
glm-ie: The Generalised Linear Models

Inference & Estimation Toolbox

Hannes Nickisch, MPI for Biological Cybernetics, Tübingen, Germany

August 10, 2010

Abstract

The glm-ie toolbox contains scalable estimation routines for GLMs (generalised linear models) and
SLMs (sparse linear models) as well as an implementation of a scalable convex variational Bayesian
inference relaxation. We designed the glm-ie package to be simple, generic and easily expansible.
Most of the code is written in Matlab including some MEX files. The code is fully compatible to both
Matlab 7.x1 and GNU Octave 3.2.x2.

Probabilistic classification, sparse linear modelling and logistic regression are covered in a common
algorithmical framework.

Contents

1 Introduction and modelling framework 2
1.1 MAP estimation . 2
1.2 Bayesian inference . 2
1.3 Double loop algorithm . 3
1.4 Package organisation . 3

2 Code 4
2.1 Matrix objects in mat/ . 4

2.1.1 Interface . 4
2.1.2 Implementations . 4

2.2 Penalised least squares solvers in pls/ . 5
2.2.1 Interface . 5
2.2.2 Implementations . 6
2.2.3 Auxiliary routines . 6

2.3 Penalty functions ρ(s) in pen/ . 7
2.3.1 Interface . 7
2.3.2 Implementations . 7

2.4 Potential functions T (s) in pot/ . 8
2.4.1 Interface . 8
2.4.2 Implementations . 8

2.5 Double loop inference engine in inf/ . 9
2.5.1 Auxiliary routines for the outer loop . 9

3 Installation and compilation of MEX code 10

1The MathWorks, http://www.mathworks.om/
2The Free Software Foundation, http://www.gnu.org/software/otave/

1

http://www.mathworks.com/
http://www.gnu.org/software/octave/

1 Introduction and modelling framework

The glm-ie toolbox performs estimation and inference in linear models with unknown parameters u ∈
Rn, Gaussian observations

y = Xu+ ε ∈ Rm, ε ∼ N (0, σ2I)

and non-Gaussian potentials Tj(sj) on linear projections

s = Bu ∈ Rq

leading to a posterior of the form

P(u|D) ∝ N (y|Xu, σ2I)
q

∏
j=1

Tj(sj). (1)

Both regression and classification models fall into the scope of the framework. Nickisch and Seeger
[2009], Seeger, Nickisch, Pohmann, and Schölkopf [2009], Seeger and Nickisch [2008]

1.1 MAP estimation

AMAP estimator is the parameter value with highest posterior density

ûMAP = argmax
u

P(u|y).

Finding the MAP estimator ûMAP requires the solution of a penalised least squares (PLS) problem

argmin
u

1

2
‖Xu− y‖2 + λ · ρ(s), s = Bu, λ ∈ R+ (2)

with penaliser ρMAP(s) = −∑
q
j=1 ln Tj(sj) and weight λ = σ2.

1.2 Bayesian inference

The inference algorithm uses the (exact) variational representation

T (s) = max
γ≥0

exp

(

βs− s2

2γ
− h(γ)

2

)

, h(γ) = max
x≥0

− x

γ
− 2g(

√
x), g(s) = ln T (s)− βs (3)

of the potential T (s) by exploiting its symmetry, positivity and super-Gaussianity, see section 2.4. These

bounds can be plugged into the expression for the partition function Z =
´ N (y|Xu, σ2I) ∏

q
j=1 Tj(sj)du

to obtain a lower bound thereof

Z ≥ e−
1
2 h(γ)

ˆ

N (y|Xu, σ2I)eβ⊤s− 1
2 sΓ

−1sdu, h(γ) =
q

∑
i=1

hi(γi), (4)

where s = Bu and Γ = diag(γ). Evaluating the Gaussian integral yields

Z ≥ Ce−
1
2 minγ φ(γ), C = (2π)

n−m
2 σ−m

where

φ(γ) = ln |A|+ h(γ) +min
u

R(u,γ), R =
1

σ2
‖Xu− y‖2 + s⊤Γ

−1s− 2β⊤s (5)

and A = X⊤(σ2I)−1X+ B⊤
Γ
−1B.

