or MAP
estimation problem (equation 2) with penaliser ρVB(s) = h∗(s) and weight λ = σ2.

1.2.2 Nonlinear or group potentials

All the maths so far deal with linear potentials i.e. scaled super-Gaussian potentials acting on scaled lin-
ear projections: Ti(u) = Ti(τ · b⊤i u) = Ti(τ · si). What happens if we were to allow non-linear functions?
If the integral of equation 4

I =

ˆ

exp

−1

2
(s⊤Γ

−1s− 2β⊤s
︸ ︷︷ ︸

δ(u)

)− 1

2σ2
‖Xu− y‖2

 du

is Gaussian, we can solve it. This is exactly the case if δ(u) = s⊤Γ
−1s− 2β⊤s is a quadratic function in

u. There are exactly two possibilities:

3

1. A linear map u 7→ s i.e. s = Bu naturally yields a quadratic δ(u) = u⊤B⊤Γ
−1Bu− 2β⊤Bu.

2. Using βi = 0 and Euclidean norms s̃i =
√

s⊤Gis with positive definite weighting matrices Gi ∈
Rq×q, i = 1..q̃. We obtain the quadratic function δ̃(u) = ∑

q̃
i=1 s̃

2
i /γ̃i = u⊤B⊤

(

∑
q̃
i=1Gi/γ̃i

)

Bu

where γ̃ ∈ R
q̃
+.

In order to work with the second possibility, we sacrifice some modelling power in order to gain com-
putational and notational efficiency by working with diagonal matrices Gi = dg(gi). We use a single

grouping matrixG ∈ R
q̃×q
+ to accommodate the q̃ row vectors gi ∈ R

q
+. We obtain δ̃(u) = s⊤dg

(
G⊤γ̃

)
s

which allows to writeG⊤γ̃ = γ in the following.
In the outer loop, we compute z̃ = Gz, where z = dg(BA−1B⊤) and A = X⊤X/σ2 + B⊤Γ

−1B.
The inner loop (equation 9) is more complicated since the (even due to βi = 0) penalty h∗i (|si|) has to

be replaced by h̃∗i (s) = h∗i (|s̃i|) = h∗i
(√

s⊤(gi ⊙ s)
)

which can equivalently be expressed as

h̃∗ (s) = − ln T
(√

s̃2 + z̃
)

= − ln T (ς) , ς =
√

G(s2 + z).

The standard inner loop objective φ(u) = 1
2σ2 ‖Xu− y‖2 + h∗(s) has gradient ∂φ(u)

∂u = σ−2X⊤(Xu− y) +

B⊤h′∗(s) and Hessian
∂2φ(u)
∂u∂u⊤ = σ−2X⊤X+ B⊤H′′∗ (s)B, where h∗(s) = ∑

q
i=1 h

∗
i (si), s = Bu. For nonlinear

potentials T , the terms h̃′∗(s) =
∂
∂s h̃
∗(s) and H̃′′∗ (s) =

∂2

∂s∂s⊤ h̃
∗(s) become more complicated i.e. H̃′′∗ is no

longer a diagonal matrix. We have

h̃′∗(s) =
q̃

∑
i=1

∂

∂s
h∗i (ς̃ i) =

q̃

∑
i=1

h′i
∗
(ς̃ i)

ς̃ i
gi ⊙ s =

(

G⊤
[

h′∗ (ς̃)⊙ ς̃−1
])

⊙ s, ς̃2 = G(s2 + z)

= SG⊤Ω̃
−1h′∗ (ς̃)

︸ ︷︷ ︸

v

, S = dg(s), Ω̃ = dg(ς̃) and

H̃′′∗ (s) =
∂

∂s⊤
SG⊤Ω̃

−1h′∗ (ς̃)

= SG⊤dg(w)GS+ dg(v), w = h′′∗ (ς̃)⊙ ς̃−2 − h′∗ (ς̃)⊙ ς̃−3.

The optimal value γ∗ = G⊤γ̃∗ is computed as

γ̃−1∗ = −2∂ ln T (ς̃)
∂ς̃2

= − [ln T]′(ς̃)
ς̃

, ς̃ =
√

G(s2 + z).

1.3 Expectation propagation inference

Expectation propagation (EP) is a more general and often more accurate inference algorithm that does
not require the potentials to be super-Gaussian. The approximating family of distributions Q(u) is the
same as in variational Bayes but β is treated as an additional parameter. The criterion i.e. the EP free
energy

φEP(γ, β) = ln |A|+ hEP(γ, β) +min
u

R(u,γ, β), R =
1

σ2
‖Xu− y‖2 + s⊤Γ

−1s− 2β⊤s

where A = X⊤X/σ2 + B⊤Γ
−1B is similar to the variational Bayesian criterion φVB(γ) the difference

being hEP(γ, β).
Let m = EQ[u|D] and V = VQ[s|D], then the marginal distribution Qj(sj) is given by N (sj|µj, ρj)

where µ = Bm are the marginal means and ρ = dg(BVB⊤) are the marginal variances. The cavity

marginals Q¬j(sj) ∝ Qj(sj)e
−η(s jβ j−s2j /2γj) ∝ N (sj|µ¬j, ρ¬j) and tilted marginals P̂(sj) ∝ Q¬j(sj)Tj(sj)η

with fractional parameter η ∈ (0, 1] can be used to define

hj(γj, β j) = − 2

η

(

lnEQ¬ j[Tj(sj)η]− lnEQ¬ j[e
η(s jβ j−s2j /2γj)]

)

, EQ¬ j[f (sj)] =

ˆ

f (sj)Q¬j(sj)dsj.