The Gaussian approximate posterior P(u|D) ≈ Q(u) = N (u|m,V) has covariance V = A−1 and

meanm = A−1d where d = 1
σ2X

⊤y+ B⊤β.

Using the concavity of γ−1 7→ ln |A|, we can upper bound and decouple the term by Fenchel duality
(between ω(γ) and ω∗(z))

ω(γ) = ln |A| = min
z

z⊤γ−1 − ω∗(z), z > 0, where z∗ = argmin
z

z⊤γ−1 − ω∗(z) = dg(BA−1B⊤) (6)

2

to obtain the (jointly convex in (u,γ) for log-concave potentials) variational criterion

φ(γ,u, z) = z⊤γ−1 − ω∗(z) + h(γ) +
1

σ2
‖Xu− y‖2 + s⊤Γ

−1s− 2β⊤s (7)

=
1

σ2
‖Xu− y‖2 +

q

∑
i=1

hi(si, γi)− ω∗(z), hi(si, γi) =
zi + s2i

γi
+ hi(γi)− 2βisi

which decouples into scalar problems w.r.t. γ and is of PLS structure w.r.t. u. Note that φ(γ) =
minu,z>0 φ(γ,u, z). For log-concave potentials T (s), we can do univariate minimisations in γi in closed
form

h∗(s) =
1

2
min
γ≥0

h(s, γ) = min
γ≥0

1

2

[

z+ s2

γ
+ h(γ)

]

− βs = β · (ς − s)− ln T (ς), ς = sign(s) ·
√

s2 + z (8)

by matching the variational representation of T (s) from equation 3 −2g(
√
x) = minγ≥0 x/γ + h(γ) for

x = z+ s2 where we have dropped the indices i. We see that

1. for z = 0, we have h∗(s) = − ln T (s) and

2. for s → ±0, h∗(s) is continuous, due to the symmetry fβ(s) = fβ(−s) of fβ(s) = T (s)e−βs from
section 2.4 yields h∗(−s) = h∗(s) + 2βs.

Hence, the γ dependence can be dropped from the variational criterion by performing the minimisation
w.r.t. γ analytically

φ(u, z) = min
γ

φ(γ,u, z) =
1

σ2
‖Xu− y‖2 + 2 · h∗(Bu)− ω∗(z)

where h∗(s) = β⊤(ς − s)− ln T (ς), ς = sign(s)⊙
√

s2 + z.

The (non-zero) signum function is understood as sign(t) = t/|t| with sign(0) = 1. The optimal value
γ∗ = argminγ φ(γ,u, z) obtained as

γ−1
∗ = −2

∂ ln g(ς)

∂ς2
, ς = sign(s)⊙

√

s2 + z., g(s) = ln T (s)− β⊤s

=
β − [ln T]′(ς)

ς

for τ-scaled potentials Ti(τisi), we obtain the expression γ−1∗ = τ⊙β−[lnT]′(τ⊙ς)
ς .

1.3 Double loop algorithm

Our double loop algorithm (see section 2.5) minimises φ(u, z) by iterating between minimisation in one
variable while keeping the other one fixed.

1. Outer loop: z∗ = argminz φ(u, z) = dg(BA−1B⊤) = V[s|D]

2. Inner loop: u∗ = argminu φ(u, z) = argminu
1

2σ2 ‖Xu− y‖2 + h∗(Bu) = E[u|D]

The outer loop is a variance estimation problem and the inner loop is a penalised least squares or MAP
estimation problem (equation 2) with penaliser ρVB(s) = h∗(s) and weight λ = σ2.

1.4 Package organisation

Besided the illustrating examples (section ??) and the double loop inference engine (section 2.5) , the
package naturally splits into four functional objects like matrix operators, PLS solvers, penalty and
potential functions.

Directory Contentinf/ double loop inference code, section 2.5mat/ matrix classes, section 2.1pls/ penalised least squares code, section 2.2pen/ penalty functions ρ(s), section 2.3pot/ potential functions T (s), section 2.4

If youwish to addmore functional objects, the only thing you have to do is to implement the interface
as detailed in sections 2.1, 2.2, 2.3 and 2.4.

3

2 Code

In the following, we detail the function objects of the glm-ie toolbox: matrix operators (section 2.1),
PLS solvers (section 2.2), penalty functions (section 2.3) and potential functions (section 2.4) needed to
successfully operate the inference engine (section 2.5).

2.1 Matrix objects in mat/
For the glm-ie toolbox, a matrix A is completely specified by its MVM (matrix vector multiplication)
Ax with a vector x. We make use of Matlab’s object oriented programming facilities in order to use the
same code for both dense matrices or matrices only implicitely specified through their MVM.

Note on Octave compatibility

There is an issue with the way Octave evaluates expressions of the form x=A'*y; namely that it will
terminate with an T& Array<T>::hekelem (2): range error because the transpose seems to be
evaluated in a lazy fashion. Our workaround in the glm-ie toolbox is to use expressions x=[A'℄*y;
instead to force the creation of a new object being the transpose of the original one. Both Matlab and
Octave are smart enough to not create full copies of A – leading to essentially no memory overhead.

2.1.1 Interface

Matlab requires several functions for a matrix object A (named A in the code) to be present in a di-
rectory �A/ that are called whenever the interpreter encounters expressions like A*x for Ax, A'*x (and
equivalently A.'*x) for A⊤x, size(A,2) or the like.

1. A.m is the constructor for the matrix object and

2. mtimes.m implements the MVM depending on the transpose flag A.transp.
We have seven generic functions shared by all matrix objects in the glm-ie toolbox:

1. transpose.m flips the flag A.transp that tells mtimes.mwhether to compute Ax or A⊤x,

2. transpose.m is equivalent to transpose.m,
3. isempty.m indicates whether there is no entry in A,

4. disp.m displays some information about the size and the class of A,

5. numel.m counts the number of elements in A,

6. full.m returs the full matrix A and

7. size.m returns the size of the matrix A as stored in the struct field A.sz by the constructor A.m.
2.1.2 Implementations

The glm-ie toolbox currently implements six matrix objects A whose code is located in the directoriesmat/�Amat/ and its subdirectories.A A Meaning Formal Ax ≡ O(n) =nv2 K Convolution with kernel k by Michael Hirsch k ⋆ x nfd2 D Finite derivatives in both directions [xi+1 − xi]i nfftline2 Fl Partial Fourier, single rows (Fx)l subset n · ln nfftmask2 FM Partial Fourier, single points (Fx)M subset n · ln nwav W Fast wavelet transform fwtn Wx nat B Concatenation of two matrices L, R

[

Lx
Rx

]

1

4

2.2 Penalised least squares solvers in pls/
In the glm-ie toolbox, PLS estimation problems (equation 2) with tradeoff parameter λ > 0

argmin
u

1

2
‖Xu− y‖2 + λ · ρ(Bu;ψ)

are encountered both in MAP estimation (section 1.1) and in the inner loop (section 1.3) of our double
loop variational inference method.