The EP algorithm finds a stationary point (a saddlepoint in general) of the EP free energy by iterative lo-

calmoment matching i.e. setting (γj, β j) such that P̂(sj) ∝ Q¬j(sj)Tj(sj)η andQj(sj) ∝ Q¬j(sj)e
η(s jβ j−s2j /2γj)

have the same first two moments (rj, zj).

4

1.3.1 Parameter update details

Define the precision πj = γ−1j , then the EP updates have the form

πj ← (1− η)πj −
d2

1+ d2ρ¬j
, d2 =

∂2 ln Ẑj

∂µ2
¬j

β j ← (1− η)β j +
d1 − d2µ¬j
1+ d2ρ¬j

, d1 =
∂ ln Ẑj

∂µ¬j

where ρ¬j =
ρ j

1−ηπ jρ j
, µ¬j =

µ j−ηβ jρ j

1−ηπ jρ j
and Ẑj =

´

Q¬j(sj)T (sj)ηdsj.

1.3.2 Double loop algorithm

In our implementation, we employ parallel EP updates [van Gerven et al., 2010] that is we update all
parameters (β,γ) jointly. The outer loop computes ρ = z = dg(BA−1B⊤) as in VB, section 1.2. The
inner loop iterates between doing parallel EP updates and recomputation of µ = Bm. Unfortunately, EP
seems to be less robust against imperfect computation of z. Whereas VB can deal with underestimated
marginal variances 0 < ẑ ≪ z naturally, EP demands exact variance computations. This considerably
limits the scope of EP inference.

1.4 Package organisation

Besides the illustrating documentation and example in do/ and the double loop inference engine (sec-
tion 2.5) , the package naturally splits into four functional objects like matrix operators, PLS solvers,
penalty and potential functions.

Directory Contentdo/ documentation and demo codeinf/ double loop inference code, section 2.5mat/ matrix classes, section 2.1pls/ penalised least squares code, section 2.2pen/ penalty functions ρ(s), section 2.3pot/ potential functions T (s), section 2.4

If youwish to addmore functional objects, the only thing you have to do is to implement the interface
as detailed in sections 2.1, 2.2, 2.3 and 2.4.

5

2 Code

In the following, we detail the function objects of the glm-ie toolbox: matrix operators (section 2.1),
PLS solvers (section 2.2), penalty functions (section 2.3) and potential functions (section 2.4) needed to
successfully operate the inference engine (section 2.5).

2.1 Matrix operators in mat/
For the glm-ie toolbox, a matrixA ∈ Cm×n is completely specified by its MVMs (matrix vector multipli-
cations) Ax ∈ Cm and A⊤y ∈ Cn. We use of Matlab’s object oriented programming facilities to provide
a basic (lazily evaluated) matrix class that is completely generic and can be fully instantiated by defin-
ing an MVM. The design of our matrix class allows to use exactly the same code for dense and sparse
matrices as well as matrices implicitly specified through their MVM. A user defines the MVM and the
matrix class makes sure that an instance inherits all its properties. In the following, we will describe the
general matrix class and its implementations.

In the glm-ie toolbox, a matrix A has to be able to deal with complex numbers. However, the
potentials for the probabilistic model act on real-valued variables si only. Therefore, complex vectors
have to be embedded into real vector spaces. We represent the complex vector v ∈ Cn by the real

vector w = [ℜz1,ℑz1, ℜz2, .., ℜzn,ℑzn]⊤ ∈ R2n that has twice the number of components and contains
real and imaginary parts in an interleaved way. Conversions between v and w can be done by the
two auxiliary functions mat/re2x.m and mat/x2re.m such that w = x2re(v) and v = re2x(w).

Similarly if the complex matrix A ∈ Cm×n is represented by

[ℜA −ℑA
ℑA ℜA

]

∈ R2m×2n, then complex

MVMs can be done by code written for real variables.

2.1.1 The matrix class mat
The philosophy behind the matrix class is that all properties of a matrix can be expressed in terms of
MVMs. A general MVM has a computational complexity of O(m · n). Since this computational load is
prohibitive for m and n in the order of number of pixels of an image, our focus is on structured matrices
reducing the cost to O(n · log n) at most. The functionality of our base class named mat is stored in the
directory mat/�mat/.

Our matrix class offers simple “infrastructure” functionality to determine the size, display informa-
tion and printing. The following functions are available:

1. disp.m displays some information about the size and the class of A,

2. full.m returns the full matrix A,

3. images.m displays A as an image,

4. isempty.m indicates whether there is no entry in A,

5. numel.m counts the number of elements in A,

6. size.m returns the size of the matrix as stored in the struct field A.sz,
7. real.m, imag.m, abs.m, angle.m return full matrices and

8. end.m is needed for indexing.

Furthermore, matrix valued functions of matrices such as addition, concatenation, Kronecker product,
multiplication, replication, scaling, subreferencing or transposition allow to create new matrices from
existing ones. Matlab and Octave’s matrix objects require several functions to be specified for a matrix
object A (named A in the code) of type mat that are called whenever the interpreter encounters expres-
sions such as A*B forAB or the like. All matrix functions in the glm-ie toolbox are listed in the following
table:

6

Mathematical operation Matlab expression Class function

MVM Ax, x⊤A A*x, x'*A mvm.m
concatenation [B,C] [A,B℄ horzat.m
concatenation [B;C] [A;B℄ vertat.m
difference A− B A-B minus.m
tensor product A⊗ B kron(A,B) kron.m
multiplication AB A*B mtimes.m
negation −A -A uminus.m
replication [A,A] repmat(A,[1,2℄) repmat.m
scaling αA, Aα al*A, A*al mtimes.m
sum A+ B A+B plus.m
subreferencing A:,j, vec(A) A(:,j), A(:) subsref.m
transposition A⊤ A' transpose.m
vectorisation vec(A) ve(A) ve.m

Most importantly, computations are only done when an MVM is called; only then the tree of com-
position is traversed and all the atomic MVMs are executed and combined – the computational load
is entirely concentrated in the functions mvm.m that have to be specified by all matrix operators imple-
menting the matrix class. The auxiliary functions type.m and args.m can be used to get access to the
composition tree.

Complex numbers can be handled in four different ways by setting the omplex argument in the
constructor mat/�mat/mat.m. Both input and output vectors can separately be specified to be composed
of complex numbers ℜz+ ıℑz pairs of real numbers [ℜz;ℑz] or just a real numbers ℜz.

2.1.2 Implementations

The glm-ie toolbox currently includes seven matrix objects A derived from mat/�mat whose code is
located in the directories mat/�mat<NAME>/ and its subdirectories. Every matrix object needs two things

1. mat/�mat<NAME>/mat<NAME>.m is the constructor for the matrix object and

2. mat/�mat<NAME>/mvm.m implements the MVM depending on the transpose flag transp.
All the rest is inherited from from mat/�mat. We include the diagonal matrix class mat/�matDiag as a
very simple example serving as a starting point for additional implementations.<NAME> A Meaning Formal Ax ≡ O(n) =Conv2 K Convolution with kernel k (written by Michael Hirsch) k ⋆ x nDiag D Diagonal matrix d⊙ x nFD2 D Finite derivatives in both directions [xi+1− xi]i nFFTN F Fourier matrix in N dimensions F n · ln nFFTNmask FM Partial Fourier, single points (Fx)M subset n · ln nFFT2line Fl Partial Fourier, single rows l ∈Nm

+ (Fx)l subset n · ln nFFT2nu Fk Non-uniform Fourier at k ∈ Cm (based on nufft) ≈ PkFdg(d) n · ln nWav W Fast wavelet transform (using fwtn) Wx n

Note on Octave compatibility

There is an issue with the way Octave3 evaluates expressions of the form x=A'*y; namely that it will
terminate with an T& Array<T>::hekelem (2): range error because the transpose seems to be
evaluated in a lazy fashion. Our workaround in the glm-ie toolbox is to use expressions x=[A'℄*y;
instead to force the creation of a new object being the transpose of the original one. Both Matlab and
Octave are smart enough to avoid creating full copies of A – leading to essentially no memory overhead.
In summary, you have to use Octave 3.3.x in order to fully enjoy the glm-ie toolbox.

3Until version 3.2.4, fixed in 3.3.x.

7

2.2 Penalised least squares solvers in pls/
In the glm-ie toolbox, PLS estimation problems (equation 2) with tradeoff parameter λ > 0

argmin
u

1

2
‖Xu− y‖2 + λ · ρ(Bu;ψ)

are encountered both in MAP estimation (section 1.1) and in the inner loop (section 1.2.1) of our double
loop variational inference method.

2.2.1 Interface

We provide a generic interface in plsSolvers.m to be able to use a variety of different PLS solvers. In or-
der to run the methods, you need to provide a starting value u0, the matrices X and B, the measurement
vector y, the optimisation parameters stored in the struct opt, the weight λ and the penaliser ρ(s;ψ)
with additional parameters ψ stored in the cell array varargin.% A PLS (penalised least squares) solver is a program solving the% minimisation problem% phi(u) = 1/lambda * ||X*u-y||_2^2 + 2*sum(pen(s)), s = B*u,% where pen(s) is a penalty funtion.%% [u,phi℄ = pls<NAME>(u0,X,y,B,opt,lam,pen,varargin)%% INPUT% =====% u0 [nx1℄ initial vetor% X [mxn℄ matrix or operator% y [mx1℄ vetor% B [qxn℄ matrix or operator% opt. optimisation parameters% nMVM maximal number of steps = matrix vetor multipliations ...% with A=X'*X/lam+B'*D*B, D diagonal, [default 100℄% output flag saying whether something is printed [default false℄% the funtion will show the urrent iteration number, the atual% funtion value phi and the urrent length of the step% in the format: 13, phi=8.6063e-01; du=2.325e-04% lam [1x1℄ (positive) weight of the penaliser, an be Inf% pen penaliser funtion handle or funtion name% [p,dp,d2p℄ = feval(pen,Bu,varargin{:})% varargin additional parameters for pen%% OUTPUT% ======% u [nx1℄ optimal solution% phi [1x1℄ optimal funtion value%% Currently, we have implemented in pls/pls<NAME>.m% LBFGS: LIMITED memory BROYDEN-FLETCHER-GOLDFARB-SHANNO% quasi Newton or variable metri method% TN: TRUNCATED NEWTON% optimisation with CG approximated Newton steps% CGBT: CONJUGATE GRADIENTS with BACKTRACKING line searh% optimisation using the Armijo rule% CG: CONJUGATE GRADIENTS% optimisation with CG ode minimize.m by Carl E. Rasmussen% SB: SPLIT BREGMAN% optimisation using an augmented Lagrangian approah% BB: BARZILAI/BORWEIN% stepsize adjusted gradient method without desent guarantee%% Examples:% >> lam=1; plsLBFGS(u,X,y,B,opt,lam,'penQuad')% >> lam=1; tau=2; z=1.3; plsCG(u,X,y,B,opt,lam,'penVB','potLaplae',tau,z)%% See also PENFUNCTIONS.M, POTFUNCTIONS.M.