2.2.1 Interface

We provide a generic interface in plsAlgorithms.m to be able to use a variety of different PLS solvers.
In order to run the methods, you need to provide a starting value u0, the matrices X and B, the mea-
surement vector y, the optimisation parameters stored in the struct opt, the weight λ and the penaliser
ρ(s;ψ)with additional parameters ψ stored in the cell array varargin.% A PLS (penalised least squares) algorithm is a program solving the% minimisation problem% phi(u) = 1/(2*lambda) * ||X*u-y||_2^2 + sum(pen(s)), s=B*u,% where pen(s) is a penalty funtion.%% [u,phi℄ = pls<NAME>(u0,X,y,B,opt,lam,pen,varargin)%% INPUT% =====% u0 [n,1℄ initial vetor% X [m,n℄ matrix or operator% y [m,1℄ vetor% B [q,n℄ matrix or operator% opt. optimisation parameters% nMVM maximal number of steps = matrix vetor multipliations ...% with A=X'*X+B'*D*B, D is diagonal, [default 100℄% output flag saying whether something is printed [default false℄% the funtion will show the urrent iteration number, the atual% funtion value phi and the urrent length of the step% in the format: 13, phi=8.6063e-01; du=2.325e-04% lam [1x1℄ (positive) weight of the penaliser, an be Inf% pen penaliser funtion handle or funtion name% [p,dp,d2p℄ = feval(pen,Bu,varargin{:})% varargin additional parameters for pen%% OUTPUT% ======% u [n,1℄ optimal solution% phi [1,1℄ optimal funtion value%% Currently, we have implemented in pls/pls<NAME>.m% LBFGS: LIMITED memory BROYDEN-FLETCHER-GOLDFARB-SHANNO% quasi Newton or variable metri method% TN: TRUNCATED NEWTON% optimisation with CG approximated Newton steps% CGBT: CONJUGATE GRADIENTS with BACKTRACKING line searh% optimisation using the Armijo rule% CG: CONJUGATE GRADIENTS% optimisation with CG ode minimize.m by Carl E. Rasmussen%% Examples:% >> lam=1; plsLBFGS(u,X,y,B,opt,lam,'penQuad')% >> lam=1; tau=2; z=1.3; plsCG(u,X,y,B,opt,lam,'penFromPot','potLaplae',tau,z)%% See also PENFUNCTIONS.M, POTFUNCTIONS.M.%% () by Hannes Nikish, MPI for Biologial Cybernetis, 2010 July 27

5

2.2.2 Implementations

All currently implemented solvers can be found at pls/pls<NAME>.m.<NAME> MeaningCG Conjugate gradients (CG) using Carl E. Rasmussen’s code minimize.m.CGBT CG with backtracking line search using Armijo’s rule fnlCg.m.LBFGS Limited memory Broyden–Fletcher–Goldfarb–Shanno quasi Newton.TN Truncated Newton with CG approximated Newton direction.

2.2.3 Auxiliary routines

• In pls/plsCG.m, the conjugate gradient optimiser minimize.m is calledwith the objective pls/phi.m.
• A second conjugate gradient solver pls/plsCGBT.m inspired by the fnlCg.m code is available; it

also makes calls to pls/phi.m.
• With pls/plsLBFGS.m,we also have an interface to the powerful general purpose optimiser L-BFGS-B

written in Fortran (see section 3). Its code can be found in pls/lbfgsb/; the corresponding bina-
ries along with installation instructions are contained in the files pls/lbfgsb.{m,mex*}, respec-
tively. We have another Matlab wrapper contained in pls/minimize_lbfgsb_*.m having exactly
the same interface as minimize.m.

• Finally, we have a truncated Newton procedure pls/plsTN.m running. Here, the line search along
the Newton search direction is done by Brent’s golden section search pls/brentmin.m. The com-
putation of the Newton search direction itself requires the (approximate) solution of a linear sys-
tem. We have two rather general linear system solvers allowing to find a vector c such thatAc = b
where A = X⊤RX+ B⊤PB:

– Linear conjugate gradients pls/linsolve_lg.m and
– Full inversion using the Woodbury identity pls/linsolve_woodbury.m, see section 2.5 andinf/diaginv_woodbury.m therein.

6

2.3 Penalty functions ρ(s) in pen/
Penalty functions are used to shape the PLS problem (equation 2). We do not require convexity of ρ(s),
but the optimisation becomes much simpler since convexity of ρ(s) implies convexity of the entire PLS
problem.