8

%% () by Hannes Nikish, MPI for Biologial Cybernetis, 2011 January 19
2.2.2 Implementations

All currently implemented solvers can be found at pls/pls<NAME>.m.<NAME> MeaningCG Conjugate gradients (CG) using gradient info in the line searches.CGBT CG with backtracking line search using Armijo’s rule.LBFGS Limited memory Broyden–Fletcher–Goldfarb–Shanno quasi Newton.SB Bregman Splitting; an augmented Lagrangian approach.TN Truncated Newton with CG approximated Newton direction.

2.2.3 Auxiliary routines

• In pls/plsCG.m, the conjugate gradient optimiser minimize.m by Carl E. Rasmussen is called with
the objective pls/phi.m.
• A second conjugate gradient solver pls/plsCGBT.m inspired by the fnlCg.m code is available; it
also makes calls to pls/phi.m.
• With pls/plsLBFGS.m,we also have an interface to the powerful general purpose optimiser L-BFGS-B
written in Fortran (see section 3). Its code can be found in pls/lbfgsb/; the corresponding bina-
ries along with installation instructions are contained in the files pls/lbfgsb.{m,mex*}, respec-
tively. We have another Matlab wrapper contained in pls/minimize_lbfgsb_*.m having exactly
the same interface as minimize.m.
• The Bregman splitting approach [Combettes and Pesquet, 2010] implemented in pls/plsSB.m is
a very fast method whenever the matrices X⊤X and B⊤B are diagonal in the Fourier space (see
the function mat/�mat<NAME>/diagFAtAFt.m) i.e. solving a linear system with them takes only
O(n · ln n) time due to the fast Fourier transform. The code is inspired by mris.m. Another im-
portant ingredient for Bregman splitting is the evaluation of scalar proximity operators proxλ(r) =

argmins
1
2λ (s− r)2 + ρ(s) for a given penalty function ρ(s). In pls/prox.m, we have implemented

a generic Newton algorithm that handles any differentiable penalty function and analytic solu-
tions where applicable. We have analytic solutions for penAbs.m, penQuad.m, penZero.m andpenVB.m/potLaplae.m, see sections 2.3 and 2.4. The latter requires the solution of quartic equa-
tions which can be obtained by pls/solve_quarti.m and pls/solve_ubi.m.
• Finally, we have a truncated Newton procedure pls/plsTN.m running. This approach is also
known as Iteratively Reweighted Least Squares (IRLS). Here, the line search along the Newton
search direction is done by Brent’s golden section search pls/brentmin.m. The computation of the
Newton search direction itself requires the (approximate) solution of a linear system. We have
two rather general linear system solvers allowing to find a vector c such that Ac = b where
A = X⊤RX+ B⊤PB:

– Linear conjugate gradients pls/linsolve_lg.m and
– Full inversion using the Woodbury identity pls/linsolve_woodbury.m, see section 2.5 andinf/diaginv_woodbury.m therein.

9

2.3 Penalty functions ρ(s) in pen/
Penalty functions are used to shape the PLS problem (equation 2); continuous differentiability is our
minimum requirement. We do not require convexity of ρ(s), but the optimisation becomesmuch simpler
since convexity of ρ(s) implies convexity of the entire PLS problem.

2.3.1 Interface

Every penalty function implementation has to provide

1. the evaluation of ρ(s) as well as

2. its first two derivatives ρ′(s), ρ′′(s).

All PLS solvers of section 2.2 are completely generic in the penalty function, facilitating the inclusion of
new penalty functions ρ(s) using the interface penFuntions.m:% A penalty funtion pen(s) is a funtion IR^q -> IR.%% [p,dp,d2p℄ = pen(s,psi) where psi ontains additional parameters%% The return arguments have the following meaning:% p = pen(s),% dp = d pen(s) / ds,% d2p = d^2 pen(s) / ds^2,% and the following dimensions:% p funtion value [1x1℄ or vetor of individual funtion values [qx1℄,% dp gradient vetor [qx1℄,% d2p Hessian diagonal [qx1℄ or full matrix [qxq℄.%% Currently, we have implemented in pen/pen<NAME>.m% Absolute value: penAbs(s) = abs(s), => potLaplae% Smoothed absolute value: penAbsSmooth(s,ep) = sqrt(s^2+ep),% Linear pen. on negative: penNegLin(s) = max(-s,0),% Logarithmi: penLogSmooth(s,nu) = log(s^2+nu),=> potT% Power: penPow(s,d) = abs(s)^d, => potExpPow% Smoothed power: penPowSmooth(s,d,ep) = sqrt(s^2+ep)^d,% Quadrati: penQuad(s) = s^2/2, => potGauss% Quadr. pen on negative: penNegQuad(s) = min(s,0)^2/2,% Zero: penZero(s) = 0, and%% Derived from a potential for use with Variational bounding (VB) inferene:% penVB(s,pot,tau,z) = tau*b*(r-s) -log(pot(tau*r)), r=sign(s)*sqrt(s^2+z)% Norm penalty derived from symmetri potential to be used with VB inferene:% penVBNorm(s,pot,tau,z,G) = -log(pot(tau*r)), r=sqrt(G*(s^2+z))%% Examples:% >> s=0.3; d=1.5; penPow(s,d)% >> s=-4; pot='potLaplae'; tau=2; z=1.3; penVB(s,pot,tau,z)%% See also POTFUNCTIONS.M.%% () by Hannes Nikish, MPI for Biologial Cybernetis, 2010 November 09
2.3.2 Implementations

The interface is currently implemented by several simple and two composed penalty function ρ(s) =
ρ(s;ψ) in pen/pen<NAME>.m. Note that the penalties can depend on additional parameters ψ.

10

<NAME> Meaning Expression Parameters ψ =Abs Absolute value penalty ρ(s;ψ) = |s| ∅AbsSmooth Smoothed absolute value penalty ρ(s;ψ) =
√
s2 + ε, ε > 0 εNegLin Linear penalty on negative part ρ(s;ψ) = max(−s, 0) ∅Pow Power penalty ρ(s;ψ) = |s|α, α > 0 αPowSmooth Smoothed power penalty ρ(s;ψ) =

(√
s2 + ε

)α
, α > 0, ε > 0 α, εQuad Quadratic penalty ρ(s;ψ) = 1

2 s
2 ∅NegQuad Quadratic penalty on negative part ρ(s;ψ) = 1

2 s
2
− where s− = min(s, 0) ∅LogSmooth Smoothed logarithmic penalty ρ(s;ψ) = ln(s2 + ε), ε > 0 εZero No penalty at all ρ(s;ψ) = 0 ∅VB Penalty derived from potential for VB ρ(s;ψ) = βτ (ς− s)− ln T (τς; θ) , ς = sign(s) ·

√
s2 + z (T , θ), τ, zVBNorm Norm penalty from symmetric potential for VB ρ(s;ψ) = − ln T

(

τ ⊙
√

G(s2 + z); θ
)

(T , θ), τ, G, z

Besides simple penalty functions, we offer the penalty functions pen/penVB*.m transforming a poten-
tial function T (s; θ) with parameters θ into a penalty function ρ(s). The penalty function pen/penVB.m
with z = 0 allows to do MAP estimation ρ(s) = − ln T (s; θ); with z > 0 it allows to cast the inner loop
optimisation as a PLS problem with ρ(s) = h∗(s), see section 1.2. In a similar spirit, the penalty functionpen/penVBNorm.m transforms a potential function T (s; θ) into a penalty function on norms as needed
for group potentials as detailed in section 1.2.2.

There are equivalences or redundancies among the penalty functions as listed in the following table.

Penalty function Equivalent penalty functionpenAbs(s) penPow(s,al=1)penVB(s,'potLaplae',tau=1,z=0)penAbsSmooth(s,ep) penVB(s,'potLaplae',tau=1,z=ep)penLogSmooth(s,ep) penVB(s,'potT',tau=1,z=0,nu=ep)penPow(s,al) penVB(s,'potExpPow',tau=1,z=0,al)penPowSmooth(s,al,ep) penVB(s,'potExpPow',tau=1,z=ep,al)penQuad(s) penPow(s,al=2)penVB(s,'potGauss',tau=1,z=0)
The main reason for the redundancy is computation time and ease of usage. In general, the left

expression is much faster to evaluate and also shorter in the code.

11

2.4 Potential functions T (s) in pot/
Potential functions are used to shape the Bayesian posterior of our model class (equation 1). In general,
potentials have to be nonnegative T (s) ≥ 0. Depending on the approximate inference method, addi-
tional properties are needed. In order to run the respective inference algorithm, different aspects of the
potential T (s) are required.

2.4.1 Variational bounding

For VB, section 1.2, three conditions have to be met by a potential function T (s):
1. Strict positivity: T (s) > 0.

2. Symmetry: ∀s ∈ R ∃β ∈ R fβ(s) = fβ(−s) where fβ(s) = T (s)e−βs. For T (s) = T (−s), β = 0.

3. Super-Gaussianity: gβ(x) is convex and decreasing where gβ(x) = ln T (√x)− β
√
x.

We do not require log-concavity of T (s) but log-concavity or equivalently convexity of ρ(s) = − ln T (s)
leads to a convex optimisation problem for both inference and estimation.

2.4.2 Expectation propagation

EP, section 1.3, requires Gaussian integrals Ẑ =
´ N (s|µ¬, ρ¬)T (s)ηds as well as derivatives w.r.t. to

the cavity mean ∂ ln Ẑ
∂µ¬ and ∂2 ln Ẑ

∂µ2¬
. The potentials T (s) do not need to be symmetric, strictly positive or

super-Gaussian to be compatible with the EP algorithm.

2.4.3 Interface

Every potential implementation in pot/ has to provide for

• VB the evaluation of ln T (s) as well as its first two derivatives [ln T]′(s), [ln T]′′(s) as well as the
symmetry parameter β and for

• EP the evaluation of ln Ẑ(µ¬), [ln Ẑ]′(µ¬) and [ln Ẑ]′′(µ¬).