2.3.1 Interface

Every penalty function implementation has to provide

1. the evaluation of ρ(s) as well as

2. its first two derivatives ρ′(s), ρ′′(s).

All PLS solvers of section 2.2 are completely generic in the penalty function, facilitating the inclusion of
new penalty functions ρ(s) using the interface penFuntions.m:% A penalty funtion pen(s) is a salar funtion IR -> IR.%% [p,dp,d2p℄ = pen(s,psi) where psi ontains additional parameters%% The return arguments are of the same size as s and have the following meaning:% p = pen(s),% dp = d pen(s) / ds, and% d2p = d^2 pen(s) / ds^2.%% Currently, we have implemented in pen/pen<NAME>.m% Logarithmi: penLog(s,nu) = log(s^2+nu),% Power: penPow(s,d) = abs(s)^d,% Quadrati: penQuad(s) = s^2/2,% Zero: penZero(s) = 0, and% Derived from potential: penFromPot(s,pot,tau,z) = ...% tau*b*(r-s) -log(pot(tau*r)), r=sign(s)*sqrt(s^2+z)%% Examples:% >> s=0.3; d=1.5; penPow(s,d)% >> s=-4; pot='potLaplae'; tau=2; z=1.3; penFromPot(s,pot,tau,z)%% See also POTFUNCTIONS.M.%% () by Hannes Nikish, MPI for Biologial Cybernetis, 2010 August 09
2.3.2 Implementations

The interface is currently implemented by three penalty function ρ(s) = ρ(s;ψ) located in pen/pen<NAME>.m.
Note that the penalties can depend on additional parameters ψ.<NAME> Meaning Expression ρ(s;ψ) = Parameters ψ =Log Logarithmic penalty ln(s²+ ν), ν > 0 νPow Power penalty |s|d, d > 0 dQuad Quadratic penalty s2 ∅Zero No penalty at all 0 ∅FromPot Penalty from potential βτ (ς − s)− ln T (τς; θ) , ς = sign(s) ·

√
s2 + z (T , θ), τ, z

Besides simple penalty functions, we offer the penalty function pen/penFromPot.m transforming a
potential function T (s; θ)with parameters θ into a penalty function ρ(s). This penalty function is allows
to cast the inner loop optimisation as a PLS problem with ρ(s) = h∗(s), see section 1.2. Used with z = 0
and τ = 1, pen/penFromPot.m allows to do MAP estimation ρ(s) = − ln T (s; θ).

7

2.4 Potential functions T (s) in pot/
Potential functions are used to shape the Bayesian posterior of our model class (equation 1). Three
conditions have to be met by a proper potential function T (s):

1. Positivity: T (s) > 0.

2. Symmetry: ∀s ∈ R ∃β ∈ R fβ(s) = fβ(−s) where fβ(s) = T (s)e−βs. For T (s) = T (−s), β = 0.

3. Super-Gaussianity: gβ(x) is convex and decreasing where gβ(x) = ln T (
√
x)− β

√
x.

We do not require log-concavity of T (s) but log-concavity or equivalently convexity of ρ(s) = − ln T (s)
leads to a convex optimisation problem for both inference and estimation.

2.4.1 Interface

Every potential implementation in pot/ has to provide

1. the evaluation of ln T (s) as well as its first two derivatives [ln T]′(s), [ln T]′′(s) and

2. the symmetry parameter β.