All methods for inference and estimation are completely generic in the potentials, which makes it very
simple to include new potentials into the toolbox as long as the following interface potFuntions.m is
respected:% A potential pot(s) is a salar positive funtion IR -> IR_+.% Applied to a vetor valued input s, a potential funtion is understood as% pointwise evaluation of every omponent s(i).%% We urrently support two lasses of inferene algorithms beyond Laplae's% approximation aka MAP estimation: Variational bounding and expetation% propagation. They are speified by the type parameter in the general all% P = pot(s,theta,type,z)% where theta ontains additional (hyper)parameter(s). The input s is only% used as s(:), that is, matrix struture is ignored.%% 1) Variational bounding (VB) [for ExpPow, Gauss, Laplae, Logisti, Seh2, T℄% P = pot(s,theta) = pot(s,theta,'VB')% - pot(s) Needs to be strongly super-Gaussian.% - pot(s) Has to be symmetri or symmetrisable i.e. there is a onstant b% suh that f(s) = pot(s)*exp(-b*s) is even or symmetri f(s)=f(-s).% The return argument is a matrix P of size [qx4℄ whose olumns% [lp,dlp,d2lp,b℄ are as long as there are elements in the input s.% lp(s) = log(pot(s)), [simple log evaluation℄% dlp(s) = d lp(s) / ds, [first derivative of the log℄% d2lp(s) = d^2 lp(s) / ds^2, and [seond derivative of the log℄% b s.t. f(s)=f(-s), f(s) = pot(s)*exp(-b*s). [linear symmetry parameter℄%% 2) Expetation propagation (EP) [for Gauss, Laplae, Logisti, Seh2℄% P = pot(s,theta,'EP',z)% - pot(s) Does not need to be strongly super-Gaussian or symmetri; we need

12

% Gaussian expetations w.r.t. pot(s) in order to run EP.% The return argument is a matrix P of size [qx3℄ whose olumns% [lZ,dlZ,d2lZ℄ are as long as there are elements in the input s.% lZ(s,z) = log(\int N(t|s,z) pot(t) dt), [log partition funtion℄% dlZ(s,z) = d lZ(s,z) / ds, and [first derivative of the log℄% d2lZ(s,z) = d^2 lZ(s,z) / ds^2. [seond derivative of the log℄%% We use a single matrix-valued output argument to allow very ompat% speifiations of mixed potentials, see the last line of the examples below.% This ease of speifiation, however, omes at the expense of some omputional% overhead sine we always evaluate the full matrix P even if only the first% olumn is needed.%% Currently, the following potentials are implemented in pot/pot<NAME>.m:% <NAME> Analyti Expression Param Desription% --% ExpPow(s,al) = exp(-|s|^al) al>0 Exponential power distribution% Gauss(s) = exp(-s^2/2) Gaussian distribution% Laplae(s) = exp(-abs(s)) Laplae distribution% Logisti(s) = 1/(1+exp(-s)) Logisti funtion% Seh2(s) = 1 / osh(s)^2 Seh-squared distribution% T(s,nu) = (1+s^2/nu)^(-nu/2-1/2) nu>0 Student's t distribution%% Examples:% >> s=0.3; pot = �(s) potLogisti(s,'EP');% >> s=2.7; nu=3; pot = �(s) potT(s,'VB',nu);% >> s=[1;2℄; al=4; pot = �(s) [potGauss(s(1),'VB'); potExpPow(s(2),'VB',al)℄;%% Another way of onatenating potentials is provided by pot/potCat.m, whih% allows onatenation by:% >> pot = �(s,varargin) potCat(s,varargin{:},{�potT,�potGauss},{1:5,6:9});%% See also PENFUNCTIONS.M.%% () by Hannes Nikish, MPI for Biologial Cybernetis, 2010 November 10
2.4.4 Implementations

The interface is currently implemented by six widely used potentials T (s) = T (s; θ) – all located inpot/pot<NAME>.m.<NAME> Meaning Expression T (s; θ) = Parameters θ =ExpPow Exponential Power exp(−|s|α), α > 0 αGauss Gaussian exp(− 1
2 s

2) ∅Laplae Laplacian exp(−|s|) ∅Logisti Logistic function 1
1+exp(−s) ∅Seh2 Sech-squared 1
cosh2(s)

∅T Student’s t
(

1+ 1
ν s

2
)−(ν+1)/2

νCat Concatenation [T1(si1), .., Tr(sir)] Ti, ii
Note that the potentials T (s) can depend on additional parameters θ. Further note, that the imple-

mentations of the potentials do not have a scale parameter τ. A scale τ can be introduced by replacing
{ln T (s), [ln T]′(s), [ln T]′′(s), β} with

{
ln T (τs), τ · [ln T]′(τs), τ2 · [ln T]′′(τs), τ · β

}
.

2.5 Double loop inference dli.m engine in inf/
Although all derivations are done using the variational parameter γ, we use π = γ−1 in the imple-
mentation to avoid unnecessary inversions. The inference engine inf/dli.m uses PLS solvers in the
inner loop, see section 2.2. Outer loop updates are either approximated by inf/diaginv_lanzos.m or
exactly computed by inf/diaginv_woodbury.m. The interface to the double loop algorithm is detailed
in infEngine.m.

13

% [m,ga,b,z,nlZ℄ = DLI(X,y,s2,B,pot,tau,opts,G)%% DLI - Double Loop Inferene - Bayesian Inferene using a Double Loop algorithm% The variational riterion whose stationary point is found has the form% phi(ga,b) = ln|A| + h(ga,b) + \min_u R(u,ga,b), where% A = X'*X/s2 + B'*diag(1./ga)*B, s=B*u,% h(ga,b) = \sum_{j=1}^q h_j(ga_j,b_j)% R(u,ga,b) = (1/s2) * ||X*u-y||^2 + s'*diag(1./ga)*s - 2*b'*s.%% The probabilisti model onsists of% (i) Gaussian potentials y = X*u + e, e~N(0,s2*I) and% (ii) non-Gaussian potentials t_i(s_i), pot(s) = \prod_i t_i(tau_i*s_i)% leading to a posterior P(u) of the form% P(u) = (1/Z) N(u|Xu,s2*I) * pot(s) where s = B*u and the normalisation% onstant or partition funtion is Z = \int N(u|Xu,s2*I) * pot(s) du.%% OUTER LOOP: z \approx diag(B'*inv(A)*B) = var(s)%% opts.innerType == 'VB'% INNER LOOP: min_u (1/s2)*||X*u-y||^2 + 2*pen(s) where r = sign(s)*sqrt(s^2+z)% pen(s) = tau*b*(r-s) - ln pot(tau*r), see pen/penVB.m.% Our variational inferene relaxation uses Gaussian individual lower bounds% pot(s) \ge exp(b*s -s^2/ga +h(ga)/2) to obtain a joint a lower bound% Z \ge exp(h(ga)/2) * \int N(u|Xu,s2*I) * exp(b*s -s^2/ga) du = Z_{VB}% having the form of a Gaussian integral that an be written as% Z_{VB} \ge C*exp(-phi(ga)/2), C = (2*pi)^(n/2) * (2*pi*s2)^(-m/2).% Here, the variational riterion phi(ga) is to be minimised w.r.t. the% variational parameters ga. For log-onave models, this onstitutes a onvex% variational optimisation problem (1).% Our approah to solve the problem uses Fenhel duality to deouple ln|A| by% upper bounding ln|A| \min_z z'*(1./ga) g*(z); a funtion that is just a sum% over individual omponents of ga. The algorithm onsists of an outer loop% where the deoupling bound with oeffiients z is refit and an inner loop% where the variational riterion is jointly minimised in both u and ga% (wih redues to a PLS problem, pls/pls*.m).%% opts.innerType == 'EP'% INNER LOOP:% We interleave parallel EP updating steps and posterior mean reomputations% to find a stationary point of the inner loop riterion.%% INPUT% =====% X [mxn℄ measurement matrix or operator% y [mx1℄ measurement vetor% s2 [1x1℄ measurement variane% B [qxn℄ matrix or operator% pot potential funtion handle or funtion name string from pot/pot*.m% tau [qx1℄ sale parameters of the potentials% opts. optimisation parameters% outerZinit initial value for upper bound [default 0.05℄% outerGainit initial value for variational parameter [default 1℄% outerNiter number of outer loop iterations [default 10℄% outerMVM number of MVMs/Lanzos vetors [default 50℄% outerExat Do we try to ompute exat outer loops? [default false℄% If B is the identity and X numeri, we use the Woodbury% formula, otherwise A is expanded into a full matrix.% This flag is also used for the posterior mean omputation% at the end and in the EP inner loop.% outerOutput flag saying whether some output is shown [default false℄% innerMVM number of inner loop MVMs or CG steps [default 50℄% innerIt number of inner Newton steps for plsTN [default 15℄% innerOutput flag saying whether some output is shown [default false℄% innerType whih inferene method EP or VB [default 'VB'℄% innerVBpls inner loop PLS solver [default 'plsLBFGS'℄% => the opts strut is passed to the PLS solver whih
14

% allows to pass additional arguments to it% innerEPeta salar parameter for frational EP [default 1℄% only possible for potGauss and potLaplae% G [qtxq℄ grouping matrix (for VB only) [default eye(q)℄% this hanges the inner loop penaliser to% pen(s) = -log(pot(tau*r)) where r = sqrt(G*(s^2 + z)).%% OUTPUT% ======% m [nx1℄ posterior mean estimate m = mean(u)% ga [qx1℄ optimal value of the variational width parameters% b [qx1℄ optimal value of the variational position parameters% z [qx1℄ posterior marginal variane estimates z = var(s)% nlZ [1x1℄ approxmation to the negative log marginal likelihood -log(Z)%% See also PENFUNCTIONS.M, POTFUNCTIONS.M, INF/DLI.M.%% () by Hannes Nikish, MPI for Biologial Cybernetis, 2010 November 23
2.5.1 Auxiliary routines for the outer loop

The outer loop update (see section 1.2.1) (approximately) computes the marginal variance i.e. the diag-
onal z = dg(BA−1B⊤) of the inverse A = σ−2X⊤X+ B⊤Γ

−1B of the covariance matrix V = A−1. The
toolbox offers two complementary functions to accomplish this task. One exploits successive matrix
vector multiplications (MVM) to approximate z using the Lanczos algorithm inf/diaginv_lanzos.m
and the other one inf/diaginv_woodbury.m concentrates on the special case B = I. In that case, where
z = diag(A−1), we can – depending on the sizes m and n of X – exploit the Woodbury formula

A−1 =
(

X⊤X/σ2 + Γ
−1

)−1
= Γ− ΓX⊤(σ2I+ XΓX⊤)−1XΓ

to compute z exactly provided that either m or n is small.
The two implementations inf/diaginv_{lanzos,woodbury}.mconsider amore general matrixA =

X⊤RX+ B⊤PBwhere R and P can either be specified by a

• positive definite square matrices: R ∈ Rm×m, P ∈ Rq×q

• positive vectors representing the diagonals: R = diag(r), P = diag(p), r ∈ Rm
+, p ∈ R

q
+, or

• positive numbers to scaling the identity matrix: R = rI, P = pI, r ∈ R+, p ∈ R
q
+.

In the outer loop, we use R = σ−2I and P = Γ
−1.

15

3 Installation and compilation of MEX code

Before using the glm-ie toolbox, you should run startup.mwhich adds some entries to the path vari-
able.