All methods for inference and estimation are completely generic in the potentials, which makes it very
simple to include new potentials into the toolbox as long as the following interface potFuntions.m is
respected:% A potential pot(s) is a salar positive and strongly super Gaussian% funtion IR -> IR_+ that an be symmetrised i.e. there is a number b% suh that f(s) = pot(s)*exp(-b*s) is even.%% P = pot(s,theta) where theta ontains additional parameters%% The return argument is a matrix of size [px4℄ where the olumns do have the% following meaning:% lp = P(:,1), dlp = P(:,2), d2lp = P(:,3), b = P(:,4), where%% (i) lp(s) = log(pot(s)),% (ii) dlp(s) = d lp(s) / ds,% (iii) d2lp(s) = d^2 lp(s) / ds^2, and% (iv) f(s) = pot(s)*exp(-b*s) is symmetri, i.e. f(s) = f(-s).%% We an split the matrix P by the ommand% [lp,dlp,d2lp,b℄ = ol(P).%% Currently, we have implemented in pot/pot<NAME>.m% Gaussian: potGauss(s) = exp(-s^2/2),% Seh-squared: potSeh2(s) = 1 / osh(s)^2,% Laplae: potLaplae(s) = exp(-abs(s)),% Student's t, nu>0: potT(s,nu) = (1 + s^2/nu)^(-nu/2-1/2),% Exponential power, al>0: potExpPower(s,a) = exp(-|s|^al), and% Logisti funtion: potLogisti(s) = 1/(1+exp(-s)).%% Examples:% >> s=0.3; potLogisti(s)% >> s=2.7; nu=3; potT(s,nu)%% See also PENFUNCTIONS.M.%% () by Hannes Nikish, MPI for Biologial Cybernetis, 2010 July 27
2.4.2 Implementations

The interface is currently implemented by six widely used potentials T (s) = T (s; θ) – all located inpot/pot<NAME>.m.
8

<NAME> Meaning Expression T (s; θ) = Parameters θ =Gauss Gaussian exp(− 1
2 s

2) ∅Laplae Laplacian exp(−|s|) ∅Seh2 Sech-squared 1
cosh2(s)

∅Logisti Logistic function 1
1+exp(−s)

∅ExpPower Exponential Power exp(−|s|α), α > 0 αT Student’s t
(

1+ 1
ν s

2
)−(ν+1)/2

ν

Note that the potentials T (s) can depend on additional parameters θ. Further note, that the imple-
mentations of the potentials do not have a scale parameter τ. A scale τ can be introduced by replacing
{ln T (s), [ln T]′(s), [ln T]′′(s), β} with

{

ln T (τs), τ · [ln T]′(τs), τ2 · [ln T]′′(τs), τ · β
}

.

2.5 Double loop inference engine in inf/
Although all derivations are done using the variational parameter γ, we use π = γ−1 in the implemen-
tation to avoid unnecessary inversions.

vbidl.m
Innner loops are done by pls/, see section 2.2.

2.5.1 Auxiliary routines for the outer loop

The outer loop update (see section 1.3) (approximately) computes the marginal variance i.e. the diagonal
z = dg(BA−1B⊤) of the inverse A = σ−2X⊤X + B⊤

Γ
−1B of the covariance matrix V = A−1. The

toolbox offers two complementary functions to accomplish this task. One exploits successive matrix
vector multiplications (MVM) to approximate z using the Lanczos algorithm inf/diaginv_lanzos.m
and the other one inf/diaginv_woodbury.m concentrates on the special case B = I. In that case, where
z = diag(A−1), we can – depending on the sizes m and n of X – exploit the Woodbury formula

A−1 =
(

X⊤X/σ2 + Γ
−1

)−1
= Γ − ΓX⊤(σ2I+ XΓX⊤)−1XΓ

to compute z exactly provided that either m or n is small.
The two implementations inf/diaginv_{lanzos,woodbury}.mconsider amore general matrixA =

X⊤RX+ B⊤PBwhere R and P can either be specified by a

• positive definite square matrices: R ∈ Rm×m, P ∈ Rq×q

• positive vectors representing the diagonals: R = diag(r), P = diag(p), r ∈ Rm
+, p ∈ R

q
+, or

• positive numbers to scaling the identity matrix: R = rI, P = pI, r ∈ R+, p ∈ R
q
+.

In the outer loop, we use R = σ−2I and P = Γ
−1.

9

3 Installation and compilation of MEX code

Before using the glm-ie toolbox, you should run startup.mwhich adds some entries to the path vari-
able.