In order to use the L-BFGS minimiser to solve the PLS optimisation problem, you have to compile
Peter Carbonetto’s Matlab interface for L-BFGS-B. The challenge here is the Fortran 77 code. We provide
a Makefile suitable for Linux 32/64 bit and Mac whenever you have g77 properly installed. A list of
compilers can be found at http://www.mathworks.om/support/ompilers/R2010a/. Compilation is
done by first adapting pls/lbfgsb/Makefile to your computing environment. In any case, you need to
provide $MATLAB_HOMEwhich can be found by the commands loate matlab, find / -name "matlab"
or the like. You can choose between two compilation modes:

1. using the mex utility by Matlab which is the default mode

(a) provide the variable $MEX, then type

(b) >�> d pls/lbfgsb
(c) >�> make mex
(d) >�> d ../..

2. without the mex utility by Matlab

(a) provide the variables $MEX_SUFFIX and $MATLAB_LIB, then type

• >�> d pls/lbfgsb
• >�> make nomex
• >�> d ../..

Notes on Ubuntu

In Ubuntu 10.04 LTS, the libg2 library needed for both compilation modes is not included per default
anymore. You can check this by ls /usr/lib/libg2.*which produces an empty output in this case
on your machine. You thenwant to install the packages g-3.4-base4 and libg205. After installation,
you have to create a symbolic link by d /usr/lib and ln -s libg2.so.0 libg2.so. In combination
with the fort77 package, you should be able to compile the code.

References

Patrick Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal processing. In
Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, 2010. URL http://arxiv.org/abs/0912.3522. 9

Hannes Nickisch andMatthias Seeger. Convex variational Bayesian inference for large scale generalized
linear models. In Proceedings of the 26th International Conference on Machine Learning, 2009. 2

MatthiasW. Seeger and Hannes Nickisch. Large scale variational inference and experimental design for
sparse generalized linear models. Technical Report 175, Max Planck Institute for Biological Cybernet-
ics, 9 2008. 2

MatthiasW. Seeger and Hannes Nickisch. Large scale variational inference and experimental design for
sparse generalized linear models. Technical report, 2010. URL http://arxiv.org/abs/0810.0901. 2

Matthias W. Seeger, Hannes Nickisch, Rolf Pohmann, and Bernhard Schölkopf. Bayesian experimental
design of magnetic resonance imaging sequences. In Advances in Neural Information Processing Systems
21, pages 1441–1448, 2009. 2

MatthiasW. Seeger, Hannes Nickisch, Rolf Pohmann, and Bernhard Schölkopf. Optimization of k-space
trajectories for compressed sensing by bayesian experimental design. Magnetic Resonance in Medicine,
63(1):116–126, January 2010. 2

4http://pakages.ubuntu.om/jaunty/g-3.4-base
5http://pakages.ubuntu.om/jaunty/libg20

16

http://www.mathworks.com/support/compilers/R2010a/
http://arxiv.org/abs/0912.3522
http://arxiv.org/abs/0912.3522
http://arxiv.org/abs/0810.0901
http://packages.ubuntu.com/jaunty/gcc-3.4-base
http://packages.ubuntu.com/jaunty/libg2c0

fnlCg.m. by Michael Lustig, August 2007. URL http://www.stanford.edu/~mlustig/SparseMRI.html. 9fwtn. by Hannes Nickisch, March 2010. URL http://mloss.org/software/view/242/. 7
L-BFGS-B. by Ciyou Zhu, Richard Byrd and Jorge Nocedal., September 1997. URL http://www.ees.northwestern.edu/~noedal/lbfgsb.html. 9
Matlab interface for L-BFGS-B. by Peter Carbonetto, May 2007. URL http://www.s.ub.a/~parbo/lbfgsb-for-matlab.html. 16minimize.m. by Carl E. Rasmussen, September 2006. URL http://www.kyb.tuebingen.mpg.de/bs/people/arl/ode/minimize/. 9mris.m. by Tom Goldstein, December 2008. URL http://mloss.org/software/view/242/. 9nufft. by Jeff Fessler, 2001. URL http://www.ees.umih.edu/~fessler/irt/irt/nufft/. 7
Marcel van Gerven, Botond Cseke, Floris de Lange, and Tom Heskes. Efficient Bayesian multivariate
fMRI analysis using a sparsifying spatio-temporal prior. Neuroimage, 50:150–161, 2010. 5

David Wipf and Srikantan Nagarajan. A new view of automatic relevance determination. In Advances
in Neural Information Processing Systems 20, 2008. 2

17

http://www.stanford.edu/~mlustig/SparseMRI.html
http://www.stanford.edu/~mlustig/SparseMRI.html
http://mloss.org/software/view/242/
http://www.eecs.northwestern.edu/~nocedal/lbfgsb.html
http://www.eecs.northwestern.edu/~nocedal/lbfgsb.html
http://www.cs.ubc.ca/~pcarbo/lbfgsb-for-matlab.html
http://www.cs.ubc.ca/~pcarbo/lbfgsb-for-matlab.html
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
http://mloss.org/software/view/242/
http://www.eecs.umich.edu/~fessler/irt/irt/nufft/

	Introduction and modelling framework
	MAP estimation
	Variational Bayesian inference
	Double loop algorithm
	Nonlinear or group potentials

	Expectation propagation inference
	Parameter update details
	Double loop algorithm

	Package organisation

	Code
	Matrix operators in mat/
	The matrix class mat
	Implementations

	Penalised least squares solvers in pls/
	Interface
	Implementations
	Auxiliary routines

	Penalty functions (s) in pen/
	Interface
	Implementations

	Potential functions T(s) in pot/
	Variational bounding
	Expectation propagation
	Interface
	Implementations

	Double loop inference dli.m engine in inf/
	Auxiliary routines for the outer loop

	Installation and compilation of MEX code