In order to use the L-BFGS minimiser to solve the PLS optimisation problem, you have to compile
Peter Carbonetto’s Matlab interface for L-BFGS-B. The challenge here is the Fortran 77 code. We provide
a Makefile suitable for Linux 32/64 bit and Mac whenever you have g77 properly installed. A list of
compilers can be found at http://www.mathworks.om/support/ompilers/R2010a/. Compilation is
done by first adapting pls/lbfgsb/Makefile to your computing environment. In any case, you need to
provide $MATLAB_HOMEwhich can be found by the commands loate matlab, find / -name "matlab"
or the like. You can choose between two compilation modes:

1. using the mex utility by Matlab which is the default mode

(a) provide the variable $MEX, then type

(b) >�> d pls/lbfgsb
(c) >�> make mex
(d) >�> d ../..

2. without the mex utility by Matlab

(a) provide the variables $MEX_SUFFIX and $MATLAB_LIB, then type

• >�> d pls/lbfgsb
• >�> make nomex
• >�> d ../..

Notes on Ubuntu

In Ubuntu 10.04 LTS, the libg2 library needed for both compilation modes is not included per default
anymore. You can check this by ls /usr/lib/libg2.*which produces an empty output in this case on
your machine. You then whant to install the packages g-3.4-base3 and libg204. After installation,
you have to create a symbolic link by d /usr/lib and ln -s libg2.so.0 libg2.so.
References

Hannes Nickisch andMatthias Seeger. Convex variational Bayesian inference for large scale generalized
linear models. In Proceedings of the 26th International Conference on Machine Learning, 2009. 2

MatthiasW. Seeger and Hannes Nickisch. Large scale variational inference and experimental design for
sparse generalized linear models. Technical Report 175, Max Planck Institute for Biological Cybernet-
ics, 9 2008. 2

Matthias W. Seeger, Hannes Nickisch, Rolf Pohmann, and Bernhard Schölkopf. Bayesian experimental
design of magnetic resonance imaging sequences. In Advances in Neural Information Processing Systems
21, pages 1441–1448, 2009. 2fnlCg.m. byMichael Lustig, August 2007. URL http://www.stanford.edu/~mlustig/SparseMRI.html.
6fwtn. by Hannes Nickisch, March 2010. URL http://mloss.org/software/view/242/. 4

L-BFGS-B. by Ciyou Zhu, Richard Byrd and Jorge Nocedal., September 1997. URLhttp://www.ees.northwestern.edu/~noedal/lbfgsb.html. 6
Matlab interface for L-BFGS-B. by Peter Carbonetto, May 2007. URLhttp://www.s.ub.a/~parbo/lbfgsb-for-matlab.html. 10minimize.m. by Carl E. Rasmussen, September 2006. URLhttp://www.kyb.tuebingen.mpg.de/bs/people/arl/ode/minimize/. 6

3http://pakages.ubuntu.om/jaunty/g-3.4-base
4http://pakages.ubuntu.om/jaunty/libg20

10

http://www.mathworks.com/support/compilers/R2010a/
http://www.stanford.edu/~mlustig/SparseMRI.html
http://mloss.org/software/view/242/
http://www.eecs.northwestern.edu/~nocedal/lbfgsb.html
http://www.cs.ubc.ca/~pcarbo/lbfgsb-for-matlab.html
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
http://packages.ubuntu.com/jaunty/gcc-3.4-base
http://packages.ubuntu.com/jaunty/libg2c0

	Introduction and modelling framework
	MAP estimation
	Bayesian inference
	Double loop algorithm
	Package organisation

	Code
	Matrix objects in mat/
	Interface
	Implementations

	Penalised least squares solvers in pls/
	Interface
	Implementations
	Auxiliary routines

	Penalty functions (s) in pen/
	Interface
	Implementations

	Potential functions T(s) in pot/
	Interface
	Implementations

	Double loop inference engine in inf/
	Auxiliary routines for the outer loop

	Installation and compilation of MEX code

